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Abstract
Motivation: Spatially resolved transcriptomics (SRT) enables scientists to investigate spatial context of mRNA abundance, including identifying
spatially variable genes (SVGs), i.e. genes whose expression varies across the tissue. Although several methods have been proposed for this
task, native SVG tools cannot jointly model biological replicates, or identify the key areas of the tissue affected by spatial variability.

Results: Here, we introduce DESpace, a framework, based on an original application of existing methods, to discover SVGs. In particular, our ap-
proach inputs all types of SRT data, summarizes spatial information via spatial clusters, and identifies spatially variable genes by performing dif-
ferential gene expression testing between clusters. Furthermore, our framework can identify (and test) the main cluster of the tissue affected by
spatial variability; this allows scientists to investigate spatial expression changes in specific areas of interest. Additionally, DESpace enables joint
modeling of multiple samples (i.e. biological replicates); compared to inference based on individual samples, this approach increases statistical
power, and targets SVGs with consistent spatial patterns across replicates. Overall, in our benchmarks, DESpace displays good true positive
rates, controls for false positive and false discovery rates, and is computationally efficient.

Availability and implementation: DESpace is freely distributed as a Bioconductor R package at https://bioconductor.org/packages/DESpace.

Introduction

Spatially resolved transcriptomics (SRT) technologies allow
the spatial characterization of gene expression profiles in a tis-
sue. SRT techniques can be broadly grouped into two catego-
ries: sequencing-based methods (e.g. Slide-seq (Rodriques
et al. 2019), Slide-seq-V2 (Stickels et al. 2021), 10X
Genomics Visium, spatial transcriptomics (Ståhl et al. 2016),
high definition spatial transcriptomics (Vickovic et al. 2019),
STEREO-seq (Chen et al. 2022)), and in situ hybridization
technologies (e.g. seqFISH (Lubeck et al. 2014), seqFISH2
(Shah et al. 2016), seqFISHþ (Eng et al. 2019), and
MERFISH (Chen et al. 2015)). Sequencing-based approaches
provide measurements across the entire transcriptome but the
mRNA abundances (typically) refer to the aggregation of mul-
tiple cells; conversely, the imaging-based methods are targeted
toward a (usually) limited number of genes but offer higher
spatial resolution, e.g. molecular-level measurements. In both
cases, computationally efficient methods are required to deal
with an increasingly large number of genes and spatial
measurements.

The emergence of SRT technologies has prompted the de-
velopment of novel analysis frameworks that exploit the joint
availability of gene expression and spatial information; in par-
ticular, below, we briefly introduce two such schemes: spa-
tially resolved clustering and spatially variable gene
identification. Other analyses include strategies to identify

putative cell–cell communication via local ligand–receptor co-
expression, and enrichment of cell type interactions (Rao
et al. 2021).

While single-cell RNA sequencing enables clustering cells
based on transcriptional profiles, SRT allows the identifica-
tion of spatial clusters (Fig. 1). Such structures are typically es-
timated via spatially resolved clustering tools, such as
BayesSpace (Zhao et al. 2021), StLearn (Pham et al. 2023),
Giotto (Dries et al. 2021), and PRECAST (Liu et al. 2023),
which cluster spots based on both their gene expression and
spatial localization; alternatively, spatial clusters can also be
obtained via manual annotation, e.g. from histology
(Maynard et al. 2021). Another popular analysis performed
on SRT data consists in identifying genes whose expression
patterns change across the tissue, also known as spatially vari-
able genes (SVGs). In particular, one can distinguish between
spatial variability (SV) across the entire tissue, and SV within
specific areas, such as spatial clusters. The former is arguably
the classical SVG application, and is the focus in this article;
the latter, instead, targets more subtle variations that could
also be of interest. While most SVG methods perform the first
task, only a few tools enable studying the second one; for in-
stance, when spatial structures are provided, nnSVG (Weber
et al. 2023) can detect both types of SVGs.

In recent years, various methods have been proposed to dis-
cover SVGs; notably: MERINGUE (Miller et al. 2021), a
density-independent approach built on the spatial auto-
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correlation of each gene; nnSVG (Weber et al. 2023), which
fits nearest-neighbor Gaussian processes; SpaGCN (Hu et al.
2021), that identifies spatial domains based on a graph con-
volutional network, and performs a Wilcoxon rank-sum test
on the mean-level expression changes between domains;
SPARK (Sun et al. 2020), using generalized linear mixed mod-
els with overdispersed Poisson and Gaussian distributions;
SPARK-X (Zhu et al. 2021), from the authors of SPARK,
based on a scalable non-parametric framework to test the de-
pendence between gene expression covariance and distance
covariance; SpatialDE (Svensson et al. 2018), which infers the
dependency between space and gene expression based on a
non-parametric Gaussian process; SpatialDE2 (Kats et al.
2021), that applies a Bayesian hidden Markov random field
to segment spatial regions and a count-based likelihood to
model the variance components of each gene within identified
regions; and, Trendsceek (Edsgärd et al. 2018), which evalu-
ates significant spatial gene expression heterogeneity via
marked point processes.

Despite the abundance of native SVG tools, there are some
limitations with the current approaches, including that:
(i) most methods are computationally demanding, which is
particularly troublesome for recent SRT technologies, such as
Slide-seq-V2, which provide hundreds of thousands of meas-
urements per gene; (ii) biological replicates are not allowed,
and only individual samples can be processed, exposing
results to a high degree of (biological and technical) variabil-
ity; (iii) few tools (such as nnSVG) can incorporate informa-
tion about spatial structures of interest, such as spatial
clusters; and, (iv) it is only possible to test the entire tissue for
spatial variability, while scientists cannot perform SV testing
on specific regions of interest (e.g. white matter in brain
cortex).

Additionally, differential gene expression (DGE) methods
have also been applied to discover differentially abundant
genes across human brain regions (Maynard et al. 2021). In
particular, Maynard et al. (2021) propose pseudo-bulk

summaries by cluster (i.e. overall abundance across all spots
in a cluster) with differential testing between clusters (via
limma (Ritchie et al. 2015)), looking for any change based on
the t- or ANOVA F-statistics. Corresponding wrapper func-
tions are provided in the spatialLIBD R package (Pardo et al.
2022). This procedure is computationally efficient, can incor-
porate multiple samples, and identifies the key clusters affect-
ing SV (via the enrichment test). However, due to its pseudo-
bulk nature, it requires biological replicates, and cannot run
on individual samples.

Alternatively, one could follow a similar approach, that
does not require multiple samples, by using marker gene
methods across spatial structures, such as scran’s findMarkers
(Lun et al. 2016) and Seurat’s FindAllMarkers (Satija et al.
2015). These tools are fast, and can test specific clusters.
Nonetheless, they are designed to identify marker genes in
each cluster, therefore (for every gene) they perform a statisti-
cal test on each individual cluster; these results have to be ag-
gregated if one is interested in studying SVGs across the entire
tissue.

Here, we propose DESpace, which is a two-step framework
based on spatial clustering, and on differential expression test-
ing across clusters. Our approach requires pre-computed spa-
tial clusters (Fig. 1), which can be obtained via manual
annotation or from spatially resolved clustering tools (e.g.
BayesSpace (Zhao et al. 2021), StLearn (Pham et al. 2023),
Giotto (Dries et al. 2021), and PRECAST (Liu et al. 2023));
these spatial clusters are used as a proxy for the spatial infor-
mation. We then fit a negative-binomial model, which was re-
cently shown to accurately model SRT data (BinTayyash
et al. 2021, Zhao et al. 2022), via edgeR (Robinson et al.
2010, McCarthy et al. 2012, Chen et al. 2016), a popular
tool for differential gene expression; we use spatial clusters as
covariates, and perform a differential gene expression test
across these clusters. If the expression of a gene is significantly
associated to the spatial clusters, its expression varies across
the tissue, thus indicating a SVG. Albeit our approach

Figure 1. Spatial clusters in three samples from LIBD (Maynard et al. 2021) (Visium), melanoma (Thrane et al. 2018) (spatial transcriptomics (Ståhl et al.

2016)) and mouse cerebellum (Cable et al. 2022) (Slide-seqV2 (Stickels et al. 2021)) datasets. Spatial clusters were obtained: via manual annotations form

a pathologist (LIBD), BayesSpace (Zhao et al. 2021) (melanoma), and StLearn (Pham et al. 2023) (mouse cerebellum).
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resembles marker gene methods and SpatialLIBD’s wrappers,
it differs from both. Unlike marker methods, that generally
identify changes in each individual cluster (i.e. 1 test per clus-
ter), we aim at overall changes across all spatial clusters (i.e. 1
test across all clusters). Furthermore, while SpatialLIBD’s
approaches compute pseudo-bulk values, our framework
models individual (spot-level) measurements; as a conse-
quence, DESpace does not require biological replicates, and
can also run on individual samples.

Clearly, our approach relies on spatial clusters being avail-
able, and accurately summarizing the spatial patterns of tran-
scription, but we argue that these assumptions are usually
fulfilled. In fact, even when pre-computed annotations are not
available, spatially resolved clustering tools enable inferring
clusters that summarize the spatial structure of gene expression.

The approach we propose has several advantages. In our
benchmarks (see Section “Results”), DESpace displays good
sensitivity and specificity, and is computationally efficient.
Furthermore, our two-step framework: (i) can jointly model
multiple samples, hence increasing statistical power, reducing
the uncertainty that characterizes inference performed from
individual samples, and identifying genes with coherent spa-
tial patterns across biological replicates and (ii) allows identi-
fying the main cluster of the tissue affected by SV, testing if
the average expression in a particular region of interest (e.g.
cancer tissue) is significantly higher or lower than the average
expression in the remaining tissue (e.g. non-cancer tissue),
hence enabling scientists to investigate changes in mRNA
abundance in specific areas which may be of particular inter-
est. Finally, our tool is flexible, and can input any type of SRT
data.

Materials and methods

Inference with DESpace

Consider a SRT dataset, from a single sample, with N spots,
and where a total of C spatial clusters have been identified;
further assume that the c-th cluster corresponds to Nc spots,

where
PC
c¼1

Nc ¼ N. We define xgi as the mRNA abundance for

the g-th gene in the i-th spot belonging to the c-th cluster; we
model this value with a negative binomial distribution:

xgi � NBðlgi;/gÞ; (1)

logðlgiÞ ¼ logðMiÞ þ bgc; (2)

where NBðl;/Þ denotes a negative binomial random variable
with mean l and variance lð1þ l/Þ; /g is the gene-specific dis-
persion parameter modeling the variability between spots; Mi is
the effective library size (total count multiplied by TMM nor-
malization factor (Robinson and Oshlack 2010)) for the i-th
spot; and bgc is the c-th spatial cluster coefficient for gene g,
which represents the abundance of gene g in spatial cluster c.

In order to investigate if gene g is spatially variable, we ver-
ify if its gene expression varies across spatial clusters. In par-
ticular, we employ a likelihood ratio test (LRT) (Wilks 1938)
to test whether the bgc parameters differ across clusters, via
the following system of hypotheses:

H0 : bg1 ¼ � � � ¼ bgC
H1 : otherwise:

�
(3)

In order to identify the specific regions affected by spatial
variability, for each gene, we also apply a LRT on each indi-
vidual spatial cluster parameter, bgc.

When biological replicates are available, we add a sample-
specific parameter to the mean of the negative binomial model
in Equation (1). In particular, assuming that the observation
comes from the j-th replicate, Equation (2) becomes:

logðlgiÞ ¼ logðMiÞ þ bgc þ cgj; (4)

where cgj indicates the coefficient for the j-th sample in gene g,
with cg1 ¼ 0 for the first sample (taken as baseline) to ensure
identifiability. SVGs are identified, as in the individual-sample
case, by testing for the significance of bgc’s parameters.

In all cases, parameter inference and differential testing are
performed via edgeR (Robinson et al. 2010, McCarthy et al.
2012, Chen et al. 2016). Note, that we also tried alternative
approaches for differential gene expression, namely DESeq2
(Love et al. 2014) and limma (Ritchie et al. 2015), but overall
performance (in terms of sensitivity, specificity, and runtime)
was better when using edgeR.

Simulation studies—anchor data

We have designed several benchmarks, on real and semi-
simulated data; all our analyses start from one of three SRT
datasets (collected from distinct spatial technologies), denoted
by LIBD (Maynard et al. 2021), melanoma (Thrane et al.
2018), and mouse cerebellum (Cable et al. 2022) (Fig. 1).

The LIBD (Maynard et al. 2021) data, collected via the
Visium platform, contain 12 dorso-lateral pre-frontal cortex
samples from three independent human brain donors (i.e. bio-
logical replicates). In all samples, the tissue was partitioned
via manual annotation from pathologists into white matter
and up to six layers (Fig. 1). Overall, this dataset contains, for
each sample, on average, measurements for 33 538 genes
across 3973 spots; after filtering (see Supplementary Details),
this reduces to 14 628 genes and 3936 spots (Supplementary
Table S1).

The melanoma (Thrane et al. 2018) data consists of eight
melanoma lymph node samples from four distinct individuals
(i.e. biological replicates), diagnosed with stage IIIc mela-
noma. These data were obtained by applying spatial tran-
scriptomics (ST) (Ståhl et al. 2016) technology to melanoma
lymph node biopsies. In the original study (Thrane et al.
2018), the spots of each sample were clustered in four groups:
melanoma, stroma, lymphoid tissue, and remaining spots. We
clustered spots in four spatial clusters using BayesSpace
(Fig. 1), where cluster 4 indicates the melanoma area, cluster
2 embeds both stroma and lymphoid tissues, cluster 3 repre-
sents the border region between lymphoid and tumor tissues,
and cluster 1 includes lymphoid tissue distant from the cancer.
The dataset, on average, consists of a total of 15 884 genes
per sample, measured on 294 spots; after filtering (see
Supplementary Details), we retained 8173 genes and 290
spots (Supplementary Table S1).

The mouse cerebellum (Cable et al. 2022) data, obtained
via Slide-seqV2 (Stickels et al. 2021) technology, consist of
measurements, from a single sample, for 20 141 genes across
11 626 beads. After filtering (see Supplementary Details),
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these numbers reduced to 8277 and 11 615, respectively
(Supplementary Table S1). Beads were clustered via StLearn
(Fig. 1), obtaining similar clusters to those computed by Zhu
et al. (2021), on the same dataset, using RCTD software
(Cable et al. 2022).

Note that for the semi-simulated data from the LIBD and
melanoma datasets, we generated one simulation for each bio-
logical replicate (3 and 4 in the former and latter case,
respectively).

Simulation studies—SV profiles

We generated various semi-simulated datasets, by using, as
anchor data, the previously described three datasets. In partic-
ular, we edited the runPatternSimulation function from
Giotto (Dries et al. 2021), and re-arranged the real measure-
ments to partition the space into a highly and a lowly abun-
dant region (see Supplementary Details); by partitioning the
tissue in different ways, we generated five different SV pat-
terns. We initially separated the space in artificial regions: top
versus bottom (or right versus left) areas (Fig. 2, Bottom/
Right), and inside versus outside a circle (Fig. 2, Circular).
Then, we followed real data structures such as brain cortex
layers and melanoma regions (Fig. 2, Annotations). In these
three scenarios, in each simulated dataset, half of the SVGs
are highly abundant in one region (e.g. bottom or center of
the circle), and half are highly abundant in the complemen-
tary region (e.g. top or outside the circle). However, in the
cases described above, all SVGs follow the same spatial struc-
tures, which is unlikely to happen in real data. In order to im-
prove the realism of the semi-simulated data, we designed two
additional simulations, where SVGs follow multiple spatial
patterns, all based on real data structures; we generated two
such structures, referred to throughout as mixture and
inverted mixture. In the former case, a small region is identi-
fied as highly abundant, while most of the tissue is lowly
abundant; conversely, in the latter case, gene expression is
uniform in most of the tissue, and a small region is character-
ized by low abundance (Supplementary Fig. S1). In each simu-
lation, we generated between 33% (bottom/right, circular,
and annotations patterns) and 50% (mixture, and inverted
mixture patterns) of SVGs, while the remaining genes are

uniformly distributed; such uniform patterns were obtained
by randomly permuting measurements across the tissue (see
Supplementary Details).

Note that, when running DESpace and marker methods,
we did not use the original spatial clusters that we simulated
from. Instead, we employed noisy spatial clusters inferred via
StLearn and BayesSpace. We choose these two spatially re-
solved clustering tools, because they performed well in recent
benchmarks (Zhao et al. 2021).

Results

Simulation studies—individual sample

In all simulations, we bechmarked DESpace against seven of
the most popular tools for SVG detection: SpaGCN (Hu et al.
2021), SpatialDE (Svensson et al. 2018), SpatialDE2 (Kats
et al. 2021), SPARK (Sun et al. 2020), SPARK-X (Zhu et al.
2021), MERINGUE (Miller et al. 2021), and nnSVG (Weber
et al. 2023). Additionally, we considered two tools originally
designed to detect marker genes: scran’s findMarkers (Lun
et al. 2016) and Seurat’s FindAllMarkers (Satija et al. 2015);
similarly to DESpace, both methods were applied to spatial
clusters computed by StLearn and BayesSpace. Note that the
limma wrappers in SpatiaLIBD were not considered here, be-
cause the approach requires multiple samples.

Figure 3 reports the true positive rate (TPR) versus false dis-
covery rate (FDR) of all methods for the three datasets and
five spatial patterns. Rates for the LIBD and melanoma sam-
ples are aggregated across biological replicates; the results for
the individual samples can be seen in Supplementary Figs S2
and S3). In all five SV patterns DESpace controls for the false
discovery rate, and, in most cases, leads to a higher statistical
power than competitors; interestingly, this gap is smaller (or
absent) in simpler SV patterns, and increases in the more com-
plex ones. This is particularly true for scran’s findMarkers,
which behaves similarly to DESpace in the bottom/right, cir-
cular and annotations simulations, all defined by 2 clusters
only, while displays a loss of power in the mixture and
inverted mixture cases, that are characterized by 3 or more
clusters. This is possibly due to the fact that marker methods
detect differences between pairs of clusters, and, are not

Figure 2. Three examples of simulated SVGs, from the LIBD data, following bottom/right, circular, and annotations patterns. Examples of SVGs from

mixture and inverted mixture patterns are presented in Supplementary Fig. S1.
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designed to identify global changes across three or more clus-
ters. Overall, these findings suggest that our framework may
be particularly beneficial for detecting challenging spatial
structures. Notably, results are highly consistent across the
three datasets, and DESpace leads to similar rates when in-
putting spatial clusters estimated from StLearn or
BayesSpace, which indicates that our approach is robust with
respect to the spatial clusters provided.

Furthermore, in order to investigate false positive detec-
tions, in each simulation, we selected the subgroup of uniform
genes (i.e. non-SVGs), and studied the distribution of raw P-
values. Overall, most methods (including DESpace) display
approximately uniform P-values, and none presents a signifi-
cant inflation of false positives, with the only exception of
SPARK on the mouse cerebellum data, and FindAllMarkers
on all datasets (Supplementary Fig. S4). Notably, SpatialDE
and nnSVG produce highly conservative results, with p-values
significantly inflated towards 1, which is consistent with pre-
vious findings (Sun et al. 2020, Weber et al. 2023).

Additionally, we investigated if methods are able to sort
SVGs according to the strength of their spatial structure. In
fact, it is desirable that genes displaying strong spatial pat-
terns are ranked before (i.e. smaller P-value) genes with

weaker spatial patterns, because the first ones are more likely
to be biologically relevant. To this aim, we generated a simu-
lation with SVGs only, where 50% of the genes display a
strong spatial pattern, and 50% display a weak one (see
Supplementary Details). Supplementary Fig. S5 displays the
TPRs for the strong and weak patterns, while Supplementary
Tables S4 and S5 report the respective areas under the curves;
overall, DESpace and marker methods rank strong SV pat-
terns better than competitors.

We designed an additional simulation to systematically as-
sess how the number of clusters affects our analysis frame-
work. Specifically, we considered sample 151 507 from the
LIBD data, and artificially partitioned its tissue in 2, 4, 6, 8,
10, and 12 clusters (Supplementary Fig. S6); in each case, we
simulated a mixture pattern with 50% uniform genes and
50% spatial patterns, equally distributed among the clusters.
For a homogeneous comparison, we chose exactly the same
SVGs across scenarios. We then fit DESpace using the clusters
estimated via BayesSpace and StLearn (shown in
Supplementary Figs S7 and S8); additionally, we also fit
DESpace on the original clusters the data was simulated from
(as in Supplementary Fig. S6). In all scenarios, the FDR is well
calibrated. Furthermore, when using the original spatial

Figure 3. TPR verus FDR for SVG detections in the individual sample simulations. Rows and columns refer to the anchor data used in the simulation, and

to the SV profiles, respectively. BayesSpace_DESpace, BayesSpace_findMarkers, and BayesSpace_FindAllMarkers, as well as their counterparts

StLearn_DESpace, StLearn_findMarkers, and StLearn_FindAllMarkers, indicate DESpace, scran’s findMarkers, and Seurat’s FindAllMarkers, respectively,

based on spatial clusters computed via BayesSpace and StLearn.
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clusters, the TPR is also stable (Supplementary Fig. S9, left
panel). Conversely, when using noisy estimated clusters from
BayesSpace and StLearn, the statistical power marginally
decreases as the number of clusters increases (particularly
when using StLearn) (Supplementary Fig. S9, middle and
right panels). Therefore, while increasing the number of clus-
ters does not appear to impact DESpace directly, it leads to
more noisy clusters estimated by spatial clustering tools,
which in turn may affect the TPR of our framework.

Simulation studies—individual cluster

We also investigated the ability of our two-step framework to
target the main cluster affected by SV. Note that, when only 2
spatial clusters are available, individual cluster testing corre-
sponds to the global test described above; therefore, this
analysis framework can only be applied when at least 3 clus-
ters are available, and is particularly beneficial when there is a
large number of clusters. To validate this approach, we con-
sidered the mixture and inverted mixture simulations in the
LIBD dataset, which contain between 5 and 7 spatial clusters
per biological replicate. In these simulations, it is possible to
define a key spatial cluster that displays the biggest difference
compared to the average signal; in the mixture (or inverted
mixture) simulations this corresponds to the small region with
higher (or lower) abundance than the majority of the tissue
(Supplementary Fig. S1). Here, we compared our framework
to marker gene methods only, because native SVGs
approaches cannot perform this kind of testing.

On average, when using BayesSpace clusters, DESpace
identified the main SV cluster in 99.6 and 88.9% of SVGs in
mixture and inverted mixture patterns, respectively; using
StLearn clusters led to similar numbers (Table 1). Marker
methods performed similarly in the mixture simulation, but
displayed a lower accuracy in the inverted mixture pattern
(Table 1, and Supplementary Table S2). Note that, in general,
percentages are higher in the mixture simulations, because the
change in abundance, between the key spatial cluster and the
rest of the tissue, is higher compared to the inverted mixture
patterns (Supplementary Fig. S1). Furthermore, in non-SVGs,
DESpace p-values were uniformly distributed in all spatial
clusters, showing no inflation of false positive detections at
the cluster level, while findMarkers displayed conservative
results, and FindAllMarkers’s p-values, although generally
uniform, were occasionally inflated towards 0
(Supplementary Figs S10–S13). This testing feature may be
particularly useful for computational biologists, as it enables
them to directly target specific regions of the tissue, e.g. by
identifying SVGs characterized by high or low abundance in
white matter or layer 3 (Fig. 4). Finally, note that we also pro-
vide a faster implementation of the individual cluster testing,

where we recycle the previously-computed dispersion esti-
mates from the gene-level test (see Supplementary Details);
this strategy performs similarly to the original one (analogous
fraction of key spatial clusters identified), while the average
runtime decreases significantly: from 32 to 2 min per sample
(Supplementary Table S3).

Simulation studies—multiple samples

Using the LIBD and melanoma datasets, which contain three
and four biological replicates, respectively, we designed a
multi-sample simulation: we simulated the five SV profiles
shown before, and ensured that SVGs (and their spatial pro-
files) are consistent across samples; we then fit DESpace on,
both, single-sample and multi-sample modes. Here, we aim to
compare the two DESpace approaches, based on identical in-
put data; therefore, in this analysis, we used the same spatial
clusters (i.e. the annotations we simulated from) for both
single-sample and multi-sample modes. While both
approaches control for the FDR, jointly modeling multiple
samples leads, in all cases, to a significant increase of the
TPR, which is expectable given that more information is
available (Supplementary Figs S14–S16).

Additionally, we compared our multi-sample approach
against alternative tools that also allow the joint modeling of
multiple samples; in particular, we included SpatialLIBD’s
limma wrappers, as well as marker gene methods. Note that
SpatialLIBD’s ANOVA approach was only applied to the
mixture and inverted mixture simulations, because it requires
three or more clusters. Native SVG methods were excluded
because they do not allow joint modeling of multiple samples.
Compared to SpatialLIBD’s wrappers and marker methods,
our multi-sample approach behaves similarly when there are
two clusters only, while it displays a higher TPR in the pres-
ence of three or more clusters (i.e. in mixture and inverted
mixture simulations) (Fig. 5).

Furthermore, note that, when sample-specific information
is available (e.g. batch effects), it can be incorporated in
DESpace in the form of additional covariates for the mean
abundance in Equation (2). DGE testing is then performed on
spatial clusters only, to identify SVGs.

Applications to real data

We also applied all methods to the three real datasets consid-
ered. For the LIBD and melanoma datasets, we considered all
12 and 8 samples, respectively. In all datasets, we computed
spatial clusters via BayesSpace and StLearn; in the LIBD
dataset, we additionally considered pre-computed manually
annotated clusters. In all cases, DESpace identifies signifi-
cantly more SVGs (at 1% FDR threshold) than any other
method, which is coherent with the higher statistical power
displayed in simulations.

In LIBD and melanoma data, we also investigated the co-
herency of the top ranked genes across different replicates. In
order to do that, we used the Jaccard index (Jaccard 1901),
which ranges between 0 and 1, and measures the similarity
between two pairs of groups. In particular, for every method,
we considered the top 1000 (LIBD) or 200 (melanoma)
ranked genes (i.e. smallest P-value) in each sample, and com-
puted the Jaccard index on pairs of samples; we then averaged
results across samples. In both datasets, DESpace,
FindAllMarkers, SPARK and textitSPARK-X display the
highest Jaccard index, which indicates a greater coherency of
top ranked genes across samples, while SpaGCN and

Table 1. Individual cluster results.

Pattern DESpace FindAllMarkers findMarkers

Bayes-
Space

StLearn Bayes-
Space

StLearn Bayes-
Space

StLearn

Mixture 99.6 99.1 99.6 99.6 98.5 97.8
Inverted 88.9 84.7 84.2 82.5 60.7 79.8

Percentage of times that DESpace, Seurat’s FindAllMarkers and scran’s
findMarkers identified the main SV cluster in mixture (i.e. Mixture) and
inverted mixture simulations (i.e. Inverted), using BayesSpace and StLearn
clusters. Percentages are averages across the three samples; sample specific
results are visible in Supplementary Table S2.
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findMarkers are associated to the lowest values of the index
(Fig. 6). Note that, the Jaccard index of all methods is signifi-
cantly lower in the melanoma dataset, compared to the LIBD
data, which is reasonable given the high degree of gene ex-
pression variability in cancer.

In the melanoma dataset, we additionally investigated how
coherent results are with respect with previous findings. In
particular, in absence of a ground truth, we generated three
lists of potentially interesting genes based on searches on The
Human Protein Atlas website (Pontén et al. 2008): 19 HLA
genes, which are essential for the immune-mediated regression
of metastases (Thrane et al. 2018), 12 melanoma marker
genes and 3398 genes associated to the term “melanoma”.
We then compared those lists with the top 500 results from
every method in each melanoma sample. Overall, we found
that DESpace top discoveries contained more genes from
those lists compared to alternative approaches, closely fol-
lowed by Seurat’s FindAllMarkers and SPARK-X
(Supplementary Table S6).

Finally, we investigated the computational efficiency of
methods, and computed each tool’s runtime on the three real
datasets (Supplementary Fig. S17). The ranking of methods is
similar across datasets: SPARK-X, SpaGCN, and
findMarkers excel as the fastest methods, followed by
DESpace, FindAllMarkers, SpatialDE and SpatialDE2, while
the slowest three methods appear to be nnSVG, SpaGCN,
and SPARK. Note that DESpace’s and marker methods’ run-
times largely depend on the computational cost required to
generate spatial clusters; in particular, in all datasets, StLearn
is significantly faster than BayesSpace.

Discussion

In this manuscript, we have presented DESpace, an approach
based on differential testing across spatial structures to identify
spatially variable genes from SRT data. We have run extensive
benchmarks on both semi-simulated and real datasets, where we
compared our tool to state-of-the-art SVG, marker detection

Figure 4. Expression plot, for four SVGs detected with DESpace individual cluster test, on the real LIBD dataset (sample 151673). SVGs were identifying

by selecting high and low expression in white matter (genes MOBP and ENC1, respectively), and high and low abundance in layer 3 (genes HOPX and

HS3ST4, respectively). Lines highlight the cluster being tested.

Figure 5. TPR versus FDR for SVG detections in the multiple sample simulation. Rows and columns refer to the anchor data used in the simulation, and to

the SV profiles, respectively. Note that TPRs are lower than in the individual simulation (Fig. 3), because we have simulated slightly weaker spatial

patterns here (see Supplementary Details).
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and pseudo-bulk approaches. To the best of our knowledge, this
is the first comprehensive benchmark of marker methods for the
purpose of SVG detection. Overall, our two-step framework dis-
plays good statistical power (i.e. TPR), controls for false positive
rates, and is computationally efficient; furthermore, it can (i)
identify the key area of the tissue affected by SV and (ii) jointly
model multiple samples. The former feature allows performing
statistical testing on specific regions of the tissue, while the latter
one provides increased TPR, and enables the identifications of
SVGs with consistent spatial patterns across replicates. In some
cases, when only two spatial clusters are present, marker meth-
ods perform similarly to DESpace; however, our framework has
a higher statistical power when three or more clusters are pre-
sent (i.e. mixture and inverted mixture simulations), which is the
most common scenario in real data.

Additionally, our approach is flexible and can work with
SRT data from any technology. Finally, DESpace is distrib-
uted, open-access, as a Bioconductor R package, which makes
it easy to install and integrate with existing pipelines (such as
the popular SpatialExperiment class (Righelli et al. 2022)), is
accompanied by an example vignettes that illustrate its usage,
and includes plotting functions that facilitate visualization
and interpretation of results.

We also acknowledge some limitations of our approach. In
particular, our framework requires pre-computed spatial clus-
ters, and cannot be applied when these are absent; nonetheless,
we do not think that this is a barrier in practice, because such
structures can be successfully obtained in most datasets via
spatially resolved clustering tools. Additionally, DESpace is
(by design) prone to detecting SVGs that are associated with
spatial clusters, and will struggle to identify rare spatial pat-
terns that do not follow these structures. When interest lies in
identifying such SVGs, using a native SVG tool will be more
appropriate. Furthermore, we are aware of the circularity (or

double dipping) issue of our framework; indeed, when relying
on spatially resolved clustering tools, we use our data twice: (i)
to cluster spots and (ii) to perform differential analyses be-
tween such clusters. Nonetheless, each individual gene contrib-
utes marginally to spatial clustering results, which are
(usually) based on the expression data from thousands of
genes. In addition, in all our benchmarks, we have empirically
shown that circularity does not impact performance results
(i.e. good statistical power, and well calibrated false positive
rates). Lastly, similarly to the majority of SVG tools, the main
application of DESpace consists in identifying global spatial
structures across the entire tissue. For studying spatial variabil-
ity within clusters, one could iterate our framework (including
spatial clustering) within a specific region of interest, or, alter-
natively, use a tool specifically designed for this purpose (e.g.
nnSVG, when providing spatial clusters as covariates).

Finally, a consideration about the computational aspect: re-
cent SRT technologies allow measurements at sub-cellular res-
olution; this leads to a significant increase in the size of
datasets and, in turn, of the computational cost of down-
stream analyses. In order to mitigate the runtime of our tool,
one may aggregate the signal from several spots that belong
to the same spatial cluster, which would greatly diminish the
number of observations available. We aim to explore this in
the future to quantify the reduction in the computational bur-
den, and assess how it affects performance.
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