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A B S T R A C T

When proxies (external instruments) used to identify target structural shocks are weak, inference
in proxy-SVARs (SVAR-IVs) is nonstandard and the construction of asymptotically valid confi-
dence sets for the impulse responses of interest requires weak-instrument robust methods. In
the presence of multiple target shocks, test inversion techniques require extra restrictions on the
proxy-SVAR parameters other than those implied by the proxies that may be difficult to interpret
and test. We show that frequentist asymptotic inference in these situations can be conducted
through Minimum Distance estimation and standard asymptotic methods if the proxy-SVAR can
be identified by using ‘strong’ instruments for the non-target shocks; i.e., the shocks which are not
of primary interest in the analysis. The suggested identification strategy hinges on a novel pre-
test for the null of instrument relevance, based on bootstrap resampling, which is not subject to
pre-testing issues. Specifically, the validity of post-test asymptotic inferences remains unaffected
by the test outcomes due to an asymptotic independence result between the bootstrap and non-
bootstrap statistics. The test is robust to conditionally heteroskedastic and/or zero-censored
proxies, is computationally straightforward and applicable regardless of the number of shocks
being instrumented. Some illustrative examples show the empirical usefulness of the suggested
identification and testing strategy.

1. Introduction

Proxy-SVARs, or SVAR-IVs, popularized by Stock (2008), Stock and Watson (2012, 2018) and Mertens and Ravn (2013),
have become standard tools to track the dynamic causal effects produced by macroeconomic shocks on variables of interest. In
proxy-SVARs, the model is complemented with ‘external’ variables – which we call ‘proxies’, ‘instruments’ or ‘external variables’
interchangeably; such variables carry information on the structural shocks of interest, the target shocks, and allow to disregard
the structural shocks not of primary interest in the analysis, the non-target shocks. Recent contributions on frequentist inference in
proxy-SVARs include Montiel Olea et al. (2021) and Jentsch and Lunsford (2022); in the Bayesian framework, Arias et al. (2021)
and Giacomini et al. (2022) discuss inference in the case of set-identification.

Inference in proxy-SVARs depends on whether the proxies are strongly or weakly correlated with the target shocks. If the
connection between the proxies and the target shocks is ‘local-to-zero’, as in Staiger and Stock (1997) and Stock and Yogo (2005),
asymptotic inference is non-standard. In such case, weak-proxy robust methods can be obtained by extending the logic of Anderson–
Rubin tests (Anderson and Rubin, 1949), see Montiel Olea et al. (2021). Grid Moving Block Bootstrap Anderson–Rubin confidence
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sets (‘grid MBB AR’) for normalized impulse response functions [IRFs] (Brüggemann et al., 2016; Jentsch and Lunsford, 2019) can
also be applied in the special case where one proxy identifies one structural shock; see Jentsch and Lunsford (2022).

When proxy-SVARs feature multiple target shocks, further inferential difficulties arise. First, (point-)identification requires
dditional restrictions, other than those provided by the instruments; see Mertens and Ravn (2013), Angelini and Fanelli (2019),
rias et al. (2021), Montiel Olea et al. (2021) and Giacomini et al. (2022). Second, in the frequentist setup the implementation
f weak-instrument robust inference as in Montiel Olea et al. (2021) may imply a large number of additional restrictions on the
arameters of the proxy-SVAR relative to those needed under strong proxies. These extra restrictions are not always credible, and
ay be difficult to test; see Montiel Olea et al. (2021, Section A.7) and Section S.9 of our supplement.1 Fourth, the theory for the

grid bootstrap Anderson–Rubin confidence sets does not extend to cases where multiple instruments identify multiple target shocks.
This paper is motivated by these inferential difficulties. In particular, we design an identification and (frequentist) estimation

strategy intended to circumvent, when possible, the use of weak-instrument robust methods. The idea we pursue is to identify the
proxy-SVAR through an ‘indirect’ approach, where a vector of proxies (say, 𝑤𝑡), correlated with (all or some of) the non-target shocks
of the system and uncorrelated with the target shocks (say, 𝑧𝑡), is used to infer the IRFs of interest indirectly. We call this strategy
‘indirect identification strategy’ or ‘indirect-MD’ approach, as opposed to the conventional ‘direct’ approach based on instrumenting
the target shock(s) directly with the (potentially weak) proxies 𝑧𝑡. As highlighted by our empirical illustrations, the indirect approach
an prove more useful to a practitioner than one might think.

The proxies 𝑤𝑡 contribute to defining a set of moment conditions upon which we develop a novel Minimum Distance [MD]
stimation approach (Newey and McFadden, 1994). We derive novel necessary order conditions and necessary and sufficient rank
onditions for the (local) identifiability of the proxy-SVAR. If the proxies 𝑤𝑡 are strong for the non-target shocks and the model is

identified, asymptotically valid confidence intervals for the IRFs of interest obtain in the usual way; i.e., either by the delta-method
or by bootstrap methods. Interestingly, the idea of using instruments for the non-target shocks to identify and infer the effects of
structural shocks of interest was initially pursued via Bayesian methods in Caldara and Kamps (2017), where two fiscal (target)
shocks are recovered by instrumenting the non-fiscal (non-target) shocks of the system. We defer to Section 5 a detailed comparison
of our method with Caldara and Kamps (2017).

Key to the indirect identification strategy is the availability of strong proxies for the non-target shocks. In particular, it is essential
that the investigator can screen ‘strong’ from ‘weak’ instruments, and that such screening does not affect post-test inference. To do
so, we further contribute by designing a novel pre-test for strong against weak proxies based on bootstrap resampling.

Inspired by the idea originally developed in Angelini et al. (2022) for state-space models, we show that the bootstrap can be used
to infer the strength of instruments, other than building valid confidence intervals for IRFs. In particular, we exploit the fact that
under mild requirements, the MBB estimator of the proxy-SVAR parameters is asymptotically Gaussian when the instruments are
strong while, under weak proxies à la Staiger and Stock (1997), the distribution of MBB estimator is random in the limit (in the sense
of Cavaliere and Georgiev, 2020) and, in particular, is non-Gaussian. This allows to show that a test for the null of strong proxies
can be designed as a normality test based on an appropriate number of bootstrap repetitions; such test is consistent against proxies
which are weak as in Staiger and Stock (1997). An idea that echoes this approach in the Bayesian setting can be found in Giacomini
et al. (2022), who suggest using non-normality of the posterior distribution of a suitable function of proxy-SVAR parameters to
diagnose the presence of weak proxies. This idea is not pursued further in their paper.

Our suggested test has several important features. First, it controls size under general conditions on VAR disturbances and
proxies, including the case of conditional heteroskedasticity and/or zero-censored proxies. Second, with respect to extant tests
such as Montiel Olea and Pflueger’s (2013) effective first-stage F-test for IV models with conditional heteroskedasticity,2 our test
can be applied in the presence of multiple structural shocks; as far as we are aware, no test of strength for proxy-SVARs with
multiple target shocks has been formalized in the literature. Third, it is computationally straightforward, as it boils down to running
multivariate/univariate normality tests on the MBB replications of bootstrap estimators of the proxy-SVAR parameters. Fourth, it
can be computed in the same way regardless of the number of shocks being instrumented. Fifth, and most importantly, the test
does not affect second-stage inference, meaning that regardless of the outcome of the test, post-test inferences are not affected. This
property marks an important difference relative to the literature on weak instrument asymptotics, where the negative consequences
of pretesting the strength of proxies are well known and documented (see, inter alia, Zivot et al., 1998; Hausman et al., 2005;
Andrews et al., 2019; Montiel Olea et al., 2021).

The paper is organized as follows. In Section 2 we motivate our approach with a simple illustrative example. In Section 3
we introduce the proxy-SVAR and rationalize the suggested identification strategy. The assumptions are summarized in Section 4,
while we present our indirect-MD approach in Section 5. Section 6 deals with the novel approach to testing for strong proxies.
To illustrate the practical implementation and relevance of our approach, we present in Section 7 two illustrative examples that
reconsider models already estimated in the literature. Section 8 concludes. An accompanying supplement complements the paper
along several dimensions, including auxiliary lemmas and their proofs, the proofs of the propositions in the paper and an additional
empirical illustration based on a fiscal proxy-SVAR.

1 From the perspective of Bayesian inference, one can in principle make the usual argument that weak identification issues do not matter. For instance,
aldara and Herbst (2019) discuss how it is still possible to obtain numerical approximations of the exact finite-sample posterior distributions of the parameters
f proxy-SVARs when instruments are weak. Giacomini et al. (2022) show that for set-identified proxy-SVARs with weak instruments, the Bernstein–von Mises
roperty fails for the estimation of the upper and lower bonds of the identified set.

2 See Montiel Olea et al. (2021) for an overview on first-stage regressions in proxy-SVARs or, alternatively, Lunsford (2016) for tests based on regressing the
2

roxy on the reduced-form residuals.
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2. Motivating example: A market (demand/supply) model

In this section we outline the main ideas in the paper by considering a ‘toy’ proxy-SVAR, where we omit the dynamics without
oss of generality. We consider a model that comprises a demand and supply function for a good with associated structural shocks,
iven by the equations

(

𝑞𝑡
𝑝𝑡

)

⏟⏟⏟
𝑌𝑡

=
(

𝛽1,1 𝛽1,2
𝛽2,1 𝛽2,2

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐵

(

𝜀𝑑,𝑡
𝜀𝑠,𝑡

)

⏟⏟⏟
𝜀𝑡

≡
(

𝛽1,1𝜀𝑑,𝑡 + 𝛽1,2𝜀𝑠,𝑡
𝛽2,1𝜀𝑑,𝑡 + 𝛽2,2𝜀𝑠,𝑡

)

(1)

where 𝑞𝑡 and 𝑝𝑡 are quantity and price at time 𝑡, respectively. The nonsingular matrix 𝐵 captures the instantaneous impact on
𝑌𝑡 ∶= (𝑞𝑡, 𝑝𝑡)′ of the structural shocks 𝜀𝑑,𝑡, 𝜀𝑠,𝑡, which are assumed to have unit variance and to be uncorrelated. We temporary (and
conventionally) label 𝜀𝑑,𝑡 as the ‘demand shock’ and 𝜀𝑠,𝑡 as the ‘supply shock’, and assume that the objective of the analysis is the
identification and estimation of the instantaneous impact of the demand shock on 𝑌𝑡 through the ‘external variables’ approach. Hence,
𝜀𝑑,𝑡 is the target shock, 𝜀𝑠,𝑡 is the non-target shock, and the parameters of interest are the on-impact responses 𝜕𝑌𝑡

𝜕𝜀𝑑,𝑡
= 𝐵∙1 ∶= (𝛽1,1, 𝛽2,1)′;

here 𝐵∙1 denotes the first column of 𝐵.
Since the two equations in (1) are essentially identical for arbitrary parameter values, nothing distinguishes a demand shock

rom a supply shock in the absence of further information/restrictions. The typical ‘direct approach’ to this partial identification
roblem is to consider an instrument 𝑧𝑡 correlated with the demand shock, 𝐸(𝑧𝑡𝜀𝑑,𝑡) = 𝜙 ≠ 0 (relevance condition), and uncorrelated

with the supply shock, 𝐸(𝑧𝑡𝜀𝑠,𝑡) = 0 (exogeneity condition). Now, consider the case where the investigator strongly suspects that 𝑧𝑡
is a weak proxy (meaning that 𝜙 can be ‘small’), but they also know that there exists an external variable 𝑤𝑡, correlated with the
on-target supply shock and uncorrelated with the demand shock; formally, 𝐸(𝑤𝑡𝜀𝑠,𝑡) = 𝜆 ≠ 0 and 𝐸(𝑤𝑡𝜀𝑑,𝑡) = 0. Then, the proxy 𝑤𝑡
an be used to recover the parameters of interest in 𝐵∙1 ‘indirectly’; i.e., by instrumenting the non-target supply shock 𝜀𝑠,𝑡, rather
han the target demand shock 𝜀𝑑,𝑡. To show how, let 𝐴 ∶= 𝐵−1 and consider the alternative representation of (1):

(

𝛼1,1 𝛼1,2
𝛼2,1 𝛼2,2

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐴

(

𝑞𝑡
𝑝𝑡

)

⏟⏟⏟
𝑌𝑡

=
(

𝐴1∙𝑌𝑡
𝐴2∙𝑌𝑡

)

=
(

𝜀𝑑,𝑡
𝜀𝑠,𝑡

)

⏟⏟⏟
𝜀𝑡

,

here 𝐴1∙ ∶= (𝛼1,1, 𝛼1,2) and 𝐴2∙ denote the first row and the second row of 𝐴, respectively. Since 𝑤𝑡 is correlated with 𝑝𝑡 but
ncorrelated with 𝜀𝑑,𝑡, it is seen that for 𝛼11 ≠ 0, 𝑤𝑡 can be used in the equation:

𝑞𝑡 = −
𝛼1,2
𝛼1,1

𝑝𝑡 +
1

𝛼1,1
𝜀𝑑,𝑡

s an instrument for 𝑝𝑡 in order to estimate the parameters in 𝐴1∙, that is, 𝛼1,1 and 𝛼1,2. This delivers an ‘estimate’ of the demand
shock, �̂�𝑑,𝑡 = �̂�1∙𝑌𝑡 = �̂�1,1𝑞𝑡+ �̂�1,2𝑝𝑡 (𝑡 = 1,… , 𝑇 ). Finally, since (1) and 𝐴 = 𝐵−1 jointly imply 𝐵 = 𝛴𝑢𝐴′, it holds that

𝐵∙1 = 𝛴𝑢𝐴
′
1∙ (2)

where 𝛴𝑢 ∶=𝐸(𝑌𝑡𝑌 ′
𝑡 ) can be estimated (e.g., by its sample analog, �̂�𝑢 ∶= 𝑇 −1 ∑𝑇

𝑡=1 𝑌𝑡𝑌
′
𝑡 ) under mild requirements. Hence, an indirect

plug-in estimator of the parameters of interest 𝐵∙1 is given by �̂�∙1 ∶= �̂�𝑢�̂�′
1∙. If the instrument 𝑤𝑡 is a ‘strong’ proxy for the supply

shock, in the sense formally defined in Section 4, standard asymptotic inference on 𝐵∙1 can then be performed using �̂�∙1.
This toy example shows that strong proxies for the non-target shocks, provided they exist, can be used to infer the causal effects

of the target shocks indirectly, in a partial identification logic. Importantly, the investigator can strategically exploit the fact that
if the proxies 𝑧𝑡 available for the target shock are ‘weak’, the use of weak-instrument robust methods for the parameters of interest
(𝐵∙1 in this example) can be circumvented if they can alternatively rely on strong proxies 𝑤𝑡 for the non-target shocks.

In the following, we assume that there exist proxies 𝑤𝑡 for the non-target shocks that might be alternatively used instead of the
(potentially weak) proxies 𝑧𝑡 available for the target structural shocks. The strength of 𝑤𝑡 is a key ingredient of this strategy; hence,
in Section 6 we present our novel pre-test of relevance, which consistently detects proxies which are weak in the sense of Staiger
and Stock (1997). Since, as we show, the test does not affect post-test inferences, if the null of relevance is not rejected, inference
based on 𝑤𝑡 can be conducted by standard methods with no need for Bonferroni-type adjustments. In contrast, should the null of
relevance be rejected, the investigator can rely on weak-instrument robust methods based either on the proxies 𝑧𝑡, if the target
shocks are instrumented, or on the proxies 𝑤𝑡 if the non-target shocks are instrumented.

3. Model and identification strategies

Consider the SVAR model:

𝑌𝑡 = 𝛱𝑋𝑡 + 𝑢𝑡, 𝑢𝑡 = 𝐵𝜀𝑡 (𝑡 = 1,… , 𝑇 ) (3)

where 𝑌𝑡 is the 𝑛 × 1 vector of endogenous variables, 𝑋𝑡 ∶= (𝑌 ′
𝑡−1,… , 𝑌 ′

𝑡−𝑙)
′ collects 𝑙 lags of the variables, 𝛱 ∶= (𝛱1,… ,𝛱𝑙) is the

𝑛×𝑛𝑙 matrix containing the autoregressive (slope) parameters, and 𝑢𝑡 is the 𝑛×1 vector of reduced form disturbances with covariance
matrix 𝛴𝑢 ∶=𝐸(𝑢𝑡𝑢′𝑡). Deterministic terms have been excluded without loss of generality, and the initial values 𝑌0,… , 𝑌1−𝑙 are fixed
3

in the statistical analysis. The system of equations 𝑢𝑡 = 𝐵𝜀𝑡 in (3) defines the reduced form disturbances 𝑢𝑡 in terms of the 𝑛×1 vector
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of structural shocks, 𝜀𝑡, through the nonsingular 𝑛× 𝑛 matrix 𝐵 of on-impact coefficients. The structural shocks are normalized such
hat 𝛴𝜀 ∶=𝐸(𝜀𝑡𝜀′𝑡) = 𝐼𝑛.

We partition the structural shocks as 𝜀𝑡 ∶= (𝜀′1,𝑡, 𝜀
′
2,𝑡)

′, where 𝜀1,𝑡 collects the 1 ≤ 𝑘 < 𝑛 target structural shocks, and 𝜀2,𝑡 collects
the remaining 𝑛 − 𝑘 structural shocks of the system. We have

𝑢𝑡 =
(

𝑢1,𝑡
𝑢2,𝑡

)

=
(

𝐵1,1 𝐵1,2
𝐵2,1 𝐵2,2

)(

𝜀1,𝑡
𝜀2,𝑡

)

≡ 𝐵∙1𝜀1,𝑡 + 𝐵∙2𝜀2,𝑡 (4)

here 𝑢1,𝑡 and 𝑢2,𝑡 have the same dimensions as 𝜀1,𝑡 and 𝜀2,𝑡, respectively, and 𝐵∙1 ∶= (𝐵′
1,1, 𝐵

′
2,1)

′ is the 𝑛 × 𝑘 matrix collecting the
n-impact coefficients associated with the target structural shocks (𝐵1,1 and 𝐵2,1 are 𝑘×𝑘 and (𝑛−𝑘)×𝑘 blocks, respectively). Finally,

the 𝑛 × (𝑛 − 𝑘) matrix 𝐵∙2 collects the instantaneous impact of the non-target shocks on the variables. We are interested in the ℎ
eriod ahead responses of the 𝑖th variable in 𝑌𝑡 (𝑖 = 1,… , 𝑛) to the 𝑗th shock in 𝜀1,𝑡 (𝑗 = 1,… , 𝑘); as is standard, such responses can

be computed as

𝛾∙𝑗 (ℎ) ∶= (𝑆′
𝑛

ℎ
𝑦𝑆𝑛)𝐵∙1𝑒𝑘,𝑗 , (5)

where 𝑦 is the VAR companion matrix, 𝑆𝑛 ∶= (𝐼𝑛 , 0𝑛×𝑛(𝑙−1)) is a selection matrix and 𝑒𝑘,𝑗 is the 𝑘×1 vector containing ‘1’ in the 𝑗th
position and zero elsewhere.3

The common, ‘direct ’ approach to infer the parameters of interest in 𝐵∙1 and hence solve the partial identification problem arising
from the estimation of the IRFs in (5) is to find 𝑟 ≥ 𝑘 observable proxies, collected in the vector 𝑧𝑡, correlated with the target shocks
1,𝑡 and uncorrelated with 𝜀2,𝑡. Thus, 𝑧𝑡 is related to 𝜀1,𝑡 by the linear measurement system

𝑧𝑡 = 𝛷𝜀1,𝑡 + 𝜔𝑧,𝑡 (6)

here the matrix 𝛷 ∶=𝐸(𝑧𝑡𝜀′1,𝑡) captures the link between the proxies 𝑧𝑡 and the target shocks 𝜀1,𝑡; 𝜔𝑧,𝑡 is a measurement error,
assumed to be uncorrelated with the structural shocks 𝜀𝑡. By combining (6) with (4) and taking expectations, one obtains the
moment conditions

𝛴𝑢,𝑧 = 𝐵∙1𝛷
′ (7)

where 𝛴𝑢,𝑧 ∶=𝐸(𝑢𝑡𝑧′𝑡) is the 𝑛 × 𝑟 covariance matrix between 𝑢𝑡 and 𝑧𝑡. Stock (2008), Stock and Watson (2012, 2018) and Mertens
and Ravn (2013) exploit the moment conditions in (7) as starting point for the identification of the IRFs in (5).

Alternatively, as shown in the example in Section 2, the IRFs in (5) can be identified by and ‘indirect approach’, where a vector
of proxies 𝑤𝑡 are used to instrument the non-target shocks. Specifically, for 𝐴 = 𝐵−1, model (3) can be expressed in the form:

𝐴𝑌𝑡 = 𝛶𝑋𝑡 + 𝜀𝑡, 𝐴𝑢𝑡 = 𝜀𝑡 (𝑡 = 1,… , 𝑇 ) (8)

where 𝛶 ∶= 𝐴𝛱 and 𝐴 summarizes the simultaneous relationships that characterize the observed variables. The system of equations
𝐴𝑢𝑡 = 𝜀𝑡 can then be partitioned as

𝐴𝑢𝑡 ≡
(

𝐴1∙𝑢𝑡
𝐴2∙𝑢𝑡

)

≡
(

𝐴1,1𝑢1,𝑡 + 𝐴1,2𝑢2,𝑡
𝐴2,1𝑢1,𝑡 + 𝐴2,2𝑢2,𝑡

)

=
(

𝜀1,𝑡
𝜀2,𝑡

)

(9)

here the 𝑘 × 𝑛 matrix 𝐴1∙ ∶= (𝐴1,1, 𝐴1,2) collects the first 𝑘 rows of 𝐴, and 𝐴2∙ the remaining 𝑛− 𝑘 rows. The VAR disturbances 𝑢1,𝑡
and 𝑢2,𝑡 have the same dimension as 𝜀1,𝑡 and 𝜀2,𝑡, respectively. Under identifying restrictions on 𝐴1∙, the term 𝜀1,𝑡 in Eq. (9) can be
interpreted as the structural shocks of a simultaneous system of equations à la Leeper et al. (1996).

Using the SVAR representation (9), we can infer the parameters in 𝐴1∙ by exploiting the vector of external proxy variables 𝑤𝑡,
correlated with (all or some of) the non-target shocks 𝜀2,𝑡 and uncorrelated with the target shocks 𝜀1,𝑡. In Section 5 we discuss in
detail how the parameters in 𝐴1∙ can be identified by using 𝑤𝑡 through a MD approach; the estimation of 𝐵∙1 and the IRFs (5) follow
indirectly, as in (2), from the relation 𝐵∙1 = 𝛴𝑢𝐴′

1∙.
The next section states the assumptions behind our estimation approach and qualifies the concepts of strong/weak proxies we

refer to throughout the paper.

4. Assumptions and asymptotics

Our first two main assumptions pertain to the reduced form VAR.

Assumption 1 (Reduced Form, Stationarity). The data generating process (DGP) for 𝑌𝑡 satisfies (3) with a stable companion matrix
𝑦; i.e., all eigenvalues of 𝑦 lie inside the unit disk.

Assumption 2 (Reduced Form, VAR Innovations). The VAR disturbances satisfy the following conditions:
(i)

{

𝑢𝑡
}

is a strictly stationary weak white noise;
(ii) 𝐸(𝑢𝑡𝑢′𝑡) = 𝛴𝑢 < ∞ is positive definite;
(iii)

{

𝑢𝑡
}

satisfies the 𝛼-mixing conditions in Assumption 2.1 of Brüggemann et al. (2016);
(iv)

{

𝑢𝑡
}

has absolutely summable cumulants up to order eight.

3 Notice that we focus on absolute IRFs – the quantities 𝛾𝑖,𝑗 (ℎ), 𝛾𝑖,𝑗 (ℎ) being the 𝑖th element of 𝛾∙𝑗 (ℎ) in (5) – rather than on relative IRFs, 𝛾𝑖,𝑗 (ℎ)∕𝛾1,𝑗 (0), which
4

measure the response of 𝑌𝑖,𝑡 to the 𝑗-th shock in 𝜀1,𝑡 that increases 𝑌1,𝑡 by one unit on-impact.
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Assumption 1 features a typical maintained hypothesis of correct specification and incorporates a stability condition which
ules out the presence of unit roots. Assumption 2 is as in Francq and Raïssi (2006) and Boubacar Mainnasara and Francq (2011).
ssumption 2(ii) is a standard unconditional homoskedasticity condition on VAR disturbances and proxies. The 𝛼-mixing conditions

in Assumption 2(iii) cover a large class of uncorrelated, but possibly dependent, variables, including the case of conditionally
heteroskedastic disturbances. Assumption 2(iv) is a technical condition necessary to prove the consistency of the MBB in this setting,
see Brüggemann et al. (2016); see also Assumption 2.4 in Jentsch and Lunsford (2022).4

The next assumption refers to the structural form.

Assumption 3 (Structural Form). Given the SVAR in (3), the matrix 𝐵 is nonsingular and its inverse is denoted by 𝐴 = 𝐵−1.

Assumption 3 establishes the nonsingularity of the matrix 𝐵, which implies the conditions 𝑟𝑎𝑛𝑘[𝐵∙1] = 𝑘 in (4) and 𝑟𝑎𝑛𝑘[𝐴1∙] = 𝑘
in (9).

The next assumption is crucial to our approach. Henceforth, with �̃�2,𝑡 we denote a subset of the vector of non-target shocks 𝜀2,𝑡
containing 𝑠 ≤ 𝑛 − 𝑘 elements. We assume, without loss of generality, that �̃�2,𝑡 corresponds to the first 𝑠 elements of 𝜀2,𝑡, and it is
intended that 𝜀2,𝑡 ≡ �̃�2,𝑡 when 𝑠 = 𝑛 − 𝑘.

Assumption 4 (Proxies for the Non-Target Shocks). There exist 𝑠 ≤ 𝑛 − 𝑘 proxy variables, collected in the vector 𝑤𝑡, such that the
following linear measurement system holds:

𝑤𝑡 = 𝛬�̃�2,𝑡 + 𝜔𝑤,𝑡, (10)

where 𝛬 ∶=𝐸(𝑤𝑡�̃�′2,𝑡) is an 𝑠 × 𝑠 matrix of relevance parameters and 𝜔𝑤,𝑡 is a measurement error term, uncorrelated with 𝜀𝑡.

Assumption 4 establishes the existence of 𝑠 external variables which are correlated with 𝑠 non-target shocks with covari-
ance matrix 𝛬 ∶=𝐸(𝑤𝑡�̃�′2,𝑡), and are uncorrelated with the target structural shocks, 𝐸(𝑤𝑡𝜀′1,𝑡) = 0.5 Assumption 4 implies that
𝛴𝑢,𝑤 ∶=𝐸(𝑢𝑡𝑤′

𝑡) = �̃�∙2𝛬′, where �̃�∙2 ∶= 𝜕𝑌𝑡
𝜕�̃�′2,𝑡

collects the 𝑠 columns of �̃�∙2 associated with the instantaneous effects of the shocks

̃2,𝑡; obviously, �̃�∙2 ≡ 𝐵∙2 when 𝑠 = 𝑛 − 𝑘 (�̃�2,𝑡 ≡ 𝜀2,𝑡). The illustrations we present in Section 7 and in the Supplement show that
Assumption 4 holds in many problems of interest.

Assumption 4 postulates the existence of proxies for the non-target shocks but does not allow for models where the correlation
between the proxies 𝑤𝑡 and the instrumented shocks �̃�2,𝑡 is weak , i.e. arbitrarily close to zero. Weak correlation between 𝑤𝑡 and
̃2,𝑡 can be allowed as in Montiel Olea et al. (2021, Section 3.2) by considering sequences of models such that 𝐸(𝑤𝑡�̃�′2,𝑡) = 𝛬𝑇 , where
𝑇 → 𝛬, where 𝛬 can be of reduced rank. To illustrate, set 𝑠 = 1, so that 𝑤𝑡, �̃�2,𝑡 and 𝐸(𝑤𝑡�̃�2,𝑡) in (10) are all scalars. Then, we can

consider a sequence of models with 𝐸(𝑤𝑡�̃�2,𝑡) = 𝜆𝑇 → 𝜆 ∈ R. In Montiel Olea et al. (2021), a ‘strong instrument’ corresponds to 𝜆 ≠ 0;
see also Assumption 2.3 in Jentsch and Lunsford (2022). A ‘weak instrument’ in the sense of Staiger and Stock (1997) corresponds
to 𝜆𝑇 = 𝑐𝑇 −1∕2, where |𝑐| < ∞ is a scalar location parameter; under this embedding, 𝜆𝑇 → 0, with the case of an ‘irrelevant’ proxy
corresponding to 𝑐 = 0. If the proxy is strong (𝜆 ≠ 0), the asymptotic distribution of the estimator of the parameters (�̃�∙2, 𝜆′𝑇 )

′ (or
of the impulse responses to the shock �̃�2,𝑡) is Gaussian (see Supplement, Section S.3). On the contrary, this is not guaranteed when
𝜆 = 0. For instance, if 𝜆𝑇 = 𝑐𝑇 −1∕2, the asymptotic distribution of the estimator of (�̃�′

∙2, 𝜆
′
𝑇 )

′ is non-Gaussian and the parameter 𝑐
governs the extent of the departure from the Gaussian distribution (see Supplement, Section Section S.3).

To deal with the case of multiple shocks (𝑠 > 1), the embedding above can be extended by considering a sequence of models
with 𝐸(𝑤𝑡�̃�′2,𝑡) = 𝛬𝑇 , 𝑇 = 1, 2,…, with the case of strong proxies corresponding to

𝛬𝑇 → 𝛬, 𝑟𝑎𝑛𝑘[𝛬] = 𝑠. (11)

Weak instruments as in Staiger and Stock (1997) correspond to the case where 𝛬𝑇 can be approximated by

𝛬𝑇 = 𝐶𝑇 −1∕2 , ‖𝐶‖ < ∞ (12)

𝐶 being an 𝑠 × 𝑠 matrix with finite norm.

5. Indirect-MD estimation

We now present our indirect-MD estimation approach based on the SVAR representation (9) and the availability of external
(strong) proxies 𝑤𝑡 for the non-target shocks. In this framework, given the estimator of the parameters in 𝐴1∙ we described below,
the IRFs in (5) are recovered by using (2).

4 The MBB is similar in spirit to a standard residual-based bootstrap where the VAR residuals are resampled with replacement. However, instead of resampling
ne VAR residual at a time the MBB, which is robust against forms of ‘weak dependence’ that may arise under 𝛼-mixing conditions, resamples blocks of the

VAR residuals/proxies in order to replicate their serial dependence structure. We refer to Jentsch and Lunsford (2019, 2022) and Mertens and Ravn (2019) for
a comprehensive discussion of the merits of the MBB relative to other bootstrap methods in proxy-SVARs. Section S.7 in the Supplement sketches the essential
steps behind the MBB algorithm.

5 In principle, Assumption 4 can be generalized to allow for more proxies than instrumented non-target shocks; i.e., dim(𝑤𝑡) > dim(�̃�2,𝑡) = 𝑠. Without loss of
5

enerality, we focus on the case where 𝛬 in (10) is a square matrix.
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The first 𝑘 equations of system (9) read

𝐴1∙𝑢𝑡 ≡ 𝐴1,1𝑢1,𝑡 + 𝐴1,2𝑢2,𝑡 = 𝜀1,𝑡. (13)

Taking the variance of both sides of (13), we obtain the 1
2𝑘(𝑘 + 1) moment conditions

𝐴1∙𝛴𝑢𝐴
′
1∙ = 𝐼𝑘. (14)

Post-multiplying (13) by 𝑤′
𝑡 and taking expectations yield the additional 𝑘𝑠 moment conditions

𝐴1∙𝛴𝑢,𝑤 = 0𝑘×𝑠. (15)

Taken together, (14) and (15) provide 𝑚 ∶= 1
2𝑘(𝑘 + 1) + 𝑘𝑠 independent moment conditions that can be used to estimate the

parameters in 𝐴1∙. The idea is simple: the moment conditions (14)–(15) define a set of ‘distances’ between reduced form and
structural parameters, which can be minimized once 𝛴𝑢 and 𝛴𝑢,𝑤 are replaced with their consistent estimates. When 𝑘 > 1, however,
he proxies alone do not suffice to point-identify the proxy-SVAR, and it is necessary to impose additional parametric restrictions;
ee Mertens and Ravn (2013), Angelini and Fanelli (2019), Montiel Olea et al. (2021), Arias et al. (2021) and Giacomini et al.
2022). Depending on the information/theory available, the additional restrictions can involve the parameters in 𝐴1∙ or those in
∙1, and can be sign- or point-restrictions.6 We rule out the case of sign-restrictions and, as in Angelini and Fanelli (2019), focus on
eneral (possibly non-homogeneous) linear constraints on 𝐴1∙, as given by

𝑣𝑒𝑐(𝐴1∙) = 𝑆𝐴1
𝛼 + 𝑠𝐴1

(16)

here 𝛼 is the vector of (free) structural parameters in 𝐴1∙, 𝑆𝐴1
is a full-column rank selection matrix and 𝑠𝐴1

is a known vector.
nder (16), we provide below necessary and sufficient conditions for local identification of the proxy-SVAR; we refer to Bacchiocchi
nd Kitagawa (2022) for a thorough investigation of SVARs that attain local identification, but may fail to attain global identification.

Let 𝜎+ ∶= (𝑣𝑒𝑐ℎ(𝛴𝑢)′, 𝑣𝑒𝑐(𝛴𝑢,𝑤)′)′ be the 𝑚 × 1 vector of reduced form parameters entering the moment conditions in (14)–
15). Let �̂�+𝑇 ∶= (𝑣𝑒𝑐ℎ(�̂�𝑢)′, 𝑣𝑒𝑐(�̂�𝑢,𝑤)′)′ be the estimator of 𝜎+, and 𝜎+0 the corresponding true value. �̂�+𝑇 is easily obtained

from �̂�𝑢,𝑤 ∶= 1
𝑇
∑𝑇

𝑡=1 �̂�𝑡𝑤
′
𝑡 and �̂�𝑢 ∶= 1

𝑇
∑𝑇

𝑡=1 �̂�𝑡�̂�
′
𝑡, �̂�𝑡, 𝑡 = 1,… , 𝑇 , being the VAR residuals. By Lemma S.1 in the Supplement,

𝑇 1∕2(�̂�+𝑇 − 𝜎+0 )
𝑑
→ 𝑁(0𝑎×1, 𝑉𝜎+ ), with 𝑉𝜎+ positive definite asymptotic covariance matrix that can be estimated consistently under

fairly general conditions. The moment conditions (14)–(15) and the restrictions in (16) can be summarized by the distance function

𝑔(𝜎+, 𝛼) ∶=
(

𝑣𝑒𝑐ℎ(𝐴1∙𝛴𝑢𝐴′
1∙ − 𝐼𝑘)

𝑣𝑒𝑐(𝐴1∙𝛴𝑢,𝑤)

)

(17)

where 𝐴1∙ depends on 𝛼 through (16). At the true parameter values, 𝑔(𝜎+0 , 𝛼0) = 0𝑚×1. The MD estimator of 𝛼 is defined as

�̂�𝑇 ∶= arg min
𝛼∈𝛼

�̂�𝑇 (𝛼), �̂�𝑇 (𝛼) ∶= 𝑔𝑇 (�̂�+𝑇 , 𝛼)
′𝑉𝑔𝑔(�̄�)−1𝑔𝑇 (�̂�+𝑇 , 𝛼) (18)

where 𝑔𝑇 (⋅, ⋅) denotes the function 𝑔(⋅, ⋅) once 𝜎+ is replaced with �̂�+𝑇 , 𝛼 is the parameter space, 𝑉𝑔𝑔(𝛼) ∶= 𝐺𝜎+ (�̂�+𝑇 , 𝛼)𝑉𝜎+𝐺𝜎+ (�̂�+𝑇 , 𝛼)
′,

𝑉𝜎+ is a consistent estimator of 𝑉𝜎+ , and 𝐺𝜎+ (𝜎+, 𝛼) is the 𝑚×𝑚 Jacobian matrix 𝐺𝜎+ (𝜎+, 𝛼) ∶=
𝜕𝑔(𝜎+ ,𝛼)
𝜕𝜎+′ . Finally, �̄� (interior point of 𝛼)

s some preliminary estimate of 𝛼; for example, �̄� might be the MD estimate of 𝛼 obtained in a first-step by replacing 𝑉𝑔𝑔(�̄�) in (18)
ith the identity matrix, in which case �̂�𝑇 from (18) corresponds to a classical two-step MD estimator (see Newey and McFadden,
994). Note that, despite under Assumption 4 it holds 𝛴𝑢,𝑤 ∶= �̃�∙2𝛬′ (see Section 4), in (18) the investigator needs not take a stand
n the restrictions that might characterize 𝛬 and �̃�∙2.7

The next proposition establishes the necessary and sufficient rank condition, as well as the necessary order condition for local
dentification of the proxy-SVAR identified by the proxies 𝑤𝑡. 𝛼0 denotes a neighborhood of 𝛼0 in 𝛼 , with 𝛼0 true value of the
tructural parameters in the matrix 𝐴1∙, and 𝐷+

𝑘 the generalized Moore–Penrose inverse of the duplication matrix 𝐷𝑘, see Supplement,
ection S.2.

roposition 1 (Point-Identification). Consider the proxy-SVAR obtained by combining the SVAR (3) with the proxies 𝑤𝑡 in (10) for
he 𝑠 ≤ 𝑛 − 𝑘 non-target structural shocks �̃�2,𝑡. Assume that the parameters in 𝐴1∙ satisfy the 𝑚 ∶= 1

2𝑘(𝑘 + 1) + 𝑘𝑠 independent
oment conditions (14) and (15) and, for 𝑘 > 1, are restricted as in (16). Under Assumptions 1–4 and sequences of models in which
(𝑤𝑡�̃�′2,𝑡) = 𝛬𝑇 → 𝛬:

i) a necessary and sufficient condition for identification is that

𝑟𝑎𝑛𝑘
[

𝐺𝛼(𝜎+, 𝛼)
]

= 𝑎 (19)

6 See Section S.5 in the Supplement for cases where additional point-restrictions are placed on the parameters in 𝐵∙1.
7 Gains in efficiency can be achieved if these matrices are subject to constraints that are explicitly imposed in the minimization problem (18) via the matrix

𝑢,𝑤. For instance, if 𝛬 is known to be diagonal (meaning that each proxy variable in 𝑤𝑡 solely instruments one structural shock in �̃�2,𝑡), one can use a constrained

stimator of the covariance matrix 𝛴𝑢,𝑤 in (18). This can be done by using �̂�𝑢,𝑤 ∶= ̂̃𝐵
′

∙2�̂�, where �̂� and ̂̃𝐵∙2 are obtained in a previous step through the CMD
6

pproach we discuss in Section 6.1.
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holds in 𝛼0 , where 𝑎 = 𝑑𝑖𝑚(𝛼) and

𝐺𝛼(𝜎+, 𝛼) ∶=

(

2𝐷+
𝑘 (𝐴1∙𝛴𝑢 ⊗ 𝐼𝑘)

(𝛬�̃�2∙ ⊗ 𝐼𝑘)

)

𝑆𝐴1
;

(ii) a necessary order condition is 𝑎 ≤ 𝑚; when 𝑘 > 1, this implies at least 1
2𝑘(𝑘 − 1) additional restrictions on the proxy-SVAR parameters.

As it is typical for SVARs and proxy-SVARs, the identification result in Proposition 1 holds ‘up to sign’, meaning that the rank
ondition in (19) is valid regardless of the sign normalizations of the rows of the matrix 𝐴1∙. The necessary order condition, 𝑎 ≤ 𝑚,
imply states that when 𝑠 shocks are instrumented, the number of moment conditions used to estimate the proxy-SVAR must be
arger or at least equal to the total number of unknown structural parameters. It is not strictly necessary that 𝑠 = 𝑛 − 𝑘, meaning
hat identification can be achieved also by instrumenting part of the non-target shocks, provided there are enough uncontroversial
estrictions on 𝐴1∙ through (16).

An important consequence of Proposition 1 is stated in the next corollary, which establishes that the necessary and sufficient
ank condition for the identification of the proxy-SVAR fails when the proxies are weak in the sense of (12).

orollary 1 (Identification Failure). Under the assumptions of Proposition 1, the necessary and sufficient rank condition for identification
n (19) fails if the proxies satisfy (12).

The next proposition summarizes the asymptotic properties of the MD estimator �̂�𝑇 derived from (18) under local identification.

roposition 2 (Asymptotic Properties). Under the conditions of Proposition 1, let the true value 𝛼0 be an interior of 𝛼 (assumed compact).
f the necessary and sufficient rank condition in (19) is satisfied, then �̂�𝑇 in (18) has the following properties:
i) �̂�𝑇

𝑝
→ 𝛼0;

ii) 𝑇 1∕2 (�̂�𝑇 − 𝛼0
) 𝑑
→ 𝑁(0𝑎×1, 𝑉𝛼), 𝑉𝛼 ∶=

{

𝐺𝛼(𝜎+0 , 𝛼0)
′𝑉𝑔𝑔(�̄�)−1𝐺𝛼(𝜎+0 , 𝛼0)

}−1 with 𝑉𝑔𝑔(𝛼) ∶= 𝐺𝜎+ (𝜎+0 , 𝛼)𝑉𝜎+𝐺𝜎+ (𝜎+0 , 𝛼)
′ and 𝐺𝛼(𝜎+, 𝛼) as

n Proposition 1.

Proposition 2 ensures that the MD estimator �̂�𝑇 is consistent and asymptotically Gaussian if the rank condition holds. Inference
n the IRFs (5) can be based on standard asymptotic methods by classical delta-method arguments. Conversely, by Corollary 1,
onsistency and asymptotic normality is not guaranteed to hold if the instruments satisfy the local-to-zero embedding (12). The
ank of the Jacobian matrix 𝐺𝛼(𝜎+, 𝛼) in Proposition 1 depends on the covariance matrix 𝛴𝑤,𝑢 = 𝛬�̃�′

∙2, which in turn reflects the
trength of the proxies 𝑤𝑡. The pre-test of relevance discussed in Section 6 is based on an estimator of the parameters in 𝛬 and �̃�∙2.

We end this section by noticing that our indirect-MD method presents several differences with respect to Caldara and Kamps’s
2017) approach to proxy-SVARs. Caldara and Kamps (2017) interpret the structural equations of their fiscal proxy-SVAR, the analog
f system (13), as fiscal reaction functions whose unsystematic components correspond to the fiscal shocks of interest. They then
dentify the implied fiscal multipliers by a Bayesian penalty function approach. We differ from Caldara and Kamps (2017) in the
otivations behind our analysis, as well as in the frequentist nature of our approach.8 Caldara and Kamps’s (2017) main objective

s the estimation of fiscal multipliers from policy (fiscal) reaction functions using external instruments. In contrast, our primary
urpose is to rationalize a strategy intended to circumvent, when possible, the use of weak-instrument robust methods. Finally, as
ur empirical applications in Section 7 illustrate, our approach is not confined or limited to cases where the estimated structural
quations read as policy reaction functions.

. Testing instrument relevance

In this section we present our pre-test for relevance of the proxies. Our test exploits the different asymptotic properties of a
ootstrap estimator of proxy-SVAR parameters under the regularity conditions in Proposition 2 – which imply that the strong proxy
ondition (11) is verified – and under the weak IV sequences of Staiger and Stock (1997) in (12). The test works for general 𝛼-mixing
AR disturbances and/or zero-censored proxies, and is computationally invariant to the number of shocks being instrumented.

mportantly, the outcomes of the test do not affect post-test inferences because of an asymptotic independence result between
ootstrap and non-bootstrap statistics that we summarize in Proposition 7 below. This implies that the asymptotic coverage of IRFs
onfidence intervals constructed using our indirect approach remains unaffected if the bootstrap pre-test does not reject the null
ypothesis of relevance of the proxies 𝑤𝑡. Similarly, the asymptotic coverage is not affected even if the bootstrap pre-test does reject
he relevance of 𝑤𝑡 and weak-instrument robust methods (using either the proxies 𝑧𝑡, or the proxies 𝑤𝑡) are employed.

We organize this section as follows. In Section 6.1 we discuss the bootstrap estimator used to capture the strength of the proxies
nd then derive its asymptotic distribution. In Section 6.2 we explain the mechanics of the test. In Section 6.3 we summarize its
inite sample performance through simulation experiments. Finally, Section 6.4 focuses on its key properties.

8 See Section S.6 in the Supplement for a comparison between the suggested MD approach and the ‘standard’ IV approach.
7
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6.1. Bootstrap estimator and asymptotic distribution

As noticed in Section 5, the covariance matrix 𝛴𝑤,𝑢 ∶=𝐸 (𝑤𝑡𝑢′𝑡) = 𝛬�̃�′
∙2 is a key ingredient of the Jacobian 𝐺𝛼(𝜎+, 𝛼), which

etermines the asymptotic properties of the MD estimator �̂�𝑇 ; see Propositions 1 and 2. In this section, we analyze a bootstrap
stimator of the parameters in 𝛬 and �̃�′

∙2; the asymptotic distribution of this estimator will subsequently serve as a measure of the
trength of the proxies 𝑤𝑡.

Let 𝛺𝑤 be the 𝑠 × 𝑠 matrix defined by 𝛺𝑤 ∶= 𝛴𝑤,𝑢𝛴−1
𝑢 𝛴𝑢,𝑤. By combining 𝛴𝑤,𝑢 = 𝛬�̃�′

∙2 with the ‘standard’ SVAR covariance
estrictions, 𝛴𝑢 = 𝐵𝐵′, by simple algebra we obtain the relation 𝛺𝑤 = 𝛬�̃�′

∙2(𝐵𝐵
′)−1�̃�′

∙2𝛬
′ = 𝛬𝛬′. Hence, the link between the

educed form parameters in 𝛺𝑤, 𝛴𝑤,𝑢 and the proxy-SVAR parameters in the (𝑛 + 𝑠) × 𝑠 matrix (�̃�′
∙2, 𝛬′)′ is summarized by the

ollowing set of moment conditions

𝛺𝑤 = 𝛬𝛬′, 𝛴𝑤,𝑢 = 𝛬�̃�′
∙2 (20)

hich capture the connection between the proxies 𝑤𝑡 and the non-target shocks �̃�2,𝑡. We denote by 𝜃 ∶= (𝛽′2, 𝜆
′)′ the 𝑞𝜃 × 1 vector

ontaining the (free) parameters in the matrix (�̃�′
∙2, 𝛬′)′; here, 𝛽2 collects the non-zero on-impact coefficients in �̃�∙2 and 𝜆 the

on-zero elements in 𝛬. While the parameters in 𝜃 are not economically interesting on their own, the asymptotic distribution of the
stimator of 𝜃 is informative on the strength of the proxies 𝑤𝑡.

The moment conditions (20) can be summarized by the distance function 𝑑(𝜇, 𝜃) ∶= 𝜇 − 𝑓 (𝜃), with 𝜇 ∶= (𝑣𝑒𝑐ℎ(𝛺𝑤)′, 𝑣𝑒𝑐(𝛴𝑤,𝑢)′)′
nd 𝑓 (𝜃) = (𝑣𝑒𝑐ℎ(𝛬𝛬′)′, 𝑣𝑒𝑐(𝛬�̃�′

∙2)
′)′. At the true parameter values, 𝑑(𝜇0, 𝜃0) = 0. In order to estimate 𝜃 through a MD approach, one

eeds an estimator of the reduced form parameters 𝜇. This is given by �̂�𝑇 ∶= (𝑣𝑒𝑐ℎ(�̂�𝑤)′, 𝑣𝑒𝑐(�̂�𝑤,𝑢)′)′, where �̂�𝑤 ∶= �̂�𝑢,𝑤�̂�−1
𝑢 �̂�𝑢,𝑤,

̂𝑢,𝑤 ∶= 𝑇 −1 ∑𝑇
𝑡=1 �̂�𝑡𝑤

′
𝑡 and �̂�𝑢 ∶= 𝑇 −1 ∑𝑇

𝑡=1 �̂�𝑡�̂�
′
𝑡. When the proxy-SVAR is identified as in Proposition 1, 𝑇 1∕2(�̂�𝑇 −𝜇0) is asymptotically

Gaussian with positive definite asymptotic covariance matrix 𝑉𝜇 ∶= 𝐽𝜎+𝑉𝜎+𝐽 ′
𝜎+ , 𝐽𝜎+ being the full-row rank Jacobian matrix

𝜎+ ∶= 𝜕𝜇
𝜕𝜎+′ , see Lemma S.2 in the Supplement, and 𝑉𝜇 ∶= 𝐽𝜎+𝑉𝜎+𝐽 ′

𝜎+ is a consistent estimator of 𝑉𝜇 .9 Conversely, by Lemma
.3 in the Supplement, 𝑇 1∕2(�̂�𝑇 − 𝜇0) is not asymptotically Gaussian when the proxies 𝑤𝑡 satisfy the local-to-zero condition (12).
hen, a classical MD (CMD) estimator of 𝜃 can defined as

�̂�𝑇 ∶= arg min
𝜃∈𝜃

�̂�𝑇 (𝜃), �̂�𝑇 (𝜃) ∶= 𝑑𝑇 (�̂�𝑇 , 𝜃)′𝑉 −1
𝜇 𝑑𝑇 (�̂�𝑇 , 𝜃) (21)

where 𝑑𝑇 (⋅, ⋅) denotes the function 𝑑(⋅, ⋅) once 𝜇 is replaced with �̂�𝑇 , and 𝜃 is the parameter space.10 Lemma S.4 in the Supplement
shows that under the conditions of Proposition 1, 𝑇 1∕2(�̂�𝑇 − 𝜃0)

𝑑
→ 𝑁(0, 𝑉𝜃), where 𝜃0 ∶= (𝛽′2,0, 𝜆

′
0)

′ is the true value of 𝜃, 𝐽𝜃 is the
full-column rank Jacobian matrix 𝐽𝜃 ∶= 𝜕𝑓 (𝜃)

𝜕𝜃′ , and 𝑉𝜃 ∶= (𝐽 ′
𝜃𝑉

−1
𝜇 𝐽𝜃)−1. Hence, 𝛤𝑇 ∶= 𝑇 1∕2𝑉 −1∕2

𝜃 (�̂�𝑇 − 𝜃0) is asymptotically standard
normal, and 𝑉𝜃 ∶= (𝐽 ′

𝜃𝑉
−1
𝜇 𝐽𝜃)−1 is a consistent estimator of 𝑉𝜃 , where 𝐽𝜃 is the analog of 𝐽𝜃 with 𝜃 replaced by �̂�𝑇 . In contrast,

Lemma S.5 shows that, asymptotically, 𝛤𝑇 is non-Gaussian when the instruments satisfy the local-to-zero embedding in (12); its
asymptotic distribution is explicitly derived in the proof of Lemma S.5.

The bootstrap counterpart of �̂�𝑇 (henceforth, MBB-CMD), given by

�̂�∗𝑇 ∶= arg min
𝜃∈𝜃

�̂�∗
𝑇 (𝜃) , �̂�

∗
𝑇 (𝜃) ∶= 𝑑(�̂�∗

𝑇 , 𝜃)
′𝑉 −1

𝜇 𝑑(�̂�∗
𝑇 , 𝜃) (22)

where �̂�∗
𝑇 ∶= (𝑣𝑒𝑐ℎ(�̂�∗

𝑤)
′, 𝑣𝑒𝑐(�̂�∗

𝑤,𝑢)
′)′ is the bootstrap analog of �̂�𝑇 , is also affected by the strength of the proxies. Specifically,

Proposition 3 below shows that when the proxies are strong in the sense of condition (11), the asymptotic distribution of 𝛤 ∗
𝑇 ∶=

𝑇 1∕2𝑉 −1∕2
𝜃 (�̂�∗𝑇 − �̂�𝑇 ), conditional on the data, is asymptotically Gaussian.11 This result is consistent with Theorem 4.1 in Jentsch and

Lunsford (2022) on MBB consistency in proxy-SVARs. In contrast, we show in Proposition 4 that under the weak proxies embedding
(12), the limiting distribution of 𝛤 ∗

𝑇 , conditional on the data, is random and non-Gaussian (see equations (S.26) and (S.29) in the
Supplement; see also Cavaliere and Georgiev (2020), for details on weak convergence in distribution).

Proposition 3 (Bootstrap Asymptotic Distribution, Strong Proxies). Consider the CMD estimator �̂�𝑇 obtained from (21) and its MBB
counterpart �̂�∗𝑇 derived from (22). Under the conditions of Proposition 1, if the necessary and sufficient rank condition for identification in

(19) is satisfied,12 𝛤 ∗
𝑇 ∶= 𝑇 1∕2𝑉 −1∕2

𝜃 (�̂�∗𝑇 − �̂�𝑇 )
𝑑∗
→𝑝 𝑁(0𝑞𝜃×1, 𝐼𝑞𝜃 ).

Proposition 4 (Bootstrap Asymptotic Distribution, Weak Proxies). Consider the CMD estimator �̂�𝑇 obtained from (21) and its MBB
counterpart �̂�∗𝑇 derived from (22). Under the conditions of Proposition 1, if the proxies 𝑤𝑡 satisfy the local-to-zero condition (12),
𝛤 ∗
𝑇 ∶= 𝑇 1∕2𝑉 −1∕2

𝜃 (�̂�∗𝑇 − �̂�𝑇 ) converges weakly in distribution to a non-Gaussian limit.

9 In the ‘sandwich’ expression 𝑉𝜇 ∶= 𝐽𝜎+𝑉𝜎+𝐽 ′
𝜎+ , 𝑉𝜎+ is a consistent estimator of 𝑉𝜎+ , see Supplement, Section S.3, and 𝐽𝜎+ is obtained from the expression of

𝜎+ in Lemma S.2 by replacing 𝛴𝑤,𝑢 and 𝛴−1
𝑢 with the estimators �̂�𝑢,𝑤 and �̂�−1

𝑢 , respectively.
10 For 𝑠 > 1, the estimation problem (21) requires that at least (1∕2)𝑠(𝑠 − 1) restrictions are placed on �̃�′

∙2 and/or on 𝛬; see Proposition 1 in Angelini and
anelli (2019) and the proof of Lemma S.4 in the Supplement.
11 As remarked in the Supplement, see Sections S.3 and S.7 , the asymptotic validity of the MBB requires that 𝓁3∕𝑇 → 0, where 𝓁 is the block length parameter
ehind resampling, see Jentsch and Lunsford (2019, 2022). It is maintained that this condition holds in Proposition 3 as well as in all cases in which the MBB
s involved. In the Monte Carlo experiments considered in Section 6.3 and in the empirical illustrations considered in Section 7 and Section S.9, 𝓁 is chosen as
n Jentsch and Lunsford (2019) and Mertens and Ravn (2019).
12 As is standard, with ‘𝑋∗ 𝑑∗

→ 𝑋’ we denote convergence of 𝑋∗ in conditional distribution to 𝑋, in probability, as defined in the Supplement, Section S.2.
8
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The different asymptotic behaviors of 𝛤 ∗
𝑇 highlighted in Propositions 3 and 4 and, in particular, the distance of the cdf of 𝛤 ∗

𝑇
from the Gaussian cdf, are the key ingredients of our bootstrap test of instrument relevance,13 which we consider next.

6.2. Bootstrap test

Our measure of strength is based on the cdf, conditional on the data, of the bootstrap statistic 𝛤 ∗
𝑇 ∶= 𝑇 1∕2𝑉 −1∕2

𝜃 (�̂�∗𝑇 − �̂�𝑇 ). For
simplicity and without loss of generality, we consider one component of the vector 𝛤 ∗

𝑇 , say its first element, 𝛤 ∗
1,𝑇 ; its cdf, conditional

on the data, is denoted by ϝ∗𝑇 (⋅).
By Proposition 3, if the proxies satisfy condition (11), 𝛤 ∗

1,𝑇 converges to a standard normal random variable; hence, ϝ∗𝑇 (𝑥) −
ϝ (𝑥) →𝑝 0 uniformly in 𝑥 ∈ R as 𝑇 → ∞, where ϝ (⋅) denotes the 𝑁(0, 1) cdf. Our approach simply consists in evaluating, for
large 𝑇 , how ‘close or distant’ ϝ∗𝑇 (𝑥) is from ϝ (𝑥). To do so, consider a set of 𝑁 i.i.d. (conditionally on the original data) bootstrap
replications, say 𝛤 ∗

1,𝑇 ∶1,… , 𝛤 ∗
1,𝑇 ∶𝑁 , and the corresponding estimator of ϝ∗𝑇 (𝑥), given by

ϝ∗𝑇 ,𝑁 (𝑥) ∶= 1
𝑁

𝑁
∑

𝑏=1
I(𝛤 ∗

1,𝑇 ∶𝑏 ≤ 𝑥), 𝑥 ∈ R. (23)

For any 𝑥, deviation of ϝ∗𝑇 ,𝑁 (𝑥) from the standard normal distribution can be evaluated by considering the distance |ϝ∗𝑇 ,𝑁 (𝑥) − ϝ (𝑥) |.
By standard arguments, and regardless of the strength of the proxies, as 𝑁 → ∞ (keeping 𝑇 fixed)

𝑁1∕2(ϝ∗𝑇 ,𝑁 (𝑥) − ϝ∗𝑇 (𝑥))
𝑑∗
→𝑝 𝑁

(

0, 𝑈𝑇 (𝑥)
)

(24)

where 𝑈𝑇 (𝑥) ∶= ϝ∗𝑇 (𝑥)(1 − ϝ∗𝑇 (𝑥)). This suggests that, with �̂�𝑇 (𝑥) a consistent estimator of 𝑈𝑇 (𝑥),14 we may consider the normalized
statistic:

𝜏∗𝑇 ,𝑁 (𝑥) ∶= 𝑁1∕2�̂�𝑇 (𝑥)−1∕2(ϝ∗𝑇 ,𝑁 (𝑥) − ϝ (𝑥)). (25)

The next two propositions establish the limit behavior of 𝜏∗𝑇 ,𝑁 (𝑥) in the two scenarios of interest: under the conditions of
Proposition 3, where the proxy-SVAR is identified and strong proxy asymptotics holds, and under the conditions of Proposition 4,
where weak proxy asymptotics à la Staiger and Stock (1997) holds.

Proposition 5. Assume that

𝑇 ,𝑁 → ∞ jointly and 𝑁𝑇 −1 = 𝑜 (1) . (26)

Under the conditions of Proposition 3, if ϝ∗𝑇 (𝑥) admits the standard Edgeworth expansion15 ϝ∗𝑇 (𝑥) − ϝ (𝑥) = 𝑂𝑝(𝑇 −1∕2), conditional on the

data, then 𝜏∗𝑇 ,𝑁 (𝑥)
𝑑∗
→𝑝 𝑁(0, 1).

Proposition 6. Assume that (26) holds. Under the conditions of Proposition 4, 𝜏∗𝑇 ,𝑁 (𝑥) diverges at the rate 𝑁1∕2.

Together, Propositions 5 and 6 form the basis of our approach to testing instrument relevance: precisely, a straightforward test
can be conducted by directly comparing 𝜏∗𝑇 ,𝑁 (𝑥) with critical values derived from the standard normal distribution, regardless of the
number of shocks being instrumented. The rejection of the null hypothesis indicates the presence of weak proxies. A few remarks
about the test are as follows.
(i) The condition (26) is a specificity of the suggested approach: 𝑁 should be large for power consideration but, at the same time, 𝑁
should not be too large relatively to 𝑇 , otherwise the noise generated by the 𝑁 random draws from the bootstrap distribution will
cancel the signal about the form of such distribution, which depends on 𝑇 ; see below and the proof of Proposition 5. As a practical
rule, we suggest using 𝑁 = [𝑇 1∕2]; see the next section.
(ii) Consistency of the test is preserved despite the asymptotic randomness of ϝ∗𝑇 (⋅), which makes the power of the test random.
The asymptotic randomness of ϝ∗𝑇 (⋅) introduces complexity in analyzing the local power of the test, which exceeds the scope of this
paper.
(iii) The scalar test statistic 𝜏∗𝑇 ,𝑁 (𝑥) defined in (25) can be built by considering the cdf of any single components of the vector 𝛤 ∗

𝑇 ;
moreover, the results in Propositions 5 and 6 can be extended to multivariate counterparts of 𝜏∗𝑇 ,𝑁 (𝑥), constructed on whole vector
𝛤 ∗
𝑇 . That is, one can check relevance of the proxies by using both multivariate and univariate normality tests.16

13 In principle, our approach can also be used to derive alternative estimators of strength of the proxies 𝑤𝑡. For example, one can exploit only subsets of
proxy-SVAR moment conditions in (20). For instance, it is tempting to refer to a MD estimator of the parameters 𝜆 alone, based on the moment conditions
𝛺𝑤 = 𝛬𝛬′. Although this is feasible, the estimators obtained using subsets of moment conditions may fail to incorporate all the pertinent information required
to capture the strength of the proxies. Consequently, the resulting pre-tests may exhibit relatively low power in finite samples.

14 For instance, one may consider �̂�𝑇 (𝑥) ∶= ϝ∗𝑇 ,𝑁 (𝑥) (1 − ϝ∗𝑇 ,𝑁 (𝑥)) for an arbitrary large value of 𝑁 , or can simply set �̂�𝑇 (𝑥) to its theoretical value under
ormality; i.e., �̂�𝑇 (𝑥) ∶= 𝑈(𝑥) = ϝ(𝑥)(1 − ϝ(𝑥)).
15 The Edgeworth expansion here assumed is also maintained in e.g. Bose (1988) and Kilian (1998). It is typical in the presence of asymptotically normal

tatistics, see e.g. Horowitz (2001, p. 3171), and Hall (1992).
16 In principle, a sup-type test based on 𝜏∗𝑇 ,𝑁 (𝑥) could be constructed by considering the classical Kolmogorov–Smirnov-type statistic 𝑁1∕2

‖ϝ∗𝑇 ,𝑁 − ϝ‖∞ =
1∕2 ∗ ∗ 2 ∫ ∗ 2 ∫

(ϝ∗𝑇 ,𝑁 (𝑥)−ϝ (𝑥))2 𝑑𝑥 = 𝑁 ∫ 𝜏∗ (𝑥)2𝑑𝑥
9

𝑁 sup𝑥∈R |ϝ𝑇 ,𝑁 (𝑥) − ϝ(𝑥)|. A 𝐶𝑣𝑀-type measure of discrepancy delivers 𝑁‖ϝ𝑇 ,𝑁 − ϝ‖2 = 𝑁 R(ϝ𝑇 ,𝑁 (𝑥) − ϝ(𝑥)) 𝑑𝑥, while 𝑁 R �̂�𝑇 (𝑥) R 𝑇 ,𝑁
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Table 1
Empirical rejection frequencies of the bootstrap pre-test of instrument relevance.

Rejection frequencies

Strong proxy

𝜃 𝑇 = 250 𝑇 = 1000
𝑐𝑜𝑟𝑟 = 0.59 𝑐𝑜𝑟𝑟 = 0.59

𝐷𝐻 𝐾𝑆 𝐷𝐻 𝐾𝑆

𝛽2,1
0.05(0.06)

0.05(0.06)
0.05(0.05)

0.05(0.05)
𝛽2,2 0.05(0.06) 0.05(0.05)
𝛽2,3 0.05(0.05) 0.05(0.05)
𝜆 0.05(0.05) 0.05(0.05)

Moderately weak proxy

𝜃 𝑇 = 250 𝑇 = 1000
𝑐𝑜𝑟𝑟 = 0.25 𝑐𝑜𝑟𝑟 = 0.13

𝐷𝐻 𝐾𝑆 𝐷𝐻 𝐾𝑆

𝛽2,1
0.22(0.22)

0.21(0.23)
0.80(0.63)

0.36(0.35)
𝛽2,2 0.27(0.29) 0.38(0.39)
𝛽2,3 0.20(0.24) 0.30(0.33)
𝜆 0.09(0.09) 0.10(0.12)

Weak proxy

𝜃 𝑇 = 250 𝑇 = 1000
𝑐𝑜𝑟𝑟 = 0.05 𝑐𝑜𝑟𝑟 = 0.02

𝐷𝐻 𝐾𝑆 𝐷𝐻 𝐾𝑆

𝛽2,1
0.72(0.75)

0.80(0.78)
0.98(0.98)

0.93(0.93)
𝛽2,2 0.85(0.83) 0.95(0.95)
𝛽2,3 0.82(0.83) 0.95(0.95)
𝜆 0.24(0.26) 0.50(0.51)

Notes: Results are based on 20,000 simulations and tuning parameter 𝑁 ∶= [𝑇 1∕2]. 𝑐𝑜𝑟𝑟 = 𝑐𝑜𝑟𝑟(𝑤𝑡 , 𝜀2,𝑡) is the
correlation between the instrument 𝑤𝑡 and the non-target structural shock 𝜀2,𝑡. KS is Lilliefors’ (1967) version of
Kolgomorov–Smirnov univariate normality test; 𝐷𝐻 is Doornik and Hansen’s (2008) multivariate normality test.
Results (not) in parenthesis refer to (iid) GARCH-type VAR disturbances and proxies. The block size in the MBB
algorithm is 𝑙 = 5.03𝑇 1∕4, see Footnote 18. All tests are computed at the 5% nominal significance level.

iv) The test can be further simplified, ceteris paribus, by considering the estimator �̂�∗𝑇 in place of its normalized version 𝛤 ∗
𝑇 .

enceforth, we use �̂�∗𝑇 to denote any of the following statistics that can be alternatively used to test relevance by a normality
est: (a) �̂�∗𝑇 ≡ �̂�∗𝑇 ; (b) �̂�∗𝑇 ≡ 𝛤 ∗

𝑇 ; (c) any sub-vector of �̂�∗𝑇 (e.g., �̂�∗𝑇 ≡ 𝛽∗2,𝑇 , �̂�∗𝑇 ≡ �̂�∗𝑇 , or �̂�∗𝑇 ≡ �̂�∗𝑖,𝑇 , �̂�∗𝑖,𝑇 being the 𝑖th element of �̂�∗𝑇 ); (d)
ny sub-vector of 𝛤 ∗

𝑇 .
v) The testing principle developed in this section can in fact be applied to any bootstrap statistic built from the proxy-SVAR,
rovided it is (asymptotically) Gaussian under the strong proxy condition (11), and (asymptotically) non-Gaussian under the weak
roxy condition (12). For instance, when one proxy is used for one structural shock our approach can also be applied to the bootstrap
normalized) IRFs in Jentsch and Lunsford (2022), which satisfy these two conditions; see their Corollary 4.1 and Theorem 4.3(i)(a).
vi) As a concluding remark, it is worth noting that our suggested pre-test can, in principle, be applied to the original proxies 𝑧𝑡
or the target shocks, similar to how it is applied to the proxies 𝑤𝑡 for the non-target shocks. Proposition 7 in Section 6.4 below
uarantees that there are no pre-testing issues in the subsequent inference.

.3. Monte Carlo results

In this section, we investigate by Monte Carlo simulations the finite sample properties of the bootstrap test of relevance discussed
n the previous section.17

The DGP belongs to a SVAR system with 𝑛 = 3 variables, featuring a single target shock 𝜀1,𝑡 (𝑘 = 1) and two non-target shocks
𝑛 − 𝑘 = 2). The dynamic causal effects produced by the target shock 𝜀1,𝑡 are recovered by the indirect-MD approach developed in
ection 5, i.e., by estimating the structural equation 𝐴1∙𝑢𝑡 = 𝛼1,1𝑢1,𝑡 + 𝛼1,2𝑢2,𝑡 + 𝛼1,3𝑢3,𝑡 = 𝜀1,𝑡 using a proxy 𝑤𝑡 for one of the two

non-target shocks, along with the maintained hypothesis (valid in the DGP) that 𝛼1,2 = 0; hence, 𝑘 = 1 and 𝑠 = 1 < 𝑛 − 𝑘 = 2.
The proxy 𝑤𝑡 is uncorrelated with the target shock 𝜀1,𝑡 as well as with the other non-instrumented, non-target shock of the system;
see Supplement, Section S.8 for details. The strength of the proxy 𝑤𝑡 is tested on samples of length 𝑇 = 250 and 𝑇 = 1, 000, with

leads to an Anderson–Darling-type statistic. In all cases, the test rejects for large values of the test statistic. Further tests of normality are considered in Sections 6.3
and 7.

17 Simulations have been performed with Matlab 2021b. Codes, including the ones that replicate the empirical illustrations, are available upon request from
the authors.
10
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𝜂𝑡 ∶= (𝑢′𝑡 , 𝑤𝑡)′ being either i.i.d. or a GARCH-type process. All elements of the DGP are described in detail in the Supplement, Section
S.8.

Table 1 summarizes the empirical rejection frequencies of the bootstrap diagnostic test computed on 20,000 simulations in
three different scenarios, see below. All normality tests are carried out at the 5% nominal significance level, considering bootstrap
replications of elements of the MBB-CMD estimator �̂�∗𝑇 ∶= (𝛽∗′2,𝑇 , �̂�

∗′
𝑇 )

′.18 We apply Doornik and Hansen’s (2008) multivariate test of
normality (DH in the table) to the sequence of bootstrap replications {�̂�∗𝑇 ∶1, �̂�

∗
𝑇 ∶2,… , �̂�∗𝑇 ∶𝑁}, where �̂�∗𝑇 is selected as �̂�∗𝑇 ≡ 𝛽∗2,𝑇 (see (iii)

n Section 6.2); further, we apply Lilliefors’ (1967) version of univariate Kolmogorov–Smirnov (KS in the table) tests of normality to
he sequence {�̂�∗𝑇 ∶1, �̂�

∗
𝑇 ∶2,… , �̂�∗𝑇 ∶𝑁}, with �̂�∗𝑇 selected as �̂�∗𝑇 ≡ �̂�∗𝑖,𝑇 , for 𝑖 = 1,… , 𝑞𝜃 , �̂�∗𝑖,𝑇 being the 𝑖th scalar component of �̂�∗𝑇 (again,

see (iii) in Section 6.2). In Table 1, rejection frequencies not in parentheses refer to the case in which 𝜂𝑡 ∶= (𝑢′𝑡 , 𝑤𝑡)′ is generated
s an i.i.d. process; rejection frequencies in parentheses refer to the case in which each component in the vector 𝜂𝑡 ∶= (𝑢′𝑡 , 𝑤𝑡)′ is
enerated from univariate GARCH(1,1) processes, independent across equations. The tuning parameter 𝑁 is set to 𝑁 = [𝑇 1∕2].19

Results in the upper panel of Table 1 refer to a ‘strong proxy’ scenario. In this scenario, the correlation between the ‘indirect’
roxy 𝑤𝑡 and the instrumented non-target shocks �̃�2,𝑡 is set to 59% and, in line with the strong proxy condition (11), does not change
ith the sample size. Overall, it is evident that the test effectively controls nominal size reasonably well.

The middle panel of Table 1 presents the rejection frequencies computed under a ‘moderately weak proxy’ scenario. In this
ramework, the covariance between 𝑤𝑡 and �̃�2,𝑡 is of the form 𝜆𝑇 = 𝑐𝑇 −1∕2, see (12), with 𝑐 chosen such that the correlation
etween 𝑤𝑡 and �̃�2,𝑡 is 25% with 𝑇 = 250, and collapses, ceteris paribus, to 13% with 𝑇 = 1, 000. Our test behaves reasonably well:
hen 𝑇 = 250, the test based on �̂�∗𝑇 ≡ 𝛽∗2,𝑇 detects the weak proxy with rejection frequencies fluctuating in the range 20%–22%;

mportantly, the empirical rejection frequencies increase to 63%–80% as 𝑇 increases.
Finally, the results in the lower panel of Table 1 refer to a ‘weak proxy’ scenario, where 𝑐 is such that the correlation between

𝑡 and �̃�2,𝑡 is 5% for 𝑇 = 250 and reduces, ceteris paribus, to 2% for 𝑇 = 1000. The table shows that the test detects weak proxies
ith high accuracy, regardless of whether the disturbances 𝜂𝑡 are i.i.d. or follow GARCH(1,1)-type processes. The power of the test
pproaches one as the sample size increases, indicating its effectiveness in detecting weak proxies.

.4. Post-test inference on the IRFs

As is known from the literature on IV regressions, caution is needed when choosing among instruments on the basis of their
irst-stage significance, as screening worsens small sample bias; see, e.g., Zivot et al. (1998), Hausman et al. (2005) and Andrews
t al. (2019). Hence, one important way to assess the overall performance of our novel bootstrap pre-test is to examine, in addition
o the rejection frequencies in Table 1, the reliability of post-test inferences. In this section, we focus, in particular, on the post-test
overage of confidence intervals for IRFs obtained by the indirect-MD approach.

In the following, 𝜌𝑇 denotes any statistic based on the proxy-SVAR estimates from the original sample. For instance, 𝜌𝑇 can be a
ald-type statistic used for testing restrictions on the proxy-SVAR parameters; for a given time horizon ℎ and estimated IRF �̂�𝑖,𝑗 (ℎ)

n (5), 𝜌𝑇 might be given by 𝜌𝑇 ∶= 𝑇 1∕2(�̂�𝑖,𝑗 (ℎ)−𝛾𝑖,𝑗,0(ℎ))∕𝑉
1∕2
𝛾𝑖,𝑗 , with 𝛾𝑖,𝑗,0(ℎ) being the postulated true null value and 𝑉𝛾𝑖,𝑗 an estimator

f the asymptotic variance. With 𝜏∗𝑇 ,𝑁 ∶= 𝜏(�̂�∗𝑇 ∶1,…, �̂�∗𝑇 ∶𝑁 ), 𝜏(⋅) being a continuous function, we denote any statistic computed from
sequence of 𝑁 bootstrap replications of the MBB-CMD estimator, �̂�∗𝑇 . Note that 𝜏∗𝑇 ,𝑁 depends on the original data through its

conditional) distribution function ϝ𝑇 (⋅) only.
The following proposition establishes that the statistics 𝜌𝑇 and 𝜏∗𝑇 ,𝑁 are asymptotically independent (as 𝑇 ,𝑁 → ∞). We implicitly

ssume that the data and the auxiliary variables used to generate the bootstrap data are defined jointly on an extended probability
pace.

roposition 7 (Asymptotic Independence). Let 𝜌𝑇 and 𝜏∗𝑇 ,𝑁 be as defined above. For any 𝑥1, 𝑥2 ∈ R and 𝑇 ,𝑁 → ∞, it holds that

𝑃 ({𝜌𝑇 ≤ 𝑥1} ∩ {𝜏∗𝑇 ,𝑁 ≤ 𝑥2}) − 𝑃 (𝜌𝑇 ≤ 𝑥1)𝑃 (𝜏∗𝑇 ,𝑁 ≤ 𝑥2) → 0, (27)

rovided that the conditions of Proposition 5 or Proposition 6 hold.

The main implication of Proposition 7 is that, under strong proxies or under weak proxies as in (12), large-sample inference in the
roxy-SVAR based on the statistic 𝜌𝑇 is not affected by the outcomes of the bootstrap-based statistic 𝜏∗𝑇 ,𝑁 . Thus, if the pre-test does
ot reject the null of relevance, post-test inference on the proxy-SVAR parameters can be conducted by standard asymptotic methods
ithout relying on Bonferroni-type adjustments. Moreover, if the bootstrap pre-test rejects the null of relevance, the investigator

an still apply weak-instrument robust methods, no matter whether they instrument the target shocks 𝑧𝑡 or the non-target shocks
𝑡. In any case, post-test inference will not be affected asymptotically by the outcome of the test. Note that here we do not consider

equences of parameters converging to zero at a rate different from 𝑇 −1∕2; see, for instance, Andrews and Cheng (2012). Accordingly,
e do not claim here that the asymptotic result in Proposition 7 holds uniformly.

18 As already observed, in the MBB algorithm we fix the parameter 𝓁 (see Supplement, Section S.7) to the largest integer smaller than the value 5.03𝑇 1∕4;
see Jentsch and Lunsford (2019) and Mertens and Ravn (2019). In their simulation experiments, Jentsch and Lunsford (2022) use 𝓁 = 4 in samples of 𝑇 = 200
observations; we checked that the results of our simulation experiments based on 𝑇 = 250 observations do not change substantially with 𝓁 = 4.

19 Building upon the findings in Angelini et al. (2022), we investigate the selection of 𝑁 out of 𝑇 through several additional simulation experiments, which
are not presented here to save space. Results suggest that the choice 𝑁 = [𝑇 1∕2] strikes a satisfactory balance between controlling the size and maximizing power
11

in samples of lengths commonly encountered in practical settings.
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𝑇

Fig. 1. Empirical coverage probabilities of IRFs calculated on 20,000 simulations (90% nominal). IRFs refer to the response of the variable 𝑌3,𝑡+ℎ to the target
shock 𝜀1,𝑡, ℎ = 0, 1,… , 12.

To illustrate this important implication of Proposition 7, consider the DGP discussed in Section 6.2. Fig. 1 plots, for samples of
= 250 observations and for ℎ = 0, 1,… , 12, the empirical coverage probabilities of 90% confidence intervals constructed for the

response of 𝑌3,𝑡+ℎ to the target shock 𝜀1,𝑡. Empirical coverage probabilities are estimated using 20,000 Monte Carlo draws.
The black line (labeled as ‘Strong, indirect-MD’) in the graph, which is mostly overlapped by the pale blue line (see below),

depicts the empirical coverage probabilities obtained through our indirect-MD approach, implemented as discussed in the Monte
Carlo Section 6.2. Thus, given the estimated structural parameters �̂�1∙ ∶= (�̂�1,1, 0, �̂�1,3)′ (recall that 𝛼1,2 = 0 is imposed) and the implied
IRFs �̂�3,1(ℎ), ℎ = 0, 1,… , 12, �̂�3,1(ℎ) being the third element of �̂�∙1(ℎ) ∶= (𝑆′

𝑛(̂𝑦)
ℎ𝑆𝑛)�̂�𝑢,𝑇 �̂�′

1∙, we build 90% confidence intervals for
the true response 𝛾3,1,0(ℎ), using the statistic 𝜌𝑇 described above. The setup corresponds to the ‘strong proxy’ scenario analyzed in
the upper panel of Table 1.

Fig. 1 shows that, unconditionally, the finite sample coverage of IRFs is satisfactory. The pale blue line refers to conditional
probabilities (labeled as ‘Strong, indirect-MD∣DH≤cv’); i.e., empirical coverage probabilities conditionally on the bootstrap pre-test,
based on 𝜏∗𝑇 ,𝑁 ≡ 𝐷𝐻 and 𝑁 = [𝑇 1∕2], failing to reject the null that 𝑤𝑡 is relevant for the instrumented non-target shock. The graphs
in Fig. 1 support the result in Proposition 7: unconditional and conditional empirical coverage probabilities tend to coincide.

To further appreciate the asymptotic independence result in Proposition 7, we now consider the coverage of weak-instrument
robust methods when our pre-test rejects the relevance condition. As already observed, when the strong proxy condition for 𝑤𝑡 is
rejected, researchers can proceed by relying on weak-instrument robust methods as in Montiel Olea et al. (2021). To do so, they
can use either the (weak) proxies 𝑧𝑡 available for the target shocks, or the (weak) proxies 𝑤𝑡 available for the non-target shocks.

We focus on the case in which the strong proxy condition for 𝑤𝑡 is rejected, and the responses of 𝑌3,𝑡+ℎ to 𝜀1,𝑡 are estimated by
the direct approach; i.e., by directly instrumenting the target shocks 𝜀1,𝑡 with the weak proxy 𝑧𝑡. We specify a DGP for 𝑧𝑡 which
mimics the ‘weak proxy’ scenario already considered for 𝑤𝑡. In particular, we set 𝐶𝑜𝑣(𝑧𝑡, 𝜀1,𝑡) = 𝜙𝑇 = 𝑐𝑇 −1∕2, and fix the magnitude
of the location parameter 𝑐 such that the correlation between 𝑧𝑡 and 𝜀1,𝑡 is 4.5% in samples with 𝑇 = 250. Several key findings can
be derived from this analysis.

First, when constructing ‘plug-in’ confidence intervals under the maintained that 𝑧𝑡 serves as a relevant instrument for 𝜀1,𝑡, the
resulting coverage, represented by the red line in Fig. 1 (labeled as ‘Weak’), is unsatisfactory.

Second, if one pre-tests the weakness of 𝑧𝑡 by the first-stage F-test approach and compute confidence intervals for the target
responses only when the first-stage F-test rejects the null of weak proxy, the coverage probabilities, corresponding to the green line
in Fig. 1 (labeled as ‘Weak ∣F>cv’), are unsatisfactory. That is, screening on the first-stage F-test worsens coverage.

Third, in this scenario, weak-instrument robust (Anderson–Rubin) confidence intervals based on Montiel Olea et al. (2021)’s
approach using 𝑧𝑡 as an instrument have empirical coverage probabilities, summarized by the blue line in Fig. 1 (labeled as ‘‘Weak,
A&R’’), that closely match the nominal level.

Fourth, if weak-instrument robust confidence intervals are computed only when our bootstrap pre-test rejects the relevance of
𝑤𝑡, conditional empirical coverage probabilities, given by the orange line in Fig. 1 (labeled as ‘Weak, A&R∣DH>cv’), are close to the
unconditional ones (blue line). This result aligns with the asymptotic independence result in Proposition 7. Similar results obtain if
12

the bootstrap pre-test is applied to 𝑧𝑡 rather than 𝑤𝑡.
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7. Empirical illustrations

We demonstrate the benefits of our identification and estimation strategy for proxy-SVARs by reexamining some empirical
llustrations previously discussed in the literature through the lens of our indirect-MD approach. In Section 7.1 we concentrate on
ilian’s (2009) model for global crude oil production. Section 7.2 examines the joint identification of financial and macroeconomic
ncertainty shocks using data and reduced form VAR from Ludvigson et al. (2021). A third empirical illustration, which pertains to
fiscal proxy-SVAR, is deferred to the Supplement.

.1. Oil supply shock

Kilian (2009) considers a three-equation (𝑛 = 3) SVAR for 𝑌𝑡 ∶= (𝑝𝑟𝑜𝑑𝑡, 𝑟𝑒𝑎𝑡, 𝑟𝑝𝑜𝑡)′, where 𝑝𝑟𝑜𝑑𝑡 is the percentage change in
lobal crude oil production, 𝑟𝑒𝑎𝑡 is a global real economic activity index of dry goods shipments and 𝑟𝑝𝑜𝑡 is the real oil price. Using
onthly data for the period 1973:M1-2007:M12 and a Choleski decomposition based on the above ordering of the variables, he

dentifies three structural shocks: an oil supply shock, 𝜀𝑆𝑡 , an aggregate demand shock, 𝜀𝐴𝐷𝑡 , and an oil-specific demand shock,
𝑂𝑆𝐷
𝑡 , respectively. Montiel Olea et al. (2021) focus on the identification of the oil supply shock 𝜀𝑆𝑡 alone, using Kilian’s (2009)
educed form VAR and Kilian’s (2008) measure of ‘exogenous oil supply shock’, 𝑧𝑡, as external instrument for the shock of interest,
𝑆
𝑡 .

In our notation, 𝜀1,𝑡 = 𝜀𝑆𝑡 (𝑘 = 1) is the target structural shock, 𝑧𝑡 is Kilian’s (2008) proxy directly used for 𝜀1,𝑡, and
2,𝑡 = (𝜀𝐴𝐷𝑡 , 𝜀𝑂𝑆𝐷

𝑡 )′ (𝑛−𝑘 = 2) collects the non-target shocks of the system. The counterpart of the representation (4) of the proxy-SVAR
s given by the system

𝑢𝑡 ∶=

⎛

⎜

⎜

⎜

⎝

𝑢𝑝𝑟𝑜𝑑𝑡

𝑢𝑟𝑒𝑎𝑡

𝑢𝑟𝑝𝑜𝑡

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝛽1,1
𝛽2,1
𝛽3,1

⎞

⎟

⎟

⎠

𝜀𝑆𝑡 + 𝐵∙2𝜀2,𝑡

here 𝑢𝑡 is the vector of VAR disturbances, and 𝐵∙1 ≡ (𝛽1,1, 𝛽2,1, 𝛽3,1)′ captures the instantaneous impact of the oil supply shock on
he variables. The counterpart of the linear measurement Eq. (6) is given by 𝑧𝑡 = 𝜙𝜀𝑆𝑡 + 𝜔𝑧,𝑡, where 𝜙 is the relevance parameter
nd 𝜔𝑧,𝑡 is a measurement error, uncorrelated with all other structural shocks of the system. Since 𝑘 = 1, no additional restriction
n the proxy-SVAR parameters is needed to build weak-instrument robust confidence intervals.

For comparison purposes, we start from the direct approach, which is based on instrumenting the oil supply shock with the
roxy 𝑧𝑡. Since 𝑧𝑡 is available on the period 1973:M1-2004:M9, following Montiel Olea et al. (2021), we use the common sample
eriod 1973:M1-2004:M9 (𝑇 = 381 monthly observations) for estimation. Montiel Olea et al. (2021) report a robust first-stage F
tatistic for the proxy 𝑧𝑡 equal to 9.4. We complement their analysis with our bootstrap pre-test for instrument relevance. More
recisely, we apply Doornik and Hansen’s (2008) multivariate test of normality (𝜏∗𝑇 ,𝑁 ≡ 𝐷𝐻) on the sequence of MBB replications
�̂�∗𝑇 ∶1, �̂�

∗
𝑇 ∶2,… , �̂�∗𝑇 ∶𝑁}, fixing the tuning parameter at 𝑁 = [𝑇 1∕2] = 19. The bootstrap estimator �̂�∗𝑇 is obtained as follows. First,

e consider �̂�∗𝑇 ≡ �̂�∗𝑇 , where �̂�∗𝑇 = (𝛽∗′1,𝑇 , �̂�
∗
𝑇 )

′ is the MBB-CMD estimator discussed in Section 5.20 The multivariate normality test
ields a 𝑝-value of 0.04. Subsequently, considering the choice �̂�∗𝑇 ≡ 𝛽∗1,𝑇 , the multivariate normality test returns a 𝑝-value of 0.004
univariate normality tests corroborate this result). Overall, the bootstrap pre-test provides evidence countering the hypothesis that
ilian’s (2008) proxy 𝑧𝑡 serves as a relevant instrument for the oil supply shock. This result lends support to the employment of the
eak-instrument robust approach developed in Montiel Olea et al. (2021).

The blue lines plotted in Fig. 2 are the estimated dynamic responses to the oil supply shock identified by Kilian’s (2008) proxy
𝑡. More precisely, the graph quantifies the responses of the variables in 𝑌𝑡 ∶= (𝑝𝑟𝑜𝑑𝑡, 𝑟𝑝𝑜𝑡, 𝑟𝑒𝑎𝑡)′ to an oil supply shock that increases
il production of 1% on-impact (the responses plotted for 𝑝𝑟𝑜𝑑𝑡 are cumulative percent changes). The blue shaded areas depict the
orresponding 68% (in panel A) and 95% (in panel B) Anderson–Rubin weak-instrument robust confidence intervals. They closely
esemble the IRFs plotted in panels A and B of Fig. 1 in Montiel Olea et al. (2021). The orange dotted lines represent Jentsch and
unsford’s (2022) 68% (in panel A) and 95% (in panel B) ‘grid MBB AR’ confidence intervals. It is evident that the use of the MBB
nhances the precision of weak-instrument robust inference on the dynamic causal effects induced by the oil supply shock.

We now move to our indirect-MD approach, which requires instrumenting the non-target shocks 𝜀2,𝑡 = (𝜀𝐴𝐷𝑡 , 𝜀𝑂𝑆𝐷
𝑡 )′. The

ounterpart of system (13) is given by the equation:

𝐴1∙𝑢𝑡 = 𝛼1,1𝑢
𝑝𝑟𝑜𝑑
𝑡 + (𝛼1,2, 𝛼1,3)

(

𝑢𝑟𝑒𝑎𝑡

𝑢𝑟𝑝𝑜𝑡

)

= 𝜀𝑆𝑡 (28)

here 𝐴1∙ = (𝛼1,1, 𝛼1,2, 𝛼1,3). Eq. (28) provides the moment condition 𝐴1∙𝛴𝑢𝐴′
1∙ = 1, see (14). If, as in Assumption 4, there exist at

east 𝑠 = 𝑛 − 𝑘 = 2 proxies 𝑤𝑡 for the two non-target shocks 𝜀2,𝑡 = (𝜀𝐴𝐷𝑡 , 𝜀𝑂𝑆𝐷
𝑡 )′ ≡ �̃�2,𝑡, there are two additional moment conditions

f the form (15) that can be exploited for inference, i.e. 𝐴1∙𝛴𝑢,𝑤 = 01×2, where 𝛴𝑢,𝑤 ∶=𝐸(𝑢𝑡𝑤′
𝑡). Overall, there are three moment

onditions (𝑚 = 1
2𝑘(𝑘 + 1) + 𝑘𝑠 = 3) that can be used to estimate the three structural parameters in 𝐴1∙ (𝑎 = 3) by the method

iscussed in Section 5.

20 Since in this case we are testing the strength of a proxy which directly instruments the target shock, the test is based on the MBB-CMD estimator in (22)
′ ′ ′ −1 ′ 2
13

omputed from the moment conditions 𝛴𝑧,𝑢 = 𝜙𝐵1, 𝛺𝑧 = 𝜙𝐵1(𝐵𝐵 ) 𝐵1𝜙 = 𝜙 , which capture the strength of the proxy 𝑧𝑡 for the oil supply shock.
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Fig. 2. Impulse responses to an oil-supply shock. Red dotted lines correspond to the IRFs estimated with our indirect-MD approach; red shaded areas are the
corresponding 68% and 95% MBB confidence intervals; blue dotted lines correspond to the Plug-in IRFs obtained pretending that Kilian’s (2008) proxy is a
strong instrument for the oil supply shock; black dashed lines are the 68% and 95% Plug-in confidence intervals; blue shaded areas are the corresponding 68%
and 95% weak instruments robust confidence intervals; orange dotted lines correspond to the 68% and 95% ‘‘Grid MBB’’ weak instruments robust confidence
intervals.

Following the arguments in Kilian (2009) and Montiel Olea et al. (2021), our Assumption 1 is considered valid. Assumption 2
s investigated by a set of diagnostic tests on the VAR residuals (the VAR is estimated with 𝑙 = 24 lags), which suggest that the

residuals are conditionally heteroskedastic but serially uncorrelated. Assumption 3 is maintained. The validity of the proxies in the
sense of Assumption 4 is discussed below.

The proxies selected for the two non-target shocks are 𝑤𝑡 ∶= (𝑤𝑅𝑉
𝑡 , 𝑤𝐵𝑟

𝑡 )′, where 𝑤𝑅𝑉
𝑡 represents the logarithmic difference of

the World Steel Index (WSI) introduced by Ravazzolo and Vespignani (2020), and 𝑤𝐵𝑟
𝑡 represents the logarithmic difference of the

Brent Oil Futures. The proxy 𝑤𝑅𝑉
𝑡 serves as an instrument for the aggregate demand shock, 𝜀𝐴𝐷𝑡 , and the proxy 𝑤𝐵𝑟

𝑡 is used as an
nstrument for the oil-specific demand shock, 𝜀𝑂𝑆𝐷

𝑡 . Since 𝑤𝑅𝑉
𝑡 is available on the shorter sample, 1990:M2-2004:M9, we employ

he entire sample period 1973:M1-2004:M9 to estimate 𝛴𝑢 and the shorter sample period, 1990:M2-2004:M9 (𝑇 = 176 monthly
bservations), to estimate 𝛴𝑢,𝑤. Then, the MD estimates of the structural parameters in Eq. (28) follow from (17)–(18).

We pre-test the strength of the proxies 𝑤𝑡 by our bootstrap test. In this case, to estimate the parameters that capture the strength
f the proxies, �̂�∗𝑇 = (𝛽∗′2,𝑇 , �̂�

∗
𝑇 )

′, we consider the sample common to both instruments in 𝑤𝑡, 1990:M2-2004:M9. We apply the
ultivariate normality test 𝜏∗𝑇 ,𝑁 ≡ 𝐷𝐻 to the sequence of bootstrap replications {�̂�∗𝑇 ∶1, �̂�

∗
𝑇 ∶2,… , �̂�∗𝑇 ∶𝑁}, where 𝑁 = [𝑇 1∕2] = 13

nd �̂�∗𝑇 ≡ �̂�∗𝑇 , with �̂�∗𝑇 = (𝛽∗′2,𝑇 , �̂�
∗
𝑇 )

′ being the MBB-CMD estimator discussed in Section 5.21 The corresponding 𝑝-value is 0.67 which
oes not reject the null hypothesis. As robustness check, we repeat the test using �̂�∗𝑇 ≡ 𝛽∗′2,𝑇 , obtaining a 𝑝-value equal to 0.73. We
onclude that the null hypothesis that the proxies 𝑤𝑡 ∶= (𝑤𝑅𝑉

𝑡 , 𝑤𝐵𝑟
𝑡 )′ are relevant for the shocks �̃�2,𝑡 = (𝜀𝐴𝐷𝑡 , 𝜀𝑂𝑆𝐷

𝑡 )′ in the sense of
ondition (11) is not rejected by the data. An indirect check of the exogeneity condition is discussed at the end of this section.

The IRFs estimated by the indirect-MD approach correspond to the red lines plotted in Fig. 2. They are surrounded by the red
haded areas representing the 68% MBB (panel A) and 95% MBB (panel B) pointwise confidence intervals, computed by using Hall’s
ercentile method. Proposition 7 ensures that no Bonferroni-type adjustment is needed; see Section 6.4.

21 Since 𝑠 = 2, at least one restriction must be imposed on the parameters of �̃�∙2 and/or 𝛬 to obtain the CMD estimators �̂�𝑇 and �̂�∗𝑇 , respectively; see
upplement, proof of Lemma S.4, equation (S.18). We specify the matrix 𝛬 upper triangular (hence imposing one zero restriction). This implies that the proxy
𝑅𝑉
𝑡 is allowed to instrument the aggregate demand shock 𝜀𝐴𝐷𝑡 alone, while the proxy 𝑤𝐵𝑟

𝑡 can instrument both the oil-specific demand shock, 𝜀𝑂𝑆𝐷
𝑡 , and the

ggregate demand shock, 𝜀𝐴𝐷𝑡 . Note that in the MD estimation problem (18) we need a consistent estimator of the matrix 𝛴𝑢,𝑤, say �̂�𝑢,𝑤 ∶= 1
𝑇

∑𝑇
𝑡=1 �̂�𝑡𝑤

′
𝑡 , and can

ignore the possible restrictions that characterize the matrices 𝛬 and �̃� , see Footnote 10.
14
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From Fig. 2, we derive two important observations. First, the MBB confidence intervals obtained by the indirect-MD approach
sing the strong proxies 𝑤𝑡 for the non-target shocks – estimated on a shorter sample – are ‘more informative’ than both the

Anderson–Rubin weak-instrument robust confidence intervals and the grid MBB AR confidence intervals obtained by instrumenting
the oil supply shock directly with Kilian’s (2008) proxy 𝑧𝑡. Differences become marked when considering 95% confidence intervals,
see panel B. Second, our empirical results line up with Kilian’s (2009) main findings. In Kilian’s (2009) Choleski-SVAR, both real
economic activity and the real price of oil exhibit limited, temporary, and statistically insignificant responses to the oil supply shock.
This finding is also evident from our estimated IRFs. Kilian’s (2009) recursive SVAR implies the testable restrictions 𝐴1,2 ≡ (𝛼1,2,
𝛼1,3) = (0, 0) in the structural Eq. (28). These restrictions imply a vertical short run oil supply curve. Under the conditions outlined
in Proposition 2 and with the support of our pre-test that does not reject the relevance of the instruments, a standard Wald-type
test conducted on these restrictions produces a bootstrap p-value of 0.68. This evidence aligns with Kilian’s (2009) recursive SVAR.
Importantly, according to Proposition 7, the outcome of the Wald test remains unaffected by the failure of the bootstrap pre-test to
reject the null hypothesis. As a result, there is no need for Bonferroni adjustments.

To assess the exogeneity (orthogonality) of the proxies 𝑤𝑡 with respect to the oil supply shock 𝜀𝑆𝑡 , we adopt a commonly employed
approach in the empirical proxy-SVAR literature. Examples include, e.g., Caldara and Kamps (2017) and Piffer and Podstawki (2018).
This involves approximating the shocks of interest by proxies or shocks derived from other studies, or identification methods. In our
framework, a natural solution is to calculate the correlations between the proxies 𝑤𝑡 and Kilian’s (2008) instrument 𝑧𝑡. We obtain
he correlations 𝐶𝑜𝑟𝑟(𝑤𝑡, 𝑧𝑡) = (0.0047, −0.09)′ on the common sample 1990:M2-2004:M9, which are not statistically significant
t any conventional significance level. An alternative method to assess the exogeneity condition is as follows. The empirical
esults discussed in this section support Kilian’s (2009) original triangular SVAR specification on the sample 1990:M2-2004:M9,
eaturing a vertical short run oil supply curve. Other studies suggest, using different identification schemes, that a Choleski-SVAR
or 𝑌𝑡 ∶= (𝑝𝑟𝑜𝑑𝑡, 𝑟𝑒𝑎𝑡, 𝑟𝑝𝑜𝑡)′ represents a good approximation of the data also on periods longer than the estimation sample 1990:M2-
004:M9; see, e.g., Kilian and Murphy (2012). This suggests that we can interpret the time series �̂�𝑆,𝐶ℎ𝑜𝑙

𝑡 , 𝑡 = 1,… , 𝑇 , recovered
from the first equation of Kilian’s (2009) Choleski-SVAR, as a reasonable approximation of an oil supply shock. Also in this case, the
correlations computed on the common period 1990:M2-2004:M9, equal to 𝐶𝑜𝑟𝑟(𝑤𝑡, �̂�

𝑆,𝐶ℎ𝑜𝑙
𝑡 ) = (−0.059, 0.038)′, are not statistically

ignificant at any conventional significance level.

.2. Financial and macroeconomic uncertainty shocks

In this second empirical illustration, we emphasize the merit of the indirect-MD approach in situations where finding valid
ultiple instruments for multiple target shocks can be problematic.

Our objective is to track the dynamic causal effects produced by financial and macroeconomic uncertainty shocks (𝑘 = 2) on a
measure of the real economic activity. As in Ludvigson et al. (2021), we consider a small-scale VAR model with 𝑛 = 3 variables:
𝑌𝑡 ∶= (𝑈𝐹 ,𝑡, 𝑈𝑀,𝑡, 𝑎𝑡)′, where 𝑈𝐹 ,𝑡 is an index of (1-month ahead) financial uncertainty, 𝑈𝑀,𝑡 is the index of (1-month ahead)
macroeconomic uncertainty, and 𝑎𝑡 is a measure of real economic activity, proxied by the growth rate of industrial production.
The two uncertainty indexes are analyzed and discussed in Ludvigson et al. (2021), where the authors contend that unraveling the
relative impacts of these two distinct sources of uncertainty is crucial for understanding how they are transmitted to the business
cycle.

We focus on the ‘Great Recession + Slow Recovery’ period 2008:M1-2015:M4 (𝑇 = 88 monthly observations). The dataset
is the same as in Ludvigson et al. (2021) and Angelini et al. (2019). The decision to focus on the period following the Global
Financial Crisis is based on the empirical findings presented in Angelini et al. (2019), where it was discovered that the VAR model
for 𝑌𝑡 ∶= (𝑈𝐹 ,𝑡, 𝑈𝑀,𝑡, 𝑎𝑡)′ exhibits two significant breaks in unconditional volatility over the extended period from 1960 to 2015,
resulting in three distinct volatility regimes.

The reduced form VAR model for 𝑌𝑡 includes a constant and 𝑙 = 4 lags. The VAR residuals display neither serial correlation, nor
conditionally heteroskedasticity on the sample 2008:M1-2015:M4.

The target structural shocks are collected in the vector 𝜀1,𝑡 ∶= (𝜀𝐹 ,𝑡, 𝜀𝑀,𝑡)′, where 𝜀𝐹 ,𝑡 denotes the financial uncertainty shock and
𝜀𝑀,𝑡 the macroeconomic uncertainty shock. The non-target shock of the system is the ‘non-uncertainty’ shock 𝜀𝑎,𝑡 ≡ �̃�2,𝑡 (𝑛 − 𝑘 = 1),
which can be interpreted as a shock reflecting forces related to real economic activity. In this model, the counterpart of (4) is as
follows:

⎛

⎜

⎜

⎝

𝑢𝐹 ,𝑡
𝑢𝑀,𝑡
𝑢𝑎,𝑡

⎞

⎟

⎟

⎠

⏟⏟⏟
𝑢𝑡

=
⎛

⎜

⎜

⎝

𝛽𝐹 ,𝐹 𝛽𝐹 ,𝑀
𝛽𝑀,𝐹 𝛽𝑀,𝑀
𝛽𝑎,𝐹 𝛽𝑎,𝐵

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵∙1

(

𝜀𝐹 ,𝑡
𝜀𝑀,𝑡

)

⏟⏟⏟
𝜀1,𝑡

+
⎛

⎜

⎜

⎝

𝑏𝐹 ,𝑎
𝑏𝑀,𝑎
𝑏𝑎,𝑎

⎞

⎟

⎟

⎠

⏟⏟⏟
𝐵∙2

(

𝜀𝑎,𝑡
)

⏟⏟⏟
𝜀2,𝑡

(29)

where 𝑢𝑡 ∶= (𝑢𝐹 ,𝑡, 𝑢𝑀,𝑡, 𝑢𝑎,𝑡)′ is the vector of VAR reduced form disturbances. The implementation of the direct identification approach
presents a challenge in identifying two reliable external instruments for the two uncertainty shocks 𝜀1,𝑡 ∶= (𝜀𝐹 ,𝑡, 𝜀𝑀,𝑡)′. Ludvigson
et al. (2021, p.6) acknowledge that in this application ‘Instrumental variable analysis is challenging, since instruments that are credibly
exogenous are difficult if not impossible to find...’.22

22 Driven by this idea, Ludvigson et al. (2021) develop a novel identification strategy which combines ‘external variable constraints’ with inequality constraints.
15

n their approach, proxies are not required to be ‘strong’ as defined in (11), nor do they need to be uncorrelated with the non-instrumented structural shocks.
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We show that the indirect-MD approach simplifies the process of inferring the effects of macroeconomic and financial uncertainty
hocks on real economic activity. Indeed, the indirect approach enables us to shift the issue of identifying (at least) two valid proxies
or the two uncertainty shocks to the task of finding (at least) one valid instrument for the real economic activity shock. This requires

considering the equations

𝐴1∙𝑢𝑡 ≡
(

𝛼𝐹 ,𝐹 𝛼𝐹 ,𝑀
𝛼𝑀,𝐹 𝛼𝑀,𝑀

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴1,1

(

𝑢𝐹 ,𝑡
𝑢𝑀,𝑡

)

⏟⏟⏟
𝑢1,𝑡

+
(

𝛼𝐹 ,𝑎
𝛼𝑀,𝑎

)

⏟⏞⏟⏞⏟
𝐴1,2

(

𝑢𝑎,𝑡
)

⏟⏟⏟
𝑢2,𝑡

= 𝜀1,𝑡 ≡
(

𝜀𝐹 ,𝑡
𝜀𝑀,𝑡

)

(30)

hich represents the counterpart of system (13). Since 𝑘 = 2, point-identification of the target uncertainty shocks requires at least
1
2𝑘(𝑘 − 1) = 1 extra restriction on the elements of the matrix 𝐴1∙. Eq. (30) provides 1

2𝑘(𝑘 + 1) = 3 moment conditions implied by
the expression 𝐴′

1∙𝛴𝑢𝐴1∙ = 𝐼2. As 𝑛 − 𝑘 = 1, we need at least one external instrument for the non-target shock; i.e., a variable 𝑤𝑡
(𝑠 = 𝑛 − 𝑘 = 1) that satisfies the linear measurement equation

𝑤𝑡 = 𝜆𝜀𝑎,𝑡 + 𝜔𝑤,𝑡 (31)

where �̃�2,𝑡 = 𝜀𝑎,𝑡, 𝜆 is the relevance parameter and 𝜔𝑤,𝑡 is a measurement error term, uncorrelated with structural shocks. Eq. (31)
s the counterpart of (10) in Assumption 4 and provides two additional moment restrictions, 𝐴′

1∙𝛴𝑢,𝑤 = 02×1, where 𝛴𝑢,𝑤 ∶=
(𝑢𝑡𝑤𝑡). By jointly considering the restrictions 𝐴′

1∙𝛴𝑢𝐴1∙ = 𝐼2 and 𝐴′
1∙𝛴𝑢,𝑤 = 02×1, we obtain a total of 𝑚 = 3 + 2 = 5 distinct

nd independent moment conditions which can be used to estimate 𝑎 = 5 structural parameters in 𝐴1∙. To impose the necessary
dentification constraint on 𝐴1∙, we borrow the restriction 𝛽𝐹 ,𝑀 = 0 (on 𝐵∙1) from Angelini et al. (2019). Using a methodology
ased on changes in volatility regimes and considering the extended period 1960–2015, Angelini et al. (2019) explore the idea
hat instantaneous causality between uncertainty shocks solely runs from financial to macroeconomic uncertainty. They test the
ypothesis that financial uncertainty does not respond instantaneously to macroeconomic uncertainty shocks (𝛽𝐹 ,𝑀 = 0) and do not
eject this hypothesis for the sample period 2008:M1-2015:M4. By using the relationship (2), the restriction 𝛽𝐹 ,𝑀 = 𝑒′3,1(𝐵∙1)𝑒2,2 = 0
recall that, e.g., 𝑒3,1 is the 3 × 1 vector containing ‘1’ in the position 1 and zero elsewhere ) can be mapped to the elements of 𝐴′

1∙
ia 𝑒′3,1(𝛴𝑢𝐴′

1∙)𝑒2,2 = 0, and properly expressed in the form (16) once 𝛴𝑢 is replaced by its consistent estimator �̂�𝑢 ∶= 𝑇 −1 ∑𝑇
𝑡=1 �̂�𝑡�̂�

′
𝑡.

his allows to estimate 𝑎 = 5 free structural parameters in the matrix 𝐴1∙ by or MD approach. On the other hand, the constraint
𝐹 ,𝑀 = 0 can be directly incorporated in the estimation of the proxy-SVAR by relying on the alternative indirect-MD estimation
ethod discussed in the Supplement, Section S.5.

To find a valid proxy 𝑤𝑡 for the real economic activity shock 𝜀𝑎,𝑡, we follow Angelini and Fanelli (2019). Let ℎ𝑜𝑢𝑠𝑒𝑡 be the
og of new privately owned housing units started on the estimation period 2008:M1-2015:M4 (source: Fred). We take the ‘raw’
rowth rate of new privately owned housing units started, 𝛥ℎ𝑜𝑢𝑠𝑒𝑡, and estimate an auxiliary dynamic linear regression model of
he form 𝛥ℎ𝑜𝑢𝑠𝑒𝑡 =𝐸(𝛥ℎ𝑜𝑢𝑠𝑒𝑡 ∣ 𝑡−1) + 𝑒𝑟𝑟𝑡, where 𝑡−1 denotes the information set available to the econometrician at time 𝑡 − 1,
(𝛥ℎ𝑜𝑢𝑠𝑒𝑡 ∣ 𝑡−1) denotes the linear projection of 𝛥ℎ𝑜𝑢𝑠𝑒𝑡 on the past information set, and 𝑒𝑟𝑟𝑡 can be interpreted as the ‘innovation

omponent’ of the dynamic auxiliary model for the external instrument. The residuals, denoted as 𝑤𝑡 ∶= 𝑒𝑟𝑟𝑡, 𝑡 = 1,… , 𝑇 , resulting
rom regressing 𝛥ℎ𝑜𝑢𝑠𝑒𝑡 on past information, serve as our instrument for the real economic activity shock.

We pre-test the strength of the proxy 𝑤𝑡 by computing our bootstrap test of instrument relevance. We apply the DH multivariate
ormality test to the bootstrap replications {�̂�∗𝑇 ∶1, �̂�

∗
𝑇 ∶2,… , �̂�∗𝑇 ∶𝑁}, where �̂�∗𝑇 ∶𝑏 ≡ 𝛽∗2,𝑇 ∶𝑏, 𝑏 = 1,… , 𝑁 , 𝑁 = [𝑇 1∕2] = 9, and

̂∗
𝑇 = (𝛽∗′2,𝑇 , �̂�

∗
𝑇 )

′ is the MBB-CMD estimator discussed in Section 5. The DH multivariate normality test yields a 𝑝-value of 0.38,
ndicating no rejection of the null hypothesis of relevant proxy.

To indirectly assess the exogeneity condition, we examine the correlation between our proxy variable 𝑤𝑡 and time series data of
acroeconomic and financial uncertainty shocks, as determined by Angelini et al. (2019) using their approach based on changes in
nconditional volatility. Specifically, we consider their estimated time series �̂�𝐹 ,𝑡 and �̂�𝑀,𝑡, 𝑡 = 1,… , 𝑇 . The resulting correlations,
omputed over the sample period 2008:M1-2015:M4, are 𝐶𝑜𝑟𝑟(𝑤𝑡, (�̂�𝐹 ,𝑡, �̂�𝑀,𝑡)′) = (−0.092, −0.096)′ and are not statistically significant
t any conventional level.

After estimating the model using the indirect-MD approach, we generate IRFs for a 40-month period. In Fig. 3, the red lines
labeled as ‘indirect-MD approach’) represent the dynamic responses of the growth rate of industrial production to identified
inancial (upper panel) and macroeconomic (lower panel) uncertainty shocks. These responses are based on one-standard deviation
ncertainty shocks and are surrounded by 90% MBB confidence intervals (depicted as red shaded areas), calculated using Hall’s
ercentile method. According to Proposition 7, the asymptotic coverage of these confidence intervals remains unaffected by pre-
esting bias. To allow for easy comparison with a benchmark, Fig. 3 also incorporates the responses obtained by Angelini et al.
2019), shown in blue and identified as ‘Angelini et al. (2019)’ (refer to their Figure 5). These responses are also based on one-
tandard deviation uncertainty shocks. The blue shaded region in Fig. 3 represents the 90% bootstrap confidence intervals computed
y Angelini et al. (2019) over the period 2008:M1-2015:M4, using the i.i.d. bootstrap method.

Fig. 3 unveils two important findings. First, both the indirect-MD approach and Angelini et al.’s (2019) method reveal a significant
ffect of macroeconomic and financial uncertainty shocks in restraining economic activity during the post-Great Recession period.
econdly, substantial disparities emerge in the estimated impact of the macroeconomic uncertainty shock on industrial production
rowth. Using the indirect-MD approach, the estimated peak response of industrial production growth to the macroeconomic
ncertainty shock is both significant and instantaneous, equal to −0.32%. Conversely, the method based on changes in volatility
ndicates that the peak response, also statistically significant, occurs five months post-shock, with a magnitude of −0.15%. In both
he indirect-MD approach and the volatility-based approach, the peak response of industrial production growth to the financial
ncertainty shock is significant, equal to −0.17%. Upon examination of the 90% bootstrap confidence intervals, it becomes evident
hat the dynamic causal effects resulting from macroeconomic and financial uncertainty shocks are more precisely estimated through
he indirect-MD approach.
16
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Fig. 3. Impulse responses of industrial production growth (𝑎𝑡) to a one standard deviation financial (𝜀𝐹 ) and a macro (𝜀𝑀 ) uncertainty shocks. Red dotted
lines correspond to the IRFs estimated with our indirect-MD approach; red shaded areas are the corresponding 90% MBB confidence intervals; blue dotted lines
correspond to the IRFs obtained by Angelini et al. (2019); blue shaded areas correspond to their 90% (iid, bootstrap) confidence intervals.

8. Conclusions

We have designed a MD estimation strategy for proxy-SVARs in which strong proxies for the non-target shocks are used to identify
the target shocks. This approach is particularly effective when the instruments available for the target shocks are weak. It becomes
especially advantageous when, faced with multiple target shocks, the application of weak-instrument robust methods necessitates
imposing a large number of restrictions which might lack economic motivation and/or could pose challenges in terms of testing their
validity. Furthermore, we have enriched this proposed strategy with a novel, computationally straightforward diagnostic pre-test
for instrument relevance which relies on bootstrap resampling and does not introduce any pre-testing bias.

It could be argued that in models of the dimensions typically encountered in practice, obtaining valid proxies for the non-
target shocks and establishing additional credible identifying restrictions that are sufficient to uniquely point-identify the target
structural shocks can be challenging. However, the empirical illustrations revisited in this paper demonstrate the potential benefits
and effectiveness of the suggested approach in cases of interest. One question that arises is whether it is appropriate to solely
instrument the non-target shocks without considering any information from available weak proxies for the target shocks, as this
approach may overlook potentially valuable identifying information. In principle, one may use both proxies for the non-target
shocks and proxies for the target shocks jointly. Intuitively, in such situations, the strong proxies for the non-target shocks act as a
form of ‘insurance’ against potential identification issues that could arise if the proxies for the target shocks were weak, allowing
for more reliable inference. Exploring this intriguing issue further will be the focus of our future research.
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