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Supercomputers are the most powerful computing machines available to society. They play a central 
role in economic, industrial, and societal development. While they are used by scientists, engineers, 
decision-makers, and data-analyst to computationally solve complex problems, supercomputers and 
their hosting datacenters are themselves complex power-hungry systems. Improving their efficiency, 
availability, and resiliency is vital and the subject of many research and engineering efforts. Still, a 
major roadblock hinders researchers: dearth of reliable data describing the behavior of production 
supercomputers. In this paper, we present the result of a ten-year-long project to design a monitoring 
framework (EXAMON) deployed at the Italian supercomputers at CINECA datacenter. We disclose 
the first holistic dataset of a tier-0 Top10 supercomputer. It includes the management, workload, 
facility, and infrastructure data of the Marconi100 supercomputer for two and half years of operation. 
The dataset (published via Zenodo) is the largest ever made public, with a size of 49.9TB before 
compression. We also provide open-source software modules to simplify access to the data and provide 
direct usage examples.

Background & Summary
High-Performance Computing (HPC) systems are complex machines composed of a huge number of hetero-
geneous components, such as computing nodes with thousands of parts, cooling infrastructures, network con-
nectors, and software elements. Over the years, the complexity of supercomputers and datacenters is increased 
following the growing demands of performance–and it is expected that it will keep on growing. This complexity 
brings along a series of big challenges for facility owners, system administrators, and practitioners. As an exam-
ple of such challenges, we recall predictive maintenance (e.g., detection and prevention of faults), energy and 
power consumption, and workload management. The magnitude of the problem motivates the adoption of auto-
mated approaches to cope with these issues, especially data-driven solutions. Efficient and reliable HPC systems 
(and datacenters in general) are very important for society at large, as their usage has been steadily increasing 
in recent years1 making it central in a wide variety of fields, from drug design2 to precise weather forecast3 and 
crowd flow simulation4, especially in conjunction with Artificial Intelligence (AI)5,6. Their relevance will only 
become greater in future years, as demonstrated, for instance, by the successful impact supercomputers had 
in helping to quickly tackle the COVID-19 pandemic7,8 or make progress in fusion energy development9, and 
climate change10.

This socio-economical significance strongly motivates the research of novel methodologies to improve 
supercomputers’ maintenance, efficiency, and productivity. For this reason, researchers and practitioners need 
to precisely understand the behavior of supercomputers, with the goal of building data-driven predictive mod-
els, optimized policies, and digital twins. Public data in this field is very scarce and mostly kept on premises–
whereas there is abundant availability of sensors at all-level of software, hardware and infrastructure, these are 
either (i) not stored and accessed on-demand for inspection, (ii) collected for instantaneous visualization but not 
preserved, or (iii) stored in different databases and logs, by different organizations (facility, user-support, system 
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administrators) for post-mortem analysis11; hence, we decided to holistically measure and publish a large, 
exhaustive, and consistent dataset collected for two and half years on a Tier-0 system (the largest to the best of 
our knowledge). The dataset is the result of a ten-year collaboration project with the Italian supercomputing 
center, CINECA–hosted at Bologna, Italy (https://www.cineca.it/en)–on holistic monitoring of supercomputer 
infrastructure to provide innovation in green, autonomous, efficient datacenters and supercomputing centers. 
Throughout the years, we observed, studied, designed, and deployed a holistic, fine-grained, and comprehensive 
data collection infrastructure, which we have dubbed ExaMon11,12.

We now make available the entire data collected from the Tier-0 supercomputer hosted at CINECA 
(Marconi100–https://www.hpc.cineca.it/hardware/marconi100). The data covers the entirety of the system, 
including the computing nodes internal information such as core loads, temperatures, frequencies, memory 
write/read operations, CPU power consumption, fan speed, GPU usage details, etc.; (we cover all 980+ comput-
ing nodes). We consider as well the system-wide information, including the liquid cooling infrastructure, the air 
conditioning system, the power supply units, workload manager statistics, and job-related information, system 
status alerts, and weather forecast. The data collection period spans the last two and a half years. It comprises hun-
dreds of metrics measured on each computing node, in addition to hundreds of other metrics gathered from sen-
sors monitored along all system components, totaling up to 49.9 TB of (uncompressed) storage space. To the best 
of our knowledge, this is the largest public dataset of this kind in the supercomputing and datacenter community. 
Along with the dataset we provide a metadata repository consisting of a detailed description of the data, working 
scripts, and two use cases: room-level thermal hazard prediction and node-level unsupervised anomaly detection.

The main goal behind the publication of this dataset is to foster the research and development of solutions 
for data-driven sustainable high-performance computing and datacenters development–where sustainability 
include all aspects of operational management to counteract the increasing system complexity, in efficiency to 
counteract the increasing cost, and in carbon footprint to mitigate the growing cooling and operational energy 
demand.

Methods
In this section we describe: I) how the data has been collected from the target supercomputer and briefly describe 
the monitoring infrastructure (Sec. “Data collection framework: ExaMon”), II) how the data has been extracted 
and the dataset prepared (Sec. “Dataset preparation”), III) how the data is then processed to remove redundant 
and/or sensitive information (Sec. “Data processing”), and IV) finally we provide some details on the fine-tuning 
done in order to make the dataset creation process more efficient (Sec. “Fine-tuning for efficient storage”).

Data collection framework: ExaMon. ExaMon is a holistic framework for HPC facility monitoring and 
maintenance12, designed for very large-scale computing systems, such as supercomputers. At its core, there are 
software components devoted to gathering data from several sensors distributed among the entire system: these 
components collect the data and deliver them to upper layers of the infrastructure, using the lightweight MQTT 
protocol (http://docs.oasis-open.org/mqtt/mqtt/v3). The collector components, also called plugins are connected 
to both hardware (HW) resources and other software (SW) modules, for instance, workload and resource manag-
ers–in particular, SLURM13 is the resource manager adopted at CINECA–and diagnostic mechanisms. Following 
the standard MQTT practice, plugins are organized as producers of data, which is then gathered by subscriber 
entities registered on the agreed communication channels; multiple message brokers are charged with collecting 
the information coming from the publishers and sending it to the storage areas. Internally, ExaMon is endowed 
with a NoSQL database (DB), namely Apache Cassandra (https://cassandra.apache.org); for a more efficient han-
dle on time-series data, a companion time-series DB is present (KairosDB, https://github.com/kairosdb/kairosdb).

Among the metrics obtained from HW sensors, there are the CPU load of all the cores in the supercom-
puting nodes, CPU clock, instructions per second, memory accesses (bytes written and read), fan speed, the 
temperature of the room hosting the system racks, power consumption (at different levels), etc. Concerning the 
SW-based plugins, the information provided by the workload manager consists of the job request (e.g., job id, 
job name, job user, job partition/queue), the requested resources (number of requested nodes, requested cores, 
requested GPUs, etc.), and the resources actually used. Additionally, diagnostic tools generate alarms and warn-
ing messages used by system administrators to check the system state, and ExaMon covers these data sources as 
well. The same holds for data-center infrastructure sensors, which cover the computer room air conditioning 
(CRAC) and water chiller system operational parameters and power consumption. The extremely varied nature 
of the collection is a key strength of ExaMon, as it obtains a very detailed overview of the HPC system and its 
many components, with a very fine granularity. With this information, it is possible to build a precise digital 
twin of the supercomputer, which can then be used for various tasks, from modeling and predictive purposes to 
automation and optimization goals. ExaMon has been deployed on CINECA machines since 201711, albeit over 
the years it has been subjected to continuous improvements (increased scalability and resilience) and extensions 
(additions of new plugins).

Dataset preparation. To produce the dataset, we first extracted all data related to Marconi100 from 
ExaMon; the data was then processed and transformed into a partitioned Parquet dataset. All the steps can be 
reproduced by using the shared code, and are described more in-depth in the rest of the section. The extracted 
data was processed in multiple ways, with three main goals:

 1. making access to the data as simple and efficient as possible;
 2. preserving original information “as is”, with as little processing as possible;
 3. ensuring privacy compliance.
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The first goal entails a balance of multiple facets: minimizing storage footprint, with minimal hindrance to 
retrieval performance; but also organizing data in a clear yet flexible way, enabling modular distribution and use. 
Parquet (https://parquet.apache.org/) is the technology that was chosen to produce the final dataset, it is popular 
in the Big Data context and it was capable, with opportune tuning, to satisfy the aforementioned requirements. It 
allowed compressing the data significantly, without particular deterioration in other regards.

In order to prepare the final datasets (those uploaded in Zenodo) we performed two main actions: i) extrac-
tion of the data from the ExaMon monitoring system; ii) processing of the extracted data (removing miss-
ing data, make the times uniform, anonymization of sensitive data, etc.), which is described in Section “Data 
Processing”. The output of the first step (data extraction) is a set of CSV files. These CSV files are then processed 
(second step) to obtain the final dataset. As the Parquet format is more suited for long-term storage of large 
amounts of data, we opted to transform the initial CSV file into the Parquet datasets that have been uploaded to 
Zenodo in the end.

The data was extracted by querying ExaMon separately for each day of each metric, filtering for Marconi100 
data only (some metrics are monitored for multiple CINECA clusters). The covered time interval spans from 
2020-03-09 to 2022-09-28 (included), for a total of 934 days. The output of this step is a collection of CSV 
(Comma-Separated Values) files, compressed with GZIP (the notorious single-file/stream lossless data compres-
sion utility, http://www.gzip.org/) and organized in a folder structure with this hierarchy: plugin, metric, daily 
CSV files. This was the starting point for the following steps.

Data processing. The processing was carried out in two sub-steps. Firstly, we cleaned the data from redun-
dant metrics obtaining an initial Parquet dataset. Redundant information was originally present due to multiple 
changes in the data collection infrastructure and storage configuration that happened during the course of the 
long period covered by this data dump. The data that was removed due to redundancy is reported in the descrip-
tion of the plugins (plugin-level metadata, e.g. facility) or in the description of the single metrics (metric-level 
metadata, e.g. unit measure). In the second and last step, starting from the first Parquet dataset, another one was 
created, with timestamp truncation for some plugins, anonymization, and minor fixes and refinements.

The vast majority of metrics have timestamps expressed with the precision of one second (i.e., the millisec-
onds and similar sub-second intervals are not recorded), but some plugins do possess sub-second precision. 
However, these values are not significant, as they are the consequence of delays in the data collection process 
and of the mechanisms adopted to mark the timestamp of the data. The removal of this additional but not useful 
information allows for more homogeneity, which results in both easier access (consistent format for timestamps) 
and lower storage footprint (mainly due to Parquet encoding leveraging data regularity). Thus, we opted for 
truncating all timestamps to the second precision, discarding milliseconds and other negligible time differences.

Afterward, sensitive data was identified and treated accordingly. This includes data related to system admin-
istrators’ comments (Nagios), data related to users’ jobs (SLURM “job_id” metric and the job table), and the 
identifiers of the compute nodes (found in many plugins). For the Nagios plugin, most of the metrics were 
dropped entirely, as i) it was almost impossible to make them completely anonymous and ii) very little value for 
further analysis remained after the removal of sensitive information. The removed data is a very small fraction 
of the overall amount of data. The sensitive data in SLURM and the job table is the one related to job identifiers 
(job_id) and related tags (array_job_id, dependency), user identifiers (user_id), and others (Quality-of-Service 
and partition). This information is provided by legitimate users of the supercomputer as part of their agreement 
for receiving access to the machines. This anonymization process has no relevant negative impact, as we still 
provide documentation about the relative position of the nodes in the room (https://gitlab.com/ecs-lab/exa-
data/-/blob/main/documentation/racks_spatial_distribution.md). Each of the group of potentially sensitive data 
(that is, data related to i) system administrators’ comments, ii) users’ jobs, and iii) the identifiers of the compute 
nodes) was rendered anonymous by transforming the values to corresponding random integers.

Fine-tuning for efficient storage. As aforementioned, we employ Parquet (version 2.6) as the data file format 
for storing the supercomputer data. Parquet is a flexible column-oriented storage technology, developed for analytics  
usage. We used PyArrow (https://arrow.apache.org/) (version 9.0.0) and its Dataset API to handle the dataset.  
The most important parameters in our case are the compression algorithm and compression level. These, along 
with the encoding schemas used by Parquet and opportune sizing of the row groups, enabled significant storage  
savings. To manage the compression rate we performed several preliminary experiments with smaller subsets  
of the data, specifically, we tried different levels of the zstd compression (commonly referred to as Zstandard 
Compression Format (https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md).  
After having evaluated the resulting storage size and access times, the chosen compression is zstd level 9.  
A higher zstd level implies (in general) a reduced storage space, at the cost of slower writing speed; retrieval speed 
is nearly the same across levels. In Fig. 1 loading times across some compression configurations are compared 
(including no compression). In the top subfigure (a) the loading times (in seconds) are reported for different 
compression schemes–gzip clearly offers the worst performance while zstd allows loading times very close to 
the no-compression applied case. In the bottom part of the figure, we report instead (as a table) the storage space 
required for the different compression schemes shown above; again, noticing the better performance of zstd is 
straightforward. Another important implementation decision is the partitioning hierarchy, which was set to (in 
order): year-month (e.g. 2022-05), plugin, and metric. This setting resulted in chunks small enough to be distrib-
uted with Zenodo while avoiding excessive fragmentation. More on this in the following Sections “Data Records” 
and “Usage Notes”.

Parquet is usually employed with a static schema for the data, expecting it to be the same for all partitions. 
Here, instead, we created a single partitioned dataset where metrics of different plugins have different schemas. 
This was overcome by using as a schema the union of all the plugin-specific schemas. An additional challenge is 
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posed by the “value” column having different natural data types for different metrics, as PyArrow and Parquet 
associate just one specific data type to a given column. This was solved by introducing a small ad-hoc tool, 
which, on top of PyArrow, retrieves groups of metrics separately, based on the “value” data type, finally merging 
them by using one common data type for that column. The tool also handles other boilerplate optimization, pre-
senting to the user a straightforward interface to load a subset of the data into a Pandas DataFrame. More about 
this can be found in the “Usage Notes” section.

Data records
The Marconi100 dataset is distributed via Zenodo as 12 different datasets14–25, as shown in Table 1; the table 
reports the official digital identifier (DOI) provided by Zenodo at submission time, the corresponding time 
period, and the (compressed) dataset size. Later months contain more data due to updates to the monitoring 
infrastructure happening during the life of Marconi100.

It is stored as a partitioned Parquet dataset, with this partitioning hierarchy: year_month (“YY-MM”), plugin, 
metric. The naming convention is the Hive one, with a folder named “column = value”. The data is distributed as 
tarball files, each corresponding to one of the 31 months of data (first-level partitioning, year_month).

Fig. 1 Loading times comparison across compression configurations (Parquet). The data is 4 months of 
gpu0_core_temp (IPMI), from May to August 2022 (included), retrieving the “timestamp”, “value” and “node” 
columns. Memory usage by the Pandas Dataframe is 6.55 GB in all cases. The PyArrow io_threads and cpu_
count were both set to 8 (Intel Xeon Gold 5220 CPU). The data was loaded using the PyArrow Dataset API.

https://doi.org/10.1038/s41597-023-02174-3
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The collected data is generated by a monitoring infrastructure working on unstructured data (to improve 
efficiency and scalability); however, this data has been organized in a structured manner to simplify its usage by 
future users. The simplest way to understand how to access the data is to refer to the companion software mod-
ules released together with the dataset itself, but we provide a synthetic description in this manuscript as well. 
There are 573 metrics in total, and each one is a table, with the schema of the records defined by the correspond-
ing plugin. The partitioning columns (year_month, plugin, metric) are present for all plugins; these columns 
can be used to access specific portions of the dataset, according to the desired plugin, specific metric within the 
plugin, and time period (selecting year and month).

The exact metrics for each plugin are described in detail in the companion code repository referenced above 
(https://gitlab.com/ecs-lab/exadata/-/tree/main/documentation), and we have avoided listing them here for 
clarity’s sake. However, Table 2 reports the various plugins and provides a synthetic description; the first column 
is the name of the plugin, the second and third ones contain the number of metrics (tables), and the number of 
plugin-specific columns for the plugin and the final column provides a high-level summary of the information 
pertaining to the plugin. All but the job table have at least the timestamp (that reports the point in time where the 
data measurement was collected) and value (the actual measured value) columns. The job table has a different 
structure–due to the internal functioning of the plugin collecting job information and how this information is 
stored on the supercomputer–and aggregated information about the jobs are reported, such as submission, start 
and completion times, the number of requested resources, resources actually used, submitting users, etc.

Over the years, many metrics have been added to the monitoring infrastructure (by changing the behavior 
of ExaMon plugins) and it is, therefore, possible that more recent time periods possess a more numerous set 
of measurements; a synthetic overview of the number of metrics collected for each plugin over the entire data 
period can be found in Fig. 2, where different colors indicate the normalized number of metrics per plugin. 
Additionally, the amount of measurements collected every day has increased over the years, thanks to the addi-
tion of new metrics and to the improved reliability of ExaMon, which led to fewer periods with missing data due 
to monitoring system unavailability. This can be observed clearly in Fig. 3 that reports the cumulative (normal-
ized) number of samples gathered each day for each different plugin; yellow hues indicate a higher number of 
daily samples, black/darker hues indicate a lower number of samples.

Starting from the main dataset, an additional one26 was produced for the “Unsupervised Anomaly Detection” 
use case, with one Parquet file for each node. The data is distributed in tarballs, each one including all the files 
relative to the nodes contained in a given rack. For each file, the rows represent periods of 15 minutes, with the 
columns being aggregations (average, standard deviation, min, max) over all the IPMI metrics that are available 
for the node; an additional column contains anomaly labels from Nagios. More details about this data can be 
found in the “Technical Validation - Unsupervised Anomaly Detection” section. The purpose of this separate 
dataset was to save pre-processing computational time for the future user of the dataset and to demonstrate the 
potential of statistical representation of the raw data described above.

Technical Validation
In this section, we describe two use cases that demonstrate how the dataset can be exploited: thermal hazard 
prediction (Sec. “Technical Validation - Thermal Hazard Detection and Prediction”) and unsupervised anomaly 
detection (Sec. “Technical Validation - Unsupervised Anomaly Detection”). Admittedly, this pair of examples 
has only illustrative purposes, as many more types of analysis can be performed using the data. For instance, job 
power/energy/thermal prediction models can be trained (e.g.27,28), novel pricing and accounting schemes can be 
devised (similarly to29), optimal predictive cooling algorithms can be designed (e.g.30) as well as fault classifica-
tion and root cause analysis31,32.

We selected the two use cases as they belong to a research area currently under heavy investigation, as pre-
dictive maintenance and automated resource management are crucial topics for Exascale supercomputers and 

Zenodo dataset (DOI) Included months Total size (GB)

Dataset 114 from 20-03 to 20-12 (included) 44.6

Dataset 215 from 21-01 to 21-06 (included) 45.3

Dataset 316 from 21-07 to 21-09 (included) 41.7

Dataset 417 from 21-10 to 21-12 (included) 44.9

Dataset 518 from 22-01 to 22-02 (included) 24

Dataset 619 22-03 31.5

Dataset 720 22-04 33.4

Dataset 821 22-05 33.2

Dataset 922 22-06 27.7

Dataset 1023 22-07 31.4

Dataset 1124 22-08 37.9

Dataset 1225 22-09 34.1

Time-aggregated26 from 20-03 to 22-09 (included) 24.8

Table 1. The dataset is divided among different datasets, all hosted on Zenodo and corresponding to different 
time frames. Here the DOIs, time periods and sizes are reported. The sizes are relative to the whole datasets, 
download can be done with finer granularity (i.e. months, racks).

https://doi.org/10.1038/s41597-023-02174-3
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scalable datacenters. All the analyses were conducted using the dataset described in this paper and published in 
the Zenodo repositories, to fully demonstrate how these datasets can be beneficial to other practitioners. The 
source code used is publicly available: https://gitlab.com/ecs-lab/exadata.

Thermal hazard detection and prediction. A datacenter consumes a large amount of electrical power 
(in the range of megawatts), which gets completely transformed into heat33,34. Therefore, although a datacenter 
contains sophisticated cooling systems, minor thermal issues/anomalies can potentially originate thermal haz-
ards. Thermal hazards are detrimental to datacenter operations as they can lead to IT and facility equipment 
damage as well as an outage of the datacenter, with severe societal and business losses35,36.

Therefore, predicting the thermal hazard/anomaly is critical to prevent future disasters. To do this, we used 
the inlet temperature of the computing nodes’ monitoring data. In the public code repository the simplified 
version of the datacenter thermal hazard detection and prediction model implemented in Python can be found. 
The model consists of four main steps: (i) querying the dataset, which provides a targeted subset of the dataset 
for the study. (ii) pre-processing and dealing with missing data. In this step, we can do any data transforma-
tions that are essential for the target study. For example, in this study, first, we pivoted the dataset such that the 
row indexes are DateTime and columns are inlet temperature of Marconi 100 compute nodes (a conversion 
that can be envisioned as going from many rows to many columns). Next, based on the studies conducted 
in33,34,37,38, we know 10 minutes sampling rate will preserve room-and-node-level thermal transient but discard 
computing-component-level ones, so we reduced the sampling rate of the dataset from 20 seconds to 10 minutes 
with a moving average approach. Then to deal with missing data, we used an interpolation algorithm taken 
from a standard Python library (Pandas)39. (iii) Dataset Annotation, based on the data analysis of the inlet 
temperature of the computing node in normal and abnormal production conditions of the datacenter in a labe_
gene class, we proposed a statistical rule-based method for generating the thermal-hazard label. (iv) Machine 
Learning (ML) step, composed of (a) Dataset Creation, obtained by splitting the dataset into a training set and 
test set, with a split ratio of test-size = 0.2 and train-size = 0.8. (b) Data Standardization, transforming data into 
a standard format, helps to improve training performance. (c) Machine Learning Model, we used support vector 
classification, a supervised learning model. In the ML step, we used sklearn libraries40. The performance of the 
proposed thermal hazard prediction model reached an F1-score (weighted average) of 0.94.

Unsupervised anomaly detection. Anomaly detection is essential in high-performance computing 
(HPC) systems as it helps to identify unusual or unexpected behavior in system and application performance, 
which can indicate problems or potential issues41. An example of an anomaly in an HPC system is a sudden 
increase in resource usage, a drop in performance, or an unexpected error. Anomaly detection can help iden-
tify these issues early on to be addressed before they cause serious problems or disruptions. This can help to 
ensure the smooth operation of HPC systems and applications and prevent costly downtime or lost productivity. 
Anomaly detection is crucial for HPC environments because these systems often have large amounts of data 
and complex relationships, making it difficult to identify problems manually. Anomaly detection algorithms can 

Plugin #Metrics
#Plugin-specific 
columns Description

Vertiv 25 1
Mainly collects data from the air-conditioning units (CDZ) located in room F (Marconi 100) of 
Cineca. The plugin uses the RESTful API interface available on the individual devices to extract 
the most interesting metrics.

Schneider 164 1

Dedicated data collector designed to acquire data from an industrial PLC by accessing its HMI 
module (from Schneider Electric). The PLC controls the valves and pumps of the liquid cooling 
circuit (RDHx) of Marconi 100. It consists of two (redundant) twin systems controllable by two 
identical HMI panels, Q101 and Q102.The ExaMon plugin extracts and stores all the metrics 
available on both panels.

IPMI 104 1 Collects all the sensor data provided by the OOB management interface (BMC) of cluster nodes.

Ganglia 177 1 Connects to the Ganglia server (gmond), collects and translates the data payload (XML) to the 
ExaMon data model.

Logics 37 2

Data collection system already installed at Cineca. It is specialized for collecting power 
consumption data from equipment in the different rooms, typically using multimeters that 
communicate via Modbus protocol. The ExaMon plugin dedicated to collecting this data 
interfaces to the Logics database (RDBMS) via its REST API. NOTE: Since the translation process 
is fully automated, the same inconsistencies present in the original db may result in the ExaMon 
database: e.g., metric names in the Italian language, units of measure as metric name, etc.

Weather 10 0 Collects all the weather data related to the Cineca facility location (Casalecchio di Reno) using an 
online open weather service (https://openweathermap.org).

Nagios 1 5 Interfaces with a Nagios extension developed by CINECA called “Hnagios”, collects and 
translates the data payload to the ExaMon data model.

SLURM 54 4 Collects aggregated data from the SLURM server; these information is gathered through ad hoc 
scripts created by CINECA system administrators.

Job table 1 89 Collects information regarding the jobs executed on the cluster (and store in the SLURM 
database); the information collected are those provided by users at submission time.

Table 2. Description of the plugins. “# Metrics” indicates the number of metrics (tables) for that plugin;  
“# Plugin-specific columns” is the number of columns for the metrics in that plugin (excluding timestamp, value 
and the partitioning columns). SLURM is an acronym referring to the job dispatcher employed at CINECA, that 
is the Slurm Workload Manager.

https://doi.org/10.1038/s41597-023-02174-3
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analyze this data and identify patterns or deviations that may indicate an issue. These algorithms can also be 
configured to alert administrators or take other automated actions in response to detected anomalies, helping to 
ensure that issues are addressed quickly and effectively.

The dataset presented in this paper can be used to train an anomaly detection algorithm. For anomaly detec-
tion, data is first aggregated into 15-minute time intervals (for each interval, we have min, max, average value, 
and standard deviation). The data is aggregated in this manner because we exploit the alarms employed by sys-
tem administrators to identify malfunctioning situations; these alarms are gathered by the Nagios plugin with 
a 15-minutes frequency, thus the aggregation period for the anomaly detection task. Using a higher sampling 
rate (as allowed by the other data sources involved) would not let us actually validate any anomaly detection 
approach, as we are restricted by the production of the anomalies via Nagios. The data is structured as a time 
series, with rows representing a single time stamp and columns representing the features in the dataset. The 
aggregation and pivoting code that transform the raw dataset into the dataset suitable for training anomaly 
detection models are available in the code repository.

In the code examples, we have adopted an unsupervised anomaly detection algorithm RUAD42 and trained 
it on a single compute node. We have used 80 percent of all data as a train set and (chronologically) the last 20 
percent as a test set. Then we evaluated the area under the receiver operator characteristic curve as the measure 
of performance on the test set. The real labels used in the evaluation of the anomaly detection approach come 
from the Nagios software module used by system administrators to check the status of various services in the 
supercomputer, and to flag nodes that are in an anomalous state and thus need further inspection (nodes flagged 
as anomalous are put in an “offline” state until fixed or examined, and cannot be allocated to users’ jobs until 

Fig. 2 Number of metrics over time (per plugin). Yellow indicates the maximum number of metrics relative to 
that plugin, and black is the minimum.

Fig. 3 Number of samples collected on a daily basis (per plugin). Yellow indicates the maximum number of 
samples relative to that plugin, and black is the minimum.

https://doi.org/10.1038/s41597-023-02174-3
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returning in the normal state). Nagios is one of the sources of information collected by ExaMon, hence we use it 
to (implicitly) annotate the dataset. The labels used in the testing phases of the anomaly detection approach are 
thus those obtained via Nagios. On the selected node, the classifier achieves the area under the curve (AUC) of 
0.57. The code base contains no plots or any kind of visualization, as it only includes the necessary libraries to 
execute the analysis.

Usage Notes
The datasets have been devised to offer the possibility to do analysis and experiments to the wider HPC research 
community. To this end, we aim at offering a suite of companion software tools to facilitate access to the data–in 
addition to the raw data, which can nevertheless be directly accessed using any technology that can handle 
Parquet (e.g. Spark, Dask). The companion software is available at the following web repository https://gitlab.
com/ecs-lab/exadata/-/tree/main/parquet_dataset/query_tool and it is distributed as open-source code (see the 
code for details). This tool offers a simple way to select a subset of the data in the form of a Pandas DataFrame 
while handling boilerplate optimizations and some specific design choices (e.g., the “value” column having 
multiple possible data types). The distribution of the data was designed in order to allow selective download 
of reasonably sized (a few GB) and self-contained fragments (i.e. months of data). Multiple fragments can be 
placed in a common folder, in order to obtain a custom-sized Parquet dataset. Examples of how to use the tool 
can be found in the code repository. In particular, the code corresponding to the use cases described in Section 
“Technical Validation” can be found there as well. Thermal hazard detection and prediction (https://gitlab.com/
ecs-lab/exadata/-/tree/main/examples/thermal_hazard_detection_and_prediction); anomaly detection (https://
gitlab.com/ecs-lab/exadata/-/tree/main/examples/anomaly_detection).

Code availability
The code we have used to generate this dataset has multiple sources, albeit all being publicly available. As defined 
previously, the data is collected through a monitoring infrastructure called ExaMon, which we have developed 
and deployed on the CINECA infrastructure. The code is publicly available and can be used in different 
supercomputing facilities (https://github.com/EEESlab/examon).

The libraries and software modules used to process the data streams and obtain the dataset presented here are 
the following:

• examon-client
• NumPy (1.23.1)
• Pandas (1.5.1)
• PyArrow (9.0.0)
In addition, in the source code repository (https://gitlab.com/ecs-lab/exadata) it is possible to recover the list 

of software modules used to access the data and to perform the analysis described in Sec. “Technical Validation”.
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