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Abstract. For each n ≥ 1, let Xn,1, . . . , Xn,Nn be real random variables and Sn =
∑Nn

i=1Xn,i. Let
mn ≥ 1 be an integer. Suppose (Xn,1, . . . , Xn,Nn) is mn-dependent, E(Xni) = 0, E(X2

ni) < ∞ and
σ2n := E(S2

n) > 0 for all n and i. Then,

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)

1/2
}

for all n ≥ 1 and c > 0,

where dW is Wasserstein distance, Z a standard normal random variable and

Un(c) =
mn

σ2n

Nn∑
i=1

E
[
X2

n,i 1
{
|Xn,i| > cσn/mn

}]
.

Among other things, this estimate of dW
(
Sn/σn, Z

)
yields a similar estimate of dTV

(
Sn/σn, Z

)
where dTV is total variation distance.

1. Introduction

Central limit theorems (CLTs) for m-dependent random variables have a long history. Pioneering
results, for a fixed m, were given by Hoeffding and Robbins (1948) and Diananda (1955) (for m-
dependent sequences), and Orey (1958) (more generally, and also for triangular arrays). These
results were then extended to the case of increasing m = mn; see e.g. Bergström (1970), Berk
(1973), Rio (1995), Romano and Wolf (2000), and Utev (1990a,b).
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Obviously, CLTs for m-dependent random variables are often corollaries of more general results
obtained under mixing conditions. A number of CLTs under mixing conditions are actually available.
Without any claim of being exhaustive, we mention Bradley (2007), Dedecker et al. (2022), Peligrad
(1996), Rio (1995), Utev (1990a,b) and references therein. However, mixing conditions are not
directly related to our purposes (as stated below) and they will not be discussed further.

This paper deals with an (mn)-dependent array of random variables, where (mn) is any sequence
of integers, and provides an upper bound for the Wasserstein distance between the standard normal
law and the distribution of the normalized partial sums. A related bound for the total variation
distance is obtained as well. To be more precise, we need some notation.

For each n ≥ 1, let 1 ≤ mn ≤ Nn be integers, (Xn,1, . . . , Xn,Nn) a collection of real random
variables, and

Sn =

Nn∑
i=1

Xn,i.

Suppose

(Xn,1, . . . , Xn,Nn) is mn-dependent for every n, (1.1)

E(Xni) = 0, E(X2
ni) <∞, σ2n := E(S2

n) > 0 for all n and i, (1.2)

and define

Un(c) =
mn

σ2n

Nn∑
i=1

E
[
X2

n,i 1
{
|Xn,i| > cσn/mn

}]
for all c > 0.

Our main result (Theorem 3.1) is that

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)

1/2
}

for all n ≥ 1 and c > 0, (1.3)

where dW is Wasserstein distance and Z a standard normal random variable.

Inequality (1.3) provides a quantitative estimate of dW
(
Sn/σn, Z

)
. The connections between

(1.3) and other analogous results are discussed in Remark 3.9 and Section 4. To our knowledge,
however, no similar estimate of dW

(
Sn/σn, Z

)
is available under conditions (1.1)–(1.2) only. In

addition, inequality (1.3) implies the following useful result:

Theorem 1.1 (Utev (1990a,b)). Sn/σn
dist−→ Z provided conditions (1.1)–(1.2) hold and Un(c) → 0

for every c > 0.

Based on inequality (1.3), we also obtain quantitative bounds for dK
(
Sn/σn, Z

)
and

dTV

(
Sn/σn, Z

)
, where dK and dTV are Kolmogorov distance and total variation distance, respec-

tively. As to dK , it suffices to recall that

dK

(Sn
σn
, Z
)
≤ 2

√
dW

(Sn
σn
, Z
)
;

see Lemma 2.1. To estimate dTV , define

ln = 2

∫ ∞

0
t |ϕn(t)| dt

where ϕn is the characteristic function of Sn/σn. By a result in Pratelli and Rigo (2018) (see
Theorem 2.2 below),

dTV

(Sn
σn
, Z
)
≤ 2 dW

(Sn
σn
, Z
)1/2

+ l2/3n dW

(Sn
σn
, Z
)1/3

.
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Hence, dTV

(
Sn/σn, Z

)
can be upper bounded via inequality (1.3). For instance, in addition to

(1.1)–(1.2), suppose Xni ∈ L∞ for all n and i and define

cn =
2mn

σn
max

i
∥Xni∥∞.

On noting that Un(cn/2) = 0, one obtains

dTV

(Sn
σn
, Z
)
≤

√
120 c1/6n + 301/3 l2/3n c1/9n .

The rest of this paper is organized as follows. Section 2 just recalls some definitions and known
results, Section 3 is devoted to proving inequality (1.3), while Section 4 investigates dTV

(
Sn/σn, Z

)
and the convergence rate provided by (1.3). Section 5 contains some examples that illustrate the
main results. Section 6 ends the paper with an extension that does not require (mn)-dependence
(but uses some other conditions).

The numerical constants in our results are obviously not best possible; we have not tried to
optimize them. More important are the powers, c1/3 and Un(c/2)

1/2 in (1.3) and similar powers in
other results; we do not believe that these are optimal. This is discussed in Section 4. How far (1.3)
can be improved, however, is essentially an open problem.

2. Preliminaries

The same notation as in Section 1 is adopted in the sequel. It is implicitly assumed that, for
each n ≥ 1, the variables (Xni : 1 ≤ i ≤ Nn) are defined on the same probability space (which may
depend on n).

Let k ≥ 0 be an integer. A (finite or infinite) sequence (Yi) of random variables is k-dependent
if (Yi : i ≤ j) is independent of (Yi : i > j + k) for every j. In particular, 0-dependent is the same
as independent. Given a sequence (kn) of non-negative integers, an array (Yni : n ≥ 1, 1 ≤ i ≤ Nn)
is said to be (kn)-dependent if (Yni : 1 ≤ i ≤ Nn) is kn-dependent for every n.

Let X and Y be real random variables. Three well known distances between their probability
distributions are Wasserstein’s, Kologorov’s and total variation. Kolmogorov distance and total
variation distance are, respectively,

dK(X,Y ) = sup
t∈R

|P (X ≤ t)− P (Y ≤ t)| and

dTV (X,Y ) = sup
A∈B(R)

|P (X ∈ A)− P (Y ∈ A)|.

Under the assumption E|X|+ E|Y | <∞, Wasserstein distance is

dW (X,Y ) = inf
U∼X,V∼Y

E|U − V |

where inf is over the real random variables U and V , defined on the same probability space, such
that U ∼ X and V ∼ Y . Equivalently,

dW (X,Y ) =

∫ ∞

−∞
|P (X ≤ t)− P (Y ≤ t)| dt = sup

f
|Ef(X)− Ef(Y )|

where sup is over the 1-Lipschitz functions f : R → R. The next lemma is certainly known, but we
give a proof since we do not know of any reference for the first claims.

Lemma 2.1. Suppose EX2 ≤ 1, EY 2 ≤ 1 and EY = 0. Then,

dW (X,Y ) ≤
√
2,

dW (X,Y ) ≤ 4
√
dK(X,Y ).



248 Svante Janson, Luca Pratelli and Pietro Rigo

If Y ∼ N(0, 1), we also have

dK(X,Y ) ≤ 2
√
dW (X,Y ).

Proof : Take U independent of V with U ∼ X and V ∼ Y . Then,

dW (X,Y ) ≤ E|U − V | ≤
{
E
(
(U − V )2

)}1/2 ≤ √
2.

Moreover, for each c > 0,

dW (X,Y ) =

∫ ∞

−∞
|P (X ≤ t)− P (Y ≤ t)| dt

≤ 2 c dK(X,Y ) +

∫ ∞

c
|P (X > t)− P (Y > t)| dt

+

∫ ∞

c
|P (−X > t)− P (−Y > t)| dt

≤ 2 c dK(X,Y ) +

∫ ∞

c

{
P (|X| > t) + P (|Y | > t)

}
dt

≤ 2 c dK(X,Y ) +

∫ ∞

c

2

t2
dt = 2 c dK(X,Y ) +

2

c
.

Hence, letting c = dK(X,Y )−1/2, one obtains dW (X,Y ) ≤ 4
√
dK(X,Y ).

Finally, if Y ∼ N(0, 1), it is well known that dK(X,Y ) ≤ 2
√
dW (X,Y ); see e.g. Chen et al.

(2011, Theorem 3.3). □

Finally, under some conditions, dTV can be estimated through dW . We report a result which
allows this; in our setting we simply take V = 1 below.

Theorem 2.2 (A version of Pratelli and Rigo (2018, Theorem 1)). Let Xn, V, Z be real random
variables, and suppose that Z ∼ N(0, 1), V > 0, EV 2 = EX2

n = 1 for all n, and V is independent
of Z. Let ϕn be the characteristic function of Xn, and

ln = 2

∫ ∞

0
t |ϕn(t)| dt.

Then,

dTV (Xn, V Z) ≤
{
1 + E(1/V )

}
dW (Xn, V Z)

1/2 + l2/3n dW (Xn, V Z)
1/3

for each n.

Proof : This is essentially a special case of Pratelli and Rigo (2018, Theorem 1), with β = 2 and
the constant k made explicit. Also, the assumption dW (Xn, V Z) → 0 in Pratelli and Rigo (2018,
Theorem 1) is not needed; we use instead dW (Xn, V Z) ≤

√
2 from Lemma 2.1. Using this and

EX2
n = 1, the various constants appearing in the proof can be explicitly evaluated. In fact, im-

proving the argument in Pratelli and Rigo (2018) slightly by using P (|Xn| > t) ≤ EX2
n/t

2 = t−2,
and as just said using dW (Xn, V Z) ≤

√
2, we can take k∗ = 5 + 4

√
2 in the proof. After simple

calculations, this implies that the constant k in Pratelli and Rigo (2018) can be taken as

k =
1

2
· 3
2
· 21/3(5 + 4

√
2)1/3π−2/3 < 1.

□
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3. An upper bound for Wasserstein distance

As noted in Section 1, our main result is:

Theorem 3.1. Under conditions (1.1)–(1.2),

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)

1/2
}

for all n ≥ 1 and c > 0, where Z denotes a standard normal random variable.

Before proceeding, we note a simple special case for bounded random variables.

Corollary 3.2. Suppose that conditions (1.1)–(1.2) hold and

max
i

|Xn,i| ≤ σnγn a.s. for some constants γn. (3.1)

Then,

dW

(Sn
σn
, Z
)
≤ 30 · 21/3 (mnγn)

1/3 ≤ 40 (mnγn)
1/3,

where Z denotes a standard normal random variable.

Proof : Take c = 2mnγn in Theorem 3.1 and note that Un(c/2) = 0. □

In turn, Theorem 3.1 follows from the following result, which is a sharper version of the special
case mn = 1.

Theorem 3.3. Let X1, . . . , XN be real random variables and S =
∑N

i=1Xi. Suppose (X1, . . . , XN )
is 1-dependent and

E(Xi) = 0, E(X2
i ) <∞ for all i and σ2 := E(S2) > 0.

Then,

dW

(S
σ
, Z
)
≤ 30

{
c1/3 + 6L(c)1/2

}
for all c > 0,

where Z is a standard normal random variable and

L(c) =
1

σ2

N∑
i=1

E
[
X2

i 1
{
|Xi| > cσ

}]
.

To deduce Theorem 3.1 from Theorem 3.3, define Mn = ⌈Nn/mn⌉, Xn,i = 0 for i > Nn, and

Yn,i =

imn∑
j=(i−1)mn+1

Xn,j for i = 1, . . . ,Mn.

Since (Yn,1, . . . , Yn,Mn) is 1-dependent and
∑

i Yn,i =
∑

iXn,i = Sn, Theorem 3.3 implies

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 6Ln(c)

1/2
}

(3.2)

where

Ln(c) =
1

σ2n

Mn∑
i=1

E
[
Y 2
n,i 1

{
|Yn,i| > cσn

}]
.

Therefore, to obtain Theorem 3.1, it suffices to note the following inequality:

Lemma 3.4. With notations as above, for every c > 0,

Ln(2c) ≤ 4Un(c).
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In the rest of this section, we prove Lemma 3.4 and Theorem 3.3. We also obtain a (very small)
improvement of Utev’s Theorem 1.1.

3.1. Proof of Lemma 3.4 and Utev’s theorem.

Proof of Lemma 3.4: Fix c > 0 and define

Vn,i =

imn∑
j=(i−1)mn+1

Xn,j 1{|Xn,j | > cσn/mn}.

Since |Yn,i| ≤ |Vn,i|+ c σn, one obtains

|Yn,i| 1{|Yn,i| > 2 c σn} ≤
(
|Vn,i|+ c σn

)
1{|Vn,i| > cσn} ≤ 2 |Vn,i|.

Therefore,

σ2n Ln(2c) =

Mn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > 2 c σn}

]
≤ 4

Mn∑
i=1

E(V 2
n,i)

≤ 4mn

Mn∑
i=1

imn∑
j=(i−1)mn+1

E
[
X2

n,j 1{|Xn,j | > cσn/mn}
]

= 4mn

Nn∑
i=1

E
[
X2

n,i 1{|Xn,i| > cσn/mn}
]
= 4σ2n Un(c).

□

We also note that, because of (3.2), Theorem 3.3 implies:

Corollary 3.5. Sn/σn
dist−→ Z if conditions (1.1)–(1.2) hold and Ln(c) → 0 for every c > 0.

Corollary 3.5 slightly improves Theorem 1.1. In fact, Un(c) → 0 for all c > 0 implies Ln(c) → 0
for all c > 0, because of Lemma 3.4, but the converse is not true.

Example 3.6. (Ln(c) → 0 does not imply Un(c) → 0). Let (Vn : n ≥ 1) be an i.i.d. sequence of
real random variables such that V1 is absolutely continuous with density f(x) = (3/2)x−4 1[1,∞)(|x|).
Let mn and tn be positive integers such that mn → ∞. Define Nn = mn (tn + 1) and

Xn,i = Vi if 1 ≤ i ≤ mntn and Xn,i = Vmntn+1 if mntn < i ≤ mn(tn + 1).

Define also

Tn =

∑mn
j=1 Vj√
mn

.

Then, EV 2
1 = 3, σ2n = 3 (mntn +m2

n) and

Ln(c) =
1

σ2n

Mn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > cσn}

]
≤ 1

σ2n

tn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > cσn}

]
+

3m2
n

σ2n

=
mntn
σ2n

E
[
T 2
n 1{|Tn| > cσn/

√
mn}

]
+

3m2
n

σ2n
.

If mn = o(tn), then m2
n/σ

2
n → 0, mntn/σ

2
n → 1/3 and σn/

√
mn → ∞. Moreover, the sequence (T 2

n)

is uniformly integrable (since Tn
dist−→ N(0, 3) with (trivial) convergence of second moments). Hence,

if mn = o(tn), one obtains, for every c > 0,

lim sup
n

Ln(c) ≤
1

3
lim sup

n
E
[
T 2
n 1{|Tn| > cσn/

√
mn}

]
= 0.
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However,

Un(c) =
mn

σ2n

Nn∑
i=1

E
[
X2

n,i 1{|Xn,i| > cσn/mn}
]
=
mnNn

σ2n
E
[
V 2
1 1{|V1| > cσn/mn}

]
=

3mnNn

σ2n

∫ ∞

c σn/mn

x−2dx =
3Nn

c σ2n

m2
n

σn
≥ 3tnm

3
n

c(6mntn)3/2

for each n such that c σn/mn ≥ 1 and mn ≤ tn. Therefore, Ln(c) → 0 and Un(c) → ∞ for all c > 0
whenever mn = o(tn) and tn = o(m3

n). This happens, for instance, if mn → ∞ and tn = m2
n.

3.2. Proof of Theorem 3.3. Our proof of Theorem 3.3 requires three lemmas. A result by Röllin
(2018) plays a crucial role in one of them (Lemma 3.8).

In this subsection, X1, . . . , XN are real random variables and S =
∑N

i=1Xi. We assume that
(X1, . . . , XN ) is 1-dependent and

E(Xi) = 0, E(X2
i ) <∞ for all i and σ2 := E(S2) > 0.

Moreover, Z is a standard normal random variable independent of (X1, . . . , XN ).

For each i = 1, . . . , N , define

Yi = Xi − E(Xi | Fi−1) + E(Xi+1 | Fi)

where F0 is the trivial σ-field, Fi = σ(X1, . . . , Xi) and XN+1 = 0. Then,

E(Yi | Fi−1) = 0 for all i and
N∑
i=1

Yi =
N∑
i=1

Xi = S a.s.

Lemma 3.7. Let γ > 0 be a constant and V 2 =
∑N

i=1E(Y 2
i | Fi−1). Then,

E
{(V 2

σ2
− 1
)2}

≤ 16 γ2

provided maxi|Xi| ≤ σ γ/3 a.s.

Proof : First note that

σ2 = E(S2) = E
{( N∑

i=1

Yi
)2}

=

N∑
i=1

E(Y 2
i ) = E

( N∑
i=1

Y 2
i

)
.

Moreover, since maxi|Yi| ≤ γ σ a.s., one obtains

N∑
i=1

E(Y 4
i ) ≤ γ2σ2

N∑
i=1

E(Y 2
i ) = γ2σ4.
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Therefore,

E
{(V 2

σ2
− 1
)2}

≤ 2

σ4

{
E
[( N∑

i=1

(E(Y 2
i | Fi−1)− Y 2

i )
)2]

+ Var
( N∑

i=1

Y 2
i

)}
=

2

σ4

{ N∑
i=1

E
(
Y 4
i − E(Y 2

i | Fi−1)
2
)
+

N∑
i=1

Var(Y 2
i )

+ 2
∑

1≤i<j≤N

Cov(Y 2
i , Y

2
j )
}

≤ 4

σ4

{ N∑
i=1

E(Y 4
i ) +

∑
1≤i<j≤N

Cov(Y 2
i , Y

2
j )
}

≤ 4 γ2 +
4

σ4

∑
1≤i<j≤N

Cov(Y 2
i , Y

2
j ).

To estimate the covariance part, define

Qi = Y 2
i − E(Y 2

i ) and Ti =

i∑
k=1

Yk =

i∑
k=1

Xk + E(Xi+1 | Fi).

For each fixed 1 ≤ i < N , since (T1, . . . , TN ) is a martingale,∑
j>i

Cov(Y 2
i , Y

2
j ) =

∑
j>i

E
(
QiY

2
j

)
= E

{
Qi

∑
j>i

Y 2
j

}
= E

{
Qi

(
TN − Ti

)2}
= E

{
Qi

(
TN − Ti+1

)2}
+ E

(
QiY

2
i+1

)
≤ E

{
Qi

(
TN − Ti+1

)2}
+ E(Y 4

i ) + E(Y 4
i+1).

Finally, since (X1, . . . , XN ) is 1-dependent, EQi = 0 and EXj = 0,

E
{
Qi

(
TN − Ti+1

)2}
= E

{
Qi

( N∑
k=i+2

Xk − E(Xi+2 | Fi+1)
)2}

= E
{
Qi

(
E(Xi+2 | Fi+1)

2 − 2Xi+2E(Xi+2 | Fi+1)
)}

= −E
{
QiE(Xi+2 | Fi+1)

2
}

≤ E(Y 2
i )E

{
E(Xi+2 | Fi+1)

2
}
≤ γ2σ2E(Y 2

i ).

To sum up,

E
{(V 2

σ2
− 1
)2}

≤ 4 γ2 +
4

σ4

N−1∑
i=1

(
E(Y 4

i ) + E(Y 4
i+1) + γ2σ2E(Y 2

i )
)
≤ 16 γ2.

□

Lemma 3.8. If maxi|Xi| ≤ σ γ/3 a.s., then

dW

(S
σ
, Z
)
≤ 15 γ1/3.

Proof : By Lemma 2.1, dW
(
S/σ, Z

)
≤

√
2. Hence, it can be assumed that γ ≤ 1.
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Define

τ = max
{
m : 1 ≤ m ≤ N,

m∑
k=1

E(Y 2
k /σ

2 | Fk−1) ≤ 1
}
,

Ji = 1{τ ≥ i} Yi
σ

+ 1{τ = i− 1}
(
1−

i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2

Z for i = 1, . . . , N,

JN+1 = 1{τ = N}
(
1−

N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2

Z.

Since τ is a stopping time, Z is independent of (X1, . . . , XN ), and E(Yi | Fi−1) = 0, one obtains

E(Ji | Fi−1) = 0 for all i and
N+1∑
k=1

E(J2
k | Fk−1) = 1 a.s.

Therefore, for each a > 0, a result by Röllin (2018, Theorem 2.1) implies

dW

(N+1∑
i=1

Ji , Z
)
≤ 2a+

3

a2

N+1∑
i=1

E|Ji|3.

To estimate E|Ji|3 for i ≤ N , note that E|Z|3 ≤ 2 and (1/σ) maxi|Yi| ≤ γ a.s. Therefore, for
1 ≤ i ≤ N ,

E|Ji|3 = E
{
1{τ ≥ i} |Yi|3

σ3

}
+E

{
1{τ = i− 1}

(
1−

i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)3/2

|Z|3
}

≤ γ E
{
1{τ ≥ i} Y

2
i

σ2

}
+ E

{
1{τ = i− 1}

(
1−

i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2}

E|Z|3

≤ γ E
{
1{τ ≥ i} Y

2
i

σ2

}
+ 2E

{
1{τ = i− 1}

( i∑
k=1

E(Y 2
k /σ

2 | Fk−1)−
i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2}

= γ E
{
1{τ ≥ i} Y

2
i

σ2

}
+ 2E

{
1{τ = i− 1}E(Y 2

i /σ
2 | Fi−1)

1/2
}

≤ γ E
{
1{τ ≥ i} Y

2
i

σ2

}
+ 2 γ P (τ = i− 1).

Hence,

N∑
i=1

E|Ji|3 ≤ γ E
[ N∑
i=1

Y 2
i

σ2

]
+ 2γ = 3γ.
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Similarly,

E|JN+1|3 = E
{
1{τ = N}

(
1−

N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)3/2}

E|Z|3

≤ 2E
{
1{τ = N}

(
1−

N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)}

≤ 2E
{(

1−
N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)2}1/2

= 2E
{(

1− V 2

σ2

)2}1/2
≤ 8 γ

where the last inequality is due to Lemma 3.7. It follows that

dW

(N+1∑
i=1

Ji , Z
)
≤ 2a+

3

a2
(3γ + 8γ) = 2a+

33 γ

a2
,

for each a > 0. Choosing a = 3γ1/3, this yields

dW

(N+1∑
i=1

Ji , Z
)
≤
(
6 +

11

3

)
γ1/3 ≤ 10 γ1/3.

Next, we estimate dW
(
S/σ,

∑N
i=1 Ji

)
. To this end, we let

Wi =

i∑
k=1

E(Y 2
k /σ

2 | Fk−1)

and we note that

S

σ
−

N∑
i=1

Ji =
N∑
i=1

(Yi
σ

− Ji

)
=

N∑
i=1

1{τ < i}
(Yi
σ

− Ji

)
=

N−1∑
i=1

1{τ = i}
{ N∑

k=i+1

Yk
σ

−
(
1−Wi

)1/2
Z
}
.
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Therefore, recalling the definition of τ ,

dW

(S
σ
,

N∑
i=1

Ji

)2
≤
(
E
∣∣∣S
σ
−

N∑
i=1

Ji

∣∣∣)2 ≤ E
{(S

σ
−

N∑
i=1

Ji

)2}
=

N−1∑
i=1

E
{
1{τ = i}

{ N∑
k=i+1

Yk
σ

−
(
1−Wi

)1/2
Z
}2}

=
N−1∑
i=1

E
{
1{τ = i}

{ N∑
k=i+1

E(Y 2
k /σ

2 | Fk−1) + 1−Wi

}}

≤
N−1∑
i=1

E
{
1{τ = i}

{ N∑
k=i+2

E(Y 2
k /σ

2 | Fk−1) + 2E(Y 2
i+1/σ

2 | Fi)
}}

≤
N−1∑
i=1

E
{
1{τ = i}

{
V 2/σ2 − 1 + 2 γ2

}}
≤ E|V 2/σ2 − 1|+ 2 γ2

≤ 4 γ + 2 γ2

where the last inequality is because of Lemma 3.7. Since we assumed γ ≤ 1, we obtain

dW

(S
σ
,

N∑
i=1

Ji

)
≤
√
6 γ.

Finally, using Lemma 3.7 again, one obtains

dW

( N∑
i=1

Ji ,
N+1∑
i=1

Ji

)
≤ E|JN+1| ≤ E

{∣∣∣V 2

σ2
− 1
∣∣∣1/2} ≤ E

{(V 2

σ2
− 1
)2}1/4

≤ 2
√
γ.

Collecting all these facts together yields, using again γ ≤ 1,

dW

(S
σ
, Z
)
≤ dW

(S
σ
,

N∑
i=1

Ji

)
+ dW

( N∑
i=1

Ji ,
N+1∑
i=1

Ji

)
+ dW

(N+1∑
i=1

Ji , Z
)

≤
√

6 γ + 2
√
γ + 10 γ1/3 ≤ 15 γ1/3.

This concludes the proof. □

Remark 3.9. If we do not care about the value of the constant in the estimate, the proof of Lemma
3.8 could be shortened by exploiting a result by Fan and Ma (2020); this result, however, does not
provide explicit values of the majorizing constants. We also note that, under the conditions of
Lemma 3.8, Heyde–Brown’s inequality (Heyde and Brown, 1970) yields

dK

(S
σ
, Z
)
≤ b

{
E
((V 2

σ2
− 1
)2)

+
1

σ4

N∑
i=1

EY 4
i

}1/5

for some constant b independent of N . By Lemmas 2.1 and 3.7, this implies

dW

(S
σ
, Z
)
≤ 4

√
dK

(S
σ
, Z
)
≤ 4

√
b
{
16 γ2 +

γ2

σ2

N∑
i=1

EY 2
i

}1/10
= 4

√
b 171/10 γ1/5.

Hence, in this case, Lemma 3.8 works better than Heyde–Brown’s inequality to estimate dW
(
S/σ, Z

)
.

Recall L(c) defined in Theorem 3.3.
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Lemma 3.10. Letting σ2c = Var
(∑N

i=1
Xi
σ 1
{
|Xi| ≤ cσ

})
, we have

|σc − 1| ≤ |σ2c − 1| ≤ 13L(c) for all c > 0.

Proof : Fix c > 0 and define

Ai =
{
|Xi| > cσ

}
, Ti =

Xi

σ
1Ai − E

(Xi

σ
1Ai

)
, Vi =

Xi

σ
1Ac

i
− E

(Xi

σ
1Ac

i

)
.

On noting that σ2c = Var
(∑N

i=1 Vi

)
, one obtains

1 = Var
( N∑

i=1

(Ti + Vi)
)
= Var

( N∑
i=1

Ti

)
+ σ2c + 2Cov

( N∑
i=1

Ti ,
N∑
i=1

Vi

)
.

Since (X1, . . . , XN ) is 1-dependent, it follows that

|σ2c − 1| ≤ Var
( N∑

i=1

Ti

)
+ 2

∣∣∣Cov
( N∑
i=1

Ti ,

N∑
i=1

Vi

)∣∣∣
= Var

( N∑
i=1

Ti

)
+ 2

∣∣∣ N∑
i=1

Cov (Ti, Vi)

+
N−1∑
i=1

Cov (Ti, Vi+1) +
N∑
i=2

Cov (Ti, Vi−1)
∣∣∣.

Moreover,

Var
( N∑

i=1

Ti

)
=

N∑
i=1

Var(Ti) + 2
N−1∑
i=1

Cov(Ti, Ti+1) (3.3)

≤
N∑
i=1

Var(Ti) +
N−1∑
i=1

(
Var(Ti) + Var(Ti+1)

)
≤ 3L(c).

Similarly,

Cov (Ti, Vi) = −E
(Xi

σ
1Ai

)
E
(Xi

σ
1Ac

i

)
= E

(Xi

σ
1Ai

)2
≤ E

(X2
i

σ2
1Ai

)
and ∣∣∣Cov (Ti, Vi−1)

∣∣∣ ≤ E
( |XiXi−1|

σ2
1Ai 1Ac

i−1

)
+ E

( |Xi|
σ

1Ai

)
E
( |Xi−1|

σ
1Ac

i−1

)
≤ 2 cE

( |Xi|
σ

1Ai

)
≤ 2E

(X2
i

σ2
1Ai

)
where the last inequality is because

c |Xi|
σ

1Ai ≤
X2

i

σ2
1Ai .

By the same argument,
∣∣∣Cov (Ti, Vi+1)

∣∣∣ ≤ 2σ−2E
(
X2

i 1Ai

)
. Collecting all these facts together, one

finally obtains

|σ2c − 1| ≤ 3L(c) + 10
N∑
i=1

E
(X2

i

σ2
1Ai

)
= 13L(c).

This completes the proof, since obviously |σc − 1| ≤ |σ2c − 1|. □
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Having proved the previous lemmas, we are now ready to attack Theorem 3.3.

Proof of Theorem 3.3: Fix c > 0. We have to show that

dW

(S
σ
, Z
)
≤ 30

{
c1/3 + 6L(c)1/2

}
.

Since dW
(
S/σ, Z

)
≤

√
2, this inequality is trivially true if L(c) ≥ 1/100 or if c ≥ 1. Hence, it can

be assumed L(c) < 1/100 and c < 1. Then, Lemma 3.10 implies σc > 0.
Define Ti and Vi as in the proof of Lemma 3.10. Then |Vi| ≤ 2c for every i, and thus (V1, . . . , VN )

satisfies the conditions of Lemma 3.8 with σ replaced by σc and γ = 6 c/σc. Hence,

dW

(∑N
i=1 Vi
σc

, Z
)
≤ 15

(
6c/σc

)1/3
.

Now, recall from (3.3) that Var
(∑N

i=1 Ti
)
≤ 3L(c). Hence, using Lemma 3.10 again, and the

assumptions L(c) < 1 and c < 1,

dW

(S
σ
, Z
)
≤ dW

(S
σ
,

N∑
i=1

Vi

)
+ dW

( N∑
i=1

Vi, σcZ
)
+ dW (σcZ, Z)

≤ E
∣∣∣S
σ
−

N∑
i=1

Vi

∣∣∣+ σc dW

(∑N
i=1 Vi
σc

, Z
)
+ |σc − 1|

≤

√√√√Var
( N∑
i=1

Ti
)
+ 15

(
6 c σ2c

)1/3
+ 13L(c)

≤
√
3L(c) + 15 (6 c)1/3

(
1 + 13L(c)

)2/3
+ 13L(c)

≤
(√

3 + 13
)
L(c)1/2 + 15 (6 c)1/3

(
1 +

(
13L(c)

)2/3)
≤ 15 (6 c)1/3 +

(√
3 + 13 + 15 · 61/3 · (13)2/3

)
L(c)1/2

≤ 30 c1/3 + 170L(c)1/2.

This concludes the proof of Theorem 3.3. □

4. Total variation distance and rate of convergence

Theorems 2.2 and 3.1 immediately imply the following result.

Theorem 4.1. Let ϕn be the characteristic function of Sn/σn and

ln = 2

∫ ∞

0
t |ϕn(t)| dt.

If conditions (1.1)–(1.2) hold, then

dTV

(Sn
σn
, Z
)
≤

√
120

{
c1/3+12Un(c/2)

1/2
}1/2

+ 301/3 l2/3n

{
c1/3 + 12Un(c/2)

1/2
}1/3

for all n ≥ 1 and c > 0, where Z is a standard normal random variable.

Proof : First apply Theorem 2.2, with V = 1 and Xn=
Sn
σn

, and then use Theorem3.1. □
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Obviously, Theorem 4.1 is non-trivial only if ln < ∞. In this case, the probability distribution
of Sn is absolutely continuous. An useful special case is when conditions (1.1)–(1.2) hold together
with (3.1) (as in Corollary 3.2). Then, by taking c = 2mnγn so that Un(c/2) = 0, Theorem 4.1
yields

dTV

(Sn
σn
, Z
)
≤

√
120 (2mn γn)

1/6 + 301/3 l2/3n (2mn γn)
1/9.

Sometimes, this inequality allows to obtain a CLT in total variation distance; see Example 5.1
below.

We next discuss the convergence rate provided by Theorem 3.1 and we compare it with some
existing results.

A first remark is that Theorem 3.1 is calibrated to the dependence case, and that it is not
optimal in the independence case. To see this, it suffices to recall that we assume mn ≥ 1 for all n.
If Xn1, . . . , XnNn are independent, the best one can do is to let mn = 1, but this choice of mn is
not efficient as is shown by the following example.

Example 4.2. Suppose Xn1, . . . , XnNn are independent and conditions (1.2) and (3.1) hold. Define
mn = 1 for all n. Then, Un(γn) = 0 and Theorem 3.1 (or Corollary 3.2) yields dW

(
Sn/σn, Z

)
≤

30 (2 γn)
1/3. However, the Bikelis nonuniform inequality yields∣∣∣P (Sn/σn ≤ t)− P (Z ≤ t)

∣∣∣ ≤ b

(1 + |t|)3
Nn∑
i=1

E
{ |Xn,i|3

σ3n

}
≤ b γn

(1 + |t|)3

for all t ∈ R and some universal constant b; see e.g. DasGupta (2008, p. 659). Hence,

dW

(Sn
σn
, Z
)
=

∫ ∞

−∞
|P (Sn/σn ≤ t)− P (Z ≤ t)| dt ≤

∫ ∞

−∞

b γn
(1 + |t|)3

dt = b γn.

Leaving independence aside, a recent result to be mentioned is Dedecker et al. (2022, Corollary
4.3). This result applies to sequences of random variables and requires a certain mixing condition
(denoted by (H1)) which is automatically true when mn = m for all n. In this case, under conditions
(1.2) and (3.1), one obtains

dW

(Sn
σn
, Z
)
≤ b γn

(
1 + cn log

(
1 + cn σ

2
n

))
(4.1)

where b and cn are suitable constants with b independent of n. Among other conditions, the cn
must satisfy

cn σ
2
n ≥

Nn∑
i=1

EX2
n,i.

Inequality (4.1) is actually sharp. However, if compared with Theorem 3.1, it has three drawbacks.
First, unlike Theorem 3.1, it requires condition (3.1). Secondly, the mixing condition (H1) is not
easily verified unless mn = m for all n. Thirdly, as seen in the next example, even if (3.1) holds
and mn = m for all n, it may be that

γn → 0 but γn cn log
(
1 + cn σ

2
n

)
→ ∞ as n→ ∞.

In such situations, Theorem 3.1 works while inequality (4.1) does not.

Example 4.3. Let (an) be a sequence of numbers in (0, 1) such that limn an = 0. Let (Ti : i ≥ 0)
and (Vn,i : n ≥ 1, 1 ≤ i ≤ n) be two independent collections of real random variables. Suppose (Ti)
is i.i.d. with P (T0 = ±1) = 1/2 and Vn,1, . . . , Vn,n are i.i.d. with Vn,1 uniformly distributed on the
set (−1,−1 + an) ∪ (1− an, 1).
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Fix a constant α ∈ (0, 1/3) and define Nn = n and

Xn,i = n−1/2Vn,i + n−α(Ti − Ti−1)

for i = 1, . . . , n. The array (Xn,i) is centered and 1-dependent (namely, mn = 1 for all n). In
addition, Sn = n−1/2

∑n
i=1 Vn,i + n−α(Tn − T0) and

σ2n = EV 2
n,1 + 2n−2α,

n∑
i=1

EX2
n,i = EV 2

n,1 + 2n1−2α.

Since limn σ
2
n = limnEV

2
n,1 = 1, one obtains

max
i

|Xn,i|
σn

≤ n−1/2 + 2n−α

σn
≤ 3n−α

σn
< 4n−α for large n.

Hence, for large n, condition (3.1) holds with γn = 4n−α. Consequently, Corollary 3.2 yields

dW

(Sn
σn
, Z
)
≤ 60n−α/3 for large n.

However,

4n−α cn log
(
1 + cn σ

2
n

)
≥ 4n−α 1

σ2n

n∑
i=1

EX2
n,i log

(
1 +

n∑
i=1

EX2
n,i

)
≥ 4 (1− 2α)

n1−3α

σ2n
log n −→ ∞.

In addition to Dedecker et al. (2022, Corollary 4.3), there are some other estimates of
dW
(
Sn/σn, Z

)
. Without any claim of exhaustivity, we mention Fan and Ma (2020), Röllin (2018)

and Van Dung et al. (2014) (Röllin’s result has been used for proving Lemma 3.8). There are
also a number of estimates of dK

(
Sn/σn, Z

)
which, through Lemma 2.1, can be turned into upper

bounds for dW
(
Sn/σn, Z

)
; see Dedecker et al. (2022), Fan and Ma (2020) and references therein.

However, to our knowledge, none of these estimates implies Theorem 3.1. Typically, they require
further conditions (in addition to (1.1)–(1.2)) and/or they yield a worse convergence rate; see e.g.
Remark 3.9 and Example 4.3. This is the current state of the art. Our conjecture is that, under
conditions (1.1)–(1.2) and possibly (3.1), the rate of Theorem 3.1 can be improved. To this end, one
possibility could be using an upper bound provided by Haeusler and Joos (1988) in the martingale
CLT. Whether the rate of Theorem 3.1 can be improved, however, is currently an open problem.

5. Further examples and applications

To illustrate the results above, we give some applications of Theorems 3.1 and 4.1. As usual, Z
denotes a standard normal random variable. We begin with a CLT in total variation distance.

Example 5.1. Let (Xn,i) and (Vn,i) be as in Example 4.3. Denote by ψn the characteristic function
of
∑n

i=1 Vn,i. Then, for each t ∈ R,

ψn(t) =
( 1

an

∫ 1

1−an

cos(t x) dx
)n

and

|ϕn(t)| ≤
∣∣∣ψn

[
t (nσ2n)

−1/2
]∣∣∣ = ∣∣∣ 1

an

∫ 1

1−an

cos
[
t (nσ2n)

−1/2 x
]
dx
∣∣∣n.

After some algebra (we omit the explicit calculations) it can be shown that

ln = 2

∫ ∞

0
t |ϕn(t)| dt ≤ b a−2

n
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for some constant b independent of n. Recalling that mn = 1 and γn = 4n−α for large n (see
Example 4.3), Theorem 4.1 yields (taking again c = 2mnγn = 8n−α)

dTV

(Sn
σn
, Z
)
≤

√
120 (2mn γn)

1/6 + 301/3 l2/3n (2mn γn)
1/9

≤
√
120 81/6 n−α/6 + 301/3 b2/3 81/9

(
a4n n

α/3
)−1/3

for large n. Therefore, the probability distribution of Sn/σn converges to the standard normal law,
in total variation distance, provided a4n nα/3 → ∞.

The next two examples are connected to the Breuer-Major theorem (henceforth, BMT); see
Breuer and Major (1983). In both the examples, g : R → R is a Borel function with Hermite degree
d ≥ 1. This means that E

(
g2(Z)

)
<∞ with a series expansion of the type

g =

∞∑
j=d

cj Hj , cd ̸= 0,

where Hj is the Hermite polynomial of degree j.

Example 5.2. There is recently a certain interest on the asymptotic behavior of

Qn =

∑n−1
i=0 g(Yi)√

Var
[∑n−1

i=0 g(Yi)
] ,

where (Yn : n ≥ 0) is a stationary Gaussian sequence of standard normal random variables; see
e.g. Campese et al. (2020), Nourdin and Nualart (2020) and references therein. Because of BMT,
Qn

dist−→ Z provided
∑

n|E(YnY0)|d <∞ (recall that d ≥ 1 is the Hermite degree of g). To obtain a
quantitative estimate of dW (Qn, Z), some further conditions are needed. Essentially, g must belong
to a suitable Sobolev space.

At the price of assuming (mn)-dependence, Theorem 3.1 allows to improve BMT. Among other
things, the stationarity assumption is dropped, sequences are replaced by arrays, and the conditions
on g are much more general.

For each n ≥ 1, suppose

(Xn,1, . . . , Xn,Nn) is Gaussian, Xn,i ∼ N (0, 1) for all i,

and E
(
Xn,iXn,j

)
= 0 whenever |i− j| > mn.

Moreover, fix any Borel function gn : R → R such that E
(
gn(Z)

)
= 0 and E

(
g2n(Z)

)
< ∞ and

suppose

σ2n := Var

[
Nn∑
i=1

gi(Xn,i)

]
> 0.

Then, Theorem 3.1 yields

dW (Q∗
n, Z) ≤ 30 c1/3 +

360
√
mn

σn

(
Nn∑
i=1

E
[
g2i (Z) 1

{
|gi(Z)| > cσn/2mn

}])1/2

for all n ≥ 1 and c > 0, where

Q∗
n =

1

σn

Nn∑
i=1

gi(Xn,i).
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This upper bound is effective if the sequence (g2n(Z) : n ≥ 1) is uniformly integrable. Note also
that, if gn(Z) ∈ L∞ for all n, Corollary 3.2 yields

dW (Q∗
n, Z) ≤ 40

(
mn

σn
max

1≤i≤Nn

∥gi(Z)∥∞
)1/3

.

Example 5.3. Let Y = (Yt : t ≥ 0) be a real cadlag process. To begin with, suppose Y is stationary,
Gaussian, Y0 ∼ N (0, 1), and define

Zϵ(t) =
√
ϵ

∫ t/ϵ

0
g(Ys) ds for all ϵ > 0 and t ≥ 0.

If
∫
|E(YtY0)|d dt <∞ then, as ϵ→ 0, the finite dimensional distributions of Zϵ converge weakly to

those of σW , where σ is an explicit constant and W a standard Brownian motion. This is BMT in
continuous-time. By a result in Campese et al. (2020), if E

(
|g(Z)|p

)
<∞ for some p > 2, one also

obtains Zϵ
dist−→ σW in the space C([0,∞), R) (equipped with the topology of uniform convergence

on compacta).

Next, suppose Y is a Levy process. Let f : R → R be a continuous function and λ : (0,∞) →
(0,∞) a non-increasing function such that

a := sup|f | <∞ and b := supλ <∞.

Roughly speaking, λ should be regarded as a delay in observing Y . Given ϵ > 0 and s ≥ λ(ϵ), the
actual value of Y at time s − λ(ϵ) is not Ys−λ(ϵ) but Ys. Hence, Ys − Ys−λ(ϵ) may be seen as an
observation error. Let

Z∗
ϵ (t) =

√
ϵ

∫ t/ϵ

0
f
(
Ys − Y(s−λ(ϵ))+

)
ds.

In order to apply Theorem 3.1 to Z∗
ϵ , fix t > 0 and define

nϵ(t) =

⌊
t

ϵλ(ϵ)

⌋
− 1 and It =

{
ϵ > 0 : nϵ(t) ≥ 1

}
.

For ϵ ∈ It and i ≥ 1, define also

Xϵ,i =
√
ϵ

∫ (i+1)λ(ϵ)

iλ(ϵ)
f
(
Ys − Ys−λ(ϵ)

)
ds, Vϵ(t) =

nϵ(t)∑
i=1

Xϵ,i, σ2ϵ (t) = E
(
V 2
ϵ (t)

)
.

Assume E
[
f
(
Yλ(ϵ)

)]
= 0 (for example, this holds if f is odd and Yλ(ϵ) is symmetric), and also

σ2ϵ (t) > 0 for ϵ ∈ It. Then, E
[
f
(
Ys−Ys−λ(ϵ)

)]
= E

[
f
(
Yλ(ϵ)

)]
= 0 for s ≥ λ(ϵ), so that E

(
Xϵ,i

)
= 0,

and since the array (
Xϵ,i : ϵ ∈ It, i = 1, . . . , nϵ(t)

)
is 1-dependent, Theorem 3.1 yields, for any c > 0,

dW

(
Vϵ(t)

σϵ(t)
, Z

)
≤ 30 c1/3 + 360

√
nϵ(t)

σ2ϵ (t)
E
[
X2

ϵ,1 1
{
|Xϵ,1| > cσϵ(t)/2

}]
.

Moreover, since |Xϵ,i| ≤ a b
√
ϵ, Corollary 3.2 yields

dW

(
Vϵ(t)

σϵ(t)
, Z

)
≤ 40

(
a b

√
ϵ

σϵ(t)

)1/3

.

Since f is continuous and the Y -paths are cadlag, one also obtains

lim
ϵ→0

σ2ϵ (t) = lim
ϵ→0

{
nϵ(t)E

(
X2

ϵ,1

)
+ 2(nϵ(t)− 1)E

(
Xϵ,1Xϵ,2

)}
=
t r

b
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where

r = E
[(∫ 2b

b
f
(
Ys − Ys−b

)
ds
)2]

+ 2E
[∫ 2b

b
f
(
Ys − Ys−b

)
ds

∫ 3b

2b
f
(
Ys − Ys−b

)
ds
]
.

Hence, if r > 0, then limϵ→0 dW

(
Vϵ(t)
σϵ(t)

, Z
)
= 0. Since∣∣∣Z∗

ϵ (t)− Vϵ(t)
∣∣∣ ≤ 2 a b

√
ϵ, (5.1)

it follows that

Z∗
ϵ (t)

dist−→
√
t r

b
Z ∼

√
r

b
Wt, as ϵ→ 0,

where W is a standard Brownian motion. Moreover, with exactly the same argument, one also
obtains (

Z∗
ϵ (t1), . . . , Z

∗
ϵ (tk)

) dist→
√
r

b

(
Wt1 , . . . ,Wtk

)
(5.2)

for all k ≥ 1 and all 0 ≤ t1 < t2 < . . . < tk. Finally,

Z∗
ϵ

dist→
√
r

b
W in the space C([0,∞), R). (5.3)

We just give a sketch of the proof of (5.3). Let D be the space of real cadlag functions on [0,∞)
endowed with the Skorohod topology. First, one proves that

E
[(
Vϵ(s)− Vϵ(t)

)4] ≤ α ϵ2
(
⌊ t

ϵλ(ϵ)
⌋ − ⌊ s

ϵλ(ϵ)
⌋
)2

for all 0 ≤ s < t, all ϵ > 0, and some constant α. Based on Nourdin and Nualart (2020, Lemma
3.1), this and the finite-dimensional convergence following from (5.1) and (5.2) imply Vϵ

dist→
√

r
b W

in the space D. Because of (5.1), one also obtains Z∗
ϵ

dist→
√

r
b W in the space D. Finally, (5.3)

follows since Z∗
ϵ and

√
r
b W have continuous paths.

Our last example may be useful as regards the CLT for high dimensional data.

Example 5.4. For i = 1, . . . , N , let

Xi = (Xi,1, . . . , Xi,p)

be a p-dimensional random vector. Suppose:
(i) The vectors X1, . . . , XN are m-dependent and Xi,j ∈ L∞ for all i, j;
(ii) E(Xi,j) = 0 and E

(
Xi,jXh,k

)
= 0 for all i, j, h, k with j ̸= k;

(iii) σ2j = E
[(∑N

i=1Xi,j

)2]
> 0 for all j = 1, . . . , p.

Define

Y =

N∑
i=1

p∑
j=1

ajXi,j

σj
,

where the aj are constants satisfying
∑p

j=1 a
2
j = 1, and note that Var(Y ) = 1. Upper bounds for

dW (Y,Z) allow to estimate the goodness of the normal approximation for the distribution of Y . For
instance, they are involved in the study of the dependence graph of high-dimensional time series;
see Chang et al. (2024) and references therein. Under conditions (i)-(iii), Corollary 3.2 yields

dW (Y, Z) ≤ 40
(
m

√
p max

i,j

∥Xi,j∥∞
σj

)1/3
.

This can be compared to the related estimate in Chang et al. (2024, Corollary 1) (which is for the
Kolmogorov distance, and among other differences includes a different power m2/3).
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6. Final comment: beyond (mn)-dependence

We close with a result which enlarges the scope of Theorem 3.1. It is motivated by the following
(natural) question. Let (Xn,i) be an arbitrary array of real random variables. Under what conditions
(Xn,i) can be approximated by a (mn)-dependent array? Sometimes, this approximation is possible.
As suggested by an anonymous referee, for instance, it is actually possible if (Xn,i) satisfies a suitable
mixing condition or some form of physical dependence. Generally, however, the approximation of
(Xn,i) by a (mn)-dependent array requires strong conditions. Therefore, we focus on a related
problem, that is, we look for a version of Theorem 3.1 where (Xn,i) is not required to be (mn)-
dependent. To this end, we need some notation. Define

Wn,i = E
(
Xn,i +Xn,i+1 | Fn,i

)
− E

(
Xn,i +Xn,i+1 | Fn,i−1

)
where Fn,i = σ(Xn,1, . . . , Xn,i) and Fn,0 is the trivial σ-field. Define also

γn =
1

σn
max

i
∥Xn,i∥∞, a2n = E

[( Nn∑
i=2

E(Xn,i | Fn,i−2)
)2]

, w2
n =

Nn−1∑
i=1

E
(
W 2

n,i

)
.

Proposition 6.1. Suppose:
• (Xn,i) satisfies condition (1.2) and Xn,i ∈ L∞ for all n and i;
• There are constants α and β such that

σn ≤ αwn and
∣∣∣ ∑
1≤i<j<Nn

Cov
(
W 2

n,i, W
2
n,j

)∣∣∣ ≤ β γ2nσ
4
n

for all n ≥ 1. Then, there is a constant q (independent of n) such that

dW

(Sn
σn
, Z
)
≤ q

(an
σn

+ γ1/3n

)
for all n ≥ 1.

Proof : Letting

An =

Nn∑
i=2

E
(
Xn,i | Fn,i−2

)
, Wn =

Nn−1∑
i=1

Wn,i, Ln = Xn,Nn − E
(
Xn,Nn | Fn,Nn−1

)
,

one obtains

Sn = An +Wn + Ln.

Note also that
(
Wn,i : 1 ≤ i < Nn

)
is a martingale difference sequence, and thus

E(W 2
n) = w2

n.

Hence,

dW

(Sn
σn
, Z
)
≤ dW

(Sn
σn
,
An +Wn

σn

)
+ dW

(An +Wn

σn
,
Wn

σn

)
+ dW

(Wn

σn
,
Wn

wn

)
+ dW

(Wn

wn
, Z
)

≤ 2 γn +
an
σn

+
∣∣∣1− wn

σn

∣∣∣+ dW

(Wn

wn
, Z
)
.

Since
(
Wn,i : 1 ≤ i < Nn

)
is a martingale difference sequence and

max
i

|Wn,i| ≤ 4 max
i

∥Xn,i∥∞ ≤ 4σn γn ≤ 4αwn γn a.s.,

the arguments of Lemmas 3.7 and 3.8 can be applied to Yi = Wn,i (with σn replaced by wn).
Therefore, dW

(
Wn
wn
, Z
)
≤ q∗ γ

1/3
n for some constant q∗ that depends on α and β (but nothing else).
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In addition, ∣∣∣1− w2
n

σ2n

∣∣∣ = 1

σ2n

∣∣∣E[(An +Wn + Ln)
2
]
− E(W 2

n)
∣∣∣

=
1

σ2n

∣∣∣E[(An + Ln)
2
]
+ 2E

[
Wn(An + Ln)

]∣∣∣
≤ 2

σ2n

{
E(A2

n) + E(L2
n) + wn

√
E(A2

n) + wn

√
E(L2

n)
}

=
2

σ2n

{
a2n + E(L2

n) + wn

(
an +

√
E(L2

n)
)}
,

so that ∣∣∣1− wn

σn

∣∣∣ =
∣∣∣1− w2

n
σ2
n

∣∣∣
1 + wn

σn

≤ 2
(a2n
σ2n

+
an
σn

+ 4 γ2n + 2 γn

)
.

Collecting all these facts together,

dW

(Sn
σn
, Z
)
≤ 3

an
σn

+ 2
a2n
σ2n

+ 8 γ2n + 6 γn + q∗ γ1/3n .

Hence, with q = 14 + q∗, if an
σn

≤ 1 and γn ≤ 1, one obtains

dW

(Sn
σn
, Z
)
≤ 5

an
σn

+ (14 + q∗) γ1/3n ≤ q
(an
σn

+ γ1/3n

)
, (6.1)

and otherwise (6.1) is trivial since dW
(
Sn
σn
, Z
)
≤

√
2 by Lemma 2.1. □

It is worth noting that Proposition 6.1 deviates from some analogous results available in the
literature (such as Cuny and Merlevède (2015) and Shao (1993)) for it does not require either
stationarity-mixing assumptions or martingale assumptions. Furthermore, Proposition 6.1 provides
a quantitative bound as well.
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