
21266 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

TruFLaaS: Trustworthy Federated
Learning as a Service

Carlo Mazzocca , Graduate Student Member, IEEE, Nicolò Romandini , Graduate Student Member, IEEE,
Matteo Mendula , Graduate Student Member, IEEE, Rebecca Montanari , Member, IEEE,

and Paolo Bellavista , Senior Member, IEEE

Abstract—The increasing availability of data generated by
Internet of Things (IoT) and Industrial IoT (IIoT) devices, as
well as privacy and law regulations, have significantly boosted
the interest in collaborative machine learning (ML) approaches.
In this direction, we claim federated learning (FL) as a promising
ML paradigm where participants collaboratively train a global
model without outsourcing on-premises data. However, setting
up and using FL can be extremely costly and time consum-
ing. To effectively promote the adoption of FL in real-world
scenarios, while limiting the overhead and knowledge of the
underlying technology, service providers should offer FL as a
Service (FLaaS). One of the major concerns while designing
an architecture that provides FLaaS is achieving trustworthi-
ness among involved typically unknown participants. This article
presents a blockchain-based architecture that achieves trustwor-
thy FLaaS (TruFLaaS). Our solution provides trustworthiness
among third-party organizations by leveraging blockchain, smart
contracts, and a decentralized oracle network. Specifically, during
each FL round, the service provider supplies a sample, without
overlapping, of its validation set to validate all partial models
submitted by clients. By doing so, poor models, which tend to
degrade performance or introduce malicious backdoors, are iden-
tified and discarded. Due to the transparency of the blockchain,
not changing the validation set would enable participants to forge
a malicious partial model that passes the validation phase. We
evaluate our approach over two well-known IIoT data sets: the
reported experimental results show that TruFLaaS outperforms
the state-of-the-art literature solutions in the field.

Index Terms—Blockchain, federated learning (FL), federated
learning as a service (FLaaS), security, trust, trustworthiness.

I. INTRODUCTION

THE INCREASINGLY widespread adoption of Internet of
Things (IoT) and Industrial IoT (IIoT) devices is notably

contributing to the design and development of next-generation
services [1]. As reported in recent statistics, the number of
such devices will surpass 125 billion by 2030 [2], gener-
ating an unprecedented amount of data that paves the way
for new applications based on artificial intelligence (AI) [3].
However, traditional machine learning (ML) techniques, which

Manuscript received 15 November 2022; revised 12 April 2023; accepted
25 May 2023. Date of publication 5 June 2023; date of current version
7 December 2023. This work was supported in part by the SERICS Project
through the NRRP MUR Program, which is funded by the EU-NGEU under
Grant PE00000014. (Corresponding author: Carlo Mazzocca.)

The authors are with the Department of Computer Science and
Engineering, University of Bologna, 40136 Bologna, Italy (e-mail: carlo.
mazzocca@unibo.it; nicolo.romandini@unibo.it; matteo.mendula@unibo.it;
rebecca.4montanari@unibo.it; paolo.bellavista@unibo.it).

Digital Object Identifier 10.1109/JIOT.2023.3282899

require data centralization, are not feasible when a remarkable
amount of information comes from multiple locations; both
in terms of privacy awareness [4] and energy consump-
tion [5]. Furthermore, law and privacy regulations, such as
the European General Data Protection Regulation (GDPR) [6],
hinder centralized ML approaches that may lead to potential
data leakages.

These reasons are pushing industrial and academic com-
munities toward more decentralized and collaborative ML
approaches. In this direction, federated learning (FL) is envi-
sioned as a promising ML paradigm in which the parties
involved, which share common goals, collaboratively train a
global model. Unlike centralized ML, which typically relies
on cloud-based resources, data are no longer sent to a central
entity, as training is performed directly on remote clients using
on-premises data. Each client trains a local ML model with its
own data and, subsequently, sends it to a server that combines
all the partial models retrieved according to an aggregation
strategy [7]. Nowadays, different services and companies,
which could be also competitors, have to face similar problems
that can be effectively solved through the use of distributed
ML. Adopting a collaborative approach to train ML mod-
els can be extremely beneficial, especially for small/medium
enterprises that may not have enough on-premises data to build
useful models on their own. For example, in smart manufac-
turing environments, the various equipment and uneven load
distribution may lead to unbalanced data regarding faults. In
such a context, implementing a diagnostic model requires gath-
ering a large amount of high-quality fault data, which is a hard
task. Therefore, the lack and imbalances in fault samples rep-
resent two main factors that negatively affect the performance
of fault diagnosis models [8]. These limits can be overcome
through the training of a shared model, bringing advantages to
every participant. Edge nodes deployed in multiple sites and
the use of FL allow the exploitation of unbalanced samples
to train models with excellent accuracy, generalizability, and
efficiency [9].

Although FL is gaining much popularity in various
fields [10], [11], [12], [13], there are just a few works that pro-
pose to provide FL as a Service (FLaaS) [14] to interested third
parties. In the last decade, cloud providers have offered many
cloud-based ML as a Service (MLaaS) [15] that comprise com-
puting resources, APIs, open-sourced libraries, and tools for
data analytics. However, despite increasing interest, current
commercial solutions do not support collaborative training.

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8949-2221
https://orcid.org/0000-0002-2820-5978
https://orcid.org/0000-0002-0126-9808
https://orcid.org/0000-0002-3687-0361
https://orcid.org/0000-0003-0992-7948

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21267

Providing FLaaS with minimum overhead and knowledge of
the underlying technology is a key factor in promoting the
successful use of FL solutions. An effective FLaaS should
be designed to: 1) offload developers from collecting data
allowing them to only focus on the algorithm to implement;
2) preserve data privacy by avoiding data transfers from the
owner to external entities; and 3) provide trustworthiness
among unknown participants, which is the main focus of this
work. For example, regarding the fault diagnosis use case
reported above, smart manufacturing enterprises may want
to be sure that the employed model can effectively predict
a certain failure.

Although the FL paradigm enables tackling some AI-based
challenges, such as preserving privacy, the global model can
still be the target of different attacks (i.e., model poisoning
and inference attack) [16]. Regarding trustworthiness, the main
concern that hampers FL adoption in third-party applications
is the presence of malicious clients and servers that negatively
impact the performance of FL training and introduce malicious
backdoors [17]. Furthermore, the traditional FL architecture
based on the client–server model suffers from a single point
of failure, low scalability, and tampering of the global model,
including possible biases that induce some partial models over
others [18].

To effectively improve the trustworthiness of the whole
FL process, this article proposes a blockchain-based trustwor-
thy FLaaS (TruFLaaS). Our solution provides trustworthiness
among third-party contributors to the FL process by leveraging
blockchain, smart contracts, and decentralized oracle networks
(DONs). TruFLaaS proposes a novel validation strategy to
aggregate partial models, resulting in an improved quality of
the global model. Clients’ models are validated by a smart
contract through a sample of the validation data set given by
the service provider through a DON. By evaluating the partial
models on defined quality metrics (e.g., accuracy), we can gen-
erate high-quality global models. We associate a level of trust,
updated during each round, with each client in order to prop-
erly weigh their contributions. To the best of our knowledge,
we are the first to propose a validation protocol that leverages a
smart contract to directly validate partial models. The exper-
iments demonstrate that TruFLaaS outperforms conventional
baselines and the state-of-the-art literature under different cir-
cumstances that are particularly relevant to FL scenarios. The
following summarizes the major contributions of this article.

1) We present a novel blockchain-based architecture for
enabling TruFLaaS. Our solution combines blockchain,
smart contracts, and a DON to build a collaborative trust-
worthy AI model training system that can resist attacks
from the server and malicious participants.

2) We design a novel validation protocol based on smart
contracts and a DON. The DON is needed to dynam-
ically feed the smart contract with a sample of the
validation data set.

3) We propose a weighted aggregation strategy that takes
into account the level of trust of each participant. To
properly consider contributions, each client has a level
of trust that is given by its performance achieved during
all previous rounds.

The remainder of this article is structured as follows.
Section II motivates the need for the FLaaS and discusses
the main guidelines to design a TruFLaaS. Section III presents
the blockchain-based architecture for enabling trustworthy FL,
while Section IV discusses in detail the validation protocol as
well as the level of trust of participants. Section V evalu-
ates the proposed approach and presents experimental results.
Section VI analyzes related work on trustworthiness and FL.
Finally, Section VII draws our conclusions.

II. MOTIVATION AND DESIGN GUIDELINES

FL is emerging as a valuable solution for creating ML mod-
els in a distributed manner without sacrificing data privacy.
Despite the benefits, setting up and using FL can be extremely
expensive and time consuming, especially in some sectors,
such as industry or healthcare, where the necessary infrastruc-
ture and expertise are often lacking. FLaaS provides clients
with an easy way to use FL with limited overhead and tech-
nological knowledge, allowing them to eliminate the heavy
burden task of developing and tuning algorithms and tools.
Furthermore, FLaaS is flexible to meet different participants’
requirements while implementing FL training.

To facilitate the understanding of our proposal and to prac-
tically clarify the motivations behind the primary TruFLaaS
design choices, we introduce an example that will be used as
a reference use case throughout this article. Let us consider a
company that sells industrial machines and offers a predictive
maintenance service. All the customers who use a specific
machine are interested in joining such FLaaS since predicting
the breakdown of an industrial component brings significant
advantages [19], such as reducing maintenance costs and
increasing production capacity. Since all the machines of the
same model share the same characteristics, they are prone
to the same performance degradation trend over time. For
this reason, the environmental condition experienced by each
machine can be beneficial to others to understand the reasons
behind, and so prevent, a component fault. In this context,
when a smart manufacturing company buys a machine, it
obtains the infrastructure needed to run FL training, too. Each
local training resulting parameters are then sent to the vendor
that aggregates them into a more generalized model able to
predict the behavior of the machine under a wide spectrum of
circumstances.

Therefore, due to the above consideration, FLaaS is
designed to address the following scenarios.

1) FL training for a single client on an existing ML problem
without the need of developing and tuning algorithms.
For example, a smart manufacturing enterprise may want
to model the temperature of a given machine to avoid
overheating.

2) FL training between two or more clients to solve an
existing task, which is the same for all the involved
parties (e.g., predictive maintenance) giving access to
a wider knowledge spectrum.

3) FL training two or more clients to solve a novel task
not explored yet. For example, a smart manufacturing
enterprise may want to model the temperature of a given
machine during a specific month.

21268 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

4) Allowing clients to specify the requirements to address
while implementing FL training. Clients’ requirements
comprise quality metrics, aggregation strategy, and the
number of nodes involved.

Although FLaaS can bring many advantages to third-party
organizations, there are several challenges arising that need to
be properly addressed.

A. Trustworthiness

Clients require transparency in the FL process, especially if
they do not fully trust each other and/or the service provider.
For example, the node in charge of aggregating models might
have biases and prefer one update over another. In addition,
it is important to check the models sent by clients, as they
may be Byzantine. Aggregation of a malicious model could
generate a global model with poor performance and/or back-
doors [20], Therefore, to effectively allow unknown clients to
collaborate, service providers have to guarantee that: 1) all par-
tial models are equally treated without possible biases inducing
to prefer some partial models over others and 2) malicious
attempts to arbitrarily alter the global model are properly
mitigated through a validation process of partial models.

Concerning the smart manufacturing example reported
above, there are two potential targets for an attack: 1) the ser-
vice provider (i.e., vendor) and 2) the customers (i.e., smart
manufacturing industries). A malicious competitor of the ser-
vice provider could be interested in joining the FL training as a
client to negatively contribute to the global model or make the
service unavailable, impacting the service provider’s reputation
and reliability. On the other hand, a contender of a third-party
customer could buy that equipment only to participate in the
FL process and degrade the performance of the global model,
exposing the customer to potential machine failures.

These considerations lead us to claim that trustworthiness is
one of the major requirements that service providers have to
guarantee to offer an effective FLaaS. With this idea in mind, we
propose the exploitation of blockchain and smart contracts to
make more trustworthy the validation and aggregation processes
of partial models. Many research works propose enriching FL
with blockchain, but the use of blockchain is mainly devoted to
avoiding a single point of failure, providing higher reliability,
and tracking participants’ contributions. This ensures account-
ability and maintains data providence [21], [22], [23], [24].
However, unlike our proposal, the validation and aggregation
processes in these studies are usually performed off-chain,
meaning they occur outside the blockchain network.

However, performing these operations off-chain signifi-
cantly reduces the usefulness of the blockchain, while also
reducing the benefits of its consequent overhead. Off-chain
approaches, which do not rely on smart contracts, are neither
public nor verifiable. Therefore, the results obtained do not
represent solid evidence and could be challenged by clients.
Furthermore, a participant may not have adequate or enough
validation data to perform an accurate validation process.
For example, in the case of predictive maintenance, a smart
manufacturing enterprise may not have data on a particular
fault and therefore could not assess whether the model can
predict it.

Although keeping the validation on the blockchain avoids
Byzantine contributions that could introduce backdoors in the
global model, on-chain validation also brings challenges to
address. In particular, validating a partial model through a
smart contract implies that validation data are published on the
blockchain. Hence, malicious contributors could intentionally
craft an evil model that achieves satisfying performances on
the validation data. Therefore, to offer a reliable FLaaS, ser-
vice providers must implement security mechanisms that allow
partial models to be validated using smart contracts without
making validation data publicly available. Moreover, due to
the transparency by-design nature of blockchain environments,
service providers have to offer the possibility to verify how
validation was performed.

B. Privacy-Preserving Techniques

Although one of the main advantages of FL is to avoid
data exchange between the server and clients, personal
information can still be inferred by analyzing the partial
models submitted by the clients [25]. Therefore, to further
improve privacy, privacy-preserving techniques are generally
employed [26], [27]. Differential privacy (DP) is one of the
most representative approaches [28]. It consists of adding
artificial noise to the partial model before sending it for aggre-
gation. However, while higher noise will result in higher
privacy, the global model performance would be worst and a
longer convergence time of the training process is likely to be
required. Hence, an adequate tradeoff is needed to preserve
privacy while guaranteeing satisfying performance. Another
approach that is emerging in FL consists of using homomor-
phic encryption [29]. It is an encryption technique that allows
operations to be performed on the encrypted data without hav-
ing to decrypt them first. The result is provided in encrypted
form and is equivalent, when decrypted, to that obtained by
performing the same operation on plaintext data. In this way,
clients encrypt partial models before sending them. The result
of the aggregation is an encrypted global model that can be
used by clients once decrypted.

C. Authentication and Authorization

Participants of FLaaS need to interact with each other
transparently and securely. However, the highly distributed
operating environment of FL hinders the adoption of central-
ized identities to identify clients and regulate their participa-
tion in FL training. Centralized approaches own and control
clients’ data that could be also shared with other services with-
out their awareness. In addition, storing sensitive information
in a unique server increases the risk of data leakage. Due
to these considerations, a framework that offers FLaaS has
to implement decentralized authentication and authorization
mechanisms. Decentralized identities are only under the con-
trol of the data owner that decides with whom to share its
information. The authorized access to FLaaS can be regu-
lated through decentralized identifiers (DIDs) and verifiable
credentials (VCs) [30]. A DID is a new type of identifier
that enables verifiable, decentralized digital identity [31]. VCs
are claims made by an issuer that states something about a

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21269

Fig. 1. TruFLaaS architecture.

subject [32]. DIDs and VCs enable claim-based identity, a
method of authenticating entities in other systems.

Specifically, to use FLaaS, clients need VCs with the
necessary permissions to join the desired FL processes.
Moreover, since participants may have different requirements,
the service provider has to guarantee that the issued VCs allow
clients to only join the FL training that satisfies its demands.

D. Incentive and Penalization

Clients are always reluctant to share their data, hence, incen-
tives are needed to attract sufficient distributed training data
and computation power. Therefore, to effectively involve as
many positive participants as possible, resulting in a high-
quality global model, service providers have to implement
mechanisms to reward clients according to their contribu-
tions [33]. It sharpen that to correctively reward participant,
avoiding low participation rate or financial loss, contribu-
tions have to be accurately evaluated. However, implementing
incentives is not enough, because Byzantine participants may
participate only to attempt to gain a reward. Thus, service
providers must also determine penalization mechanisms to dis-
courage spamming and incorrect computations, which could
impact the quality of the global model.

III. TRUFLAAS ARCHITECTURE AND

PRIMARY DESIGN CHOICES

This section describes the architecture of TruFLaaS whose
main components are highlighted in Fig. 1, and their inter-
actions in Figs. 2 and 3. Clients interact with the service
that offers FLaaS. The blockchain, smart contracts, valida-
tion set, and DON are the architectural entities that enable
achieving a TruFLaaS. A DON is a middleware layer that
enables to deliver off-chain validation data to the blockchain
in a secure and reliable manner. The use of blockchain and
smart contracts improves the trust of the participants in the FL
process. Specifically, a smart contract validates partial models
on a validation set provided by the DON. Then, it aggregates
clients’ contributions weighting them according to their level
of trustworthiness. Honest participants are promoted to par-
ticipate through incentives, while malicious adversaries are
discouraged by penalization mechanisms. TruFLaaS provides

Fig. 2. Authorization workflow.

the flexibility needed to meet the demands of different clients.
To the best of our knowledge, TruFLaaS is the first designed
and implemented framework that provides trustworthiness in
the FLaaS paradigm and performs validation of partial models
in FL by leveraging smart contracts and a DON.

A. Service Provider

The service provider is the entity that offers FLaaS to its
clients for tasks that are usually worthy for all participants.
For instance, it is noteworthy that all the smart manufac-
turing enterprises that use certain machinery are willing to
prevent its breakdown. However, although the goal may be
common, clients still may have different requirements in terms
of metrics, number of involved nodes, and aggregation strat-
egy. For example, a client may want to obtain the global
model as soon as possible, hence, it can determine a threshold
of participants that must be satisfied to aggregate collected
partial models. On the other hand, another client may not
be interested in retrieving the global model in a short time
window since it may prefer to wait longer in order to col-
lect a higher number of contributions. Therefore, the service
provider has to implement a flexible service capable of meet-
ing different demands. Clients provide such information to
the service provider which in turn uses them to implement
a smart contract that realizes an FL process compliant with
them. The service provider is also responsible for registering
clients and providing them with a valid identifier to inter-
act with the blockchain. This way guarantees that only an
identifiable and authorized client participates in the proper FL
training.

Furthermore, since the service is directly offered by the ser-
vice provider on a task that is under its control (e.g., predictive
maintenance of its machines), we can assume that it has a
validation data set large enough to validate partial models [8].
After each round of FL training, the service provider feeds a
sample of this set into the blockchain. Such data are used to
validate all the partial models before aggregating them. Given
two distinct rounds, the validation sample has to be different

21270 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

to avoid possible model forging attacks. Otherwise, malicious
participants could exploit it to build a crafted partial model
that passes validation checks. This could result in the introduc-
tion of backdoors in the global model that can compromise its
integrity and effectiveness. Thus, to securely and reliably inject
data into the blockchain, the service provider has to count on
a DON that allows it to accurately fetch data off-chain and
deliver it to the blockchain.

1) Decentralized Oracle Network: Oracles are trusted third
entities that serve as bridges between blockchains and external
systems. They enable smart contracts to make computations
leveraging inputs and outputs from the real world. An oracle
is a software component that queries, verifies, and authenti-
cates external data sources and then relays that information
to the blockchain. As previously mentioned, TruFLaaS relies
on oracles to provide the validation data set to the smart
contract. These oracles are responsible for feeding the smart
contract with the validation data set managed by the ser-
vice provider. This approach helps to ensure the integrity and
security of the validation process, as the oracles act as trusted
intermediaries between the participants and the smart contract.
However, the usage of a single oracle leads to a central point of
failure, which could contradict the decentralization principles
of blockchain technology and lead to security vulnerabilities.
The issue is known in the literature as the “blockchain oracle
problem” [34]. To address this challenge, DONs have emerged
as a solution [35]. A DON employs a combination of multiple
independent oracle node operators and multiple sources of
reliable data to provide decentralized and secure access to off-
chain information. By leveraging the collective intelligence of
multiple independent nodes, a DON helps to ensure the relia-
bility and accuracy of data inputs into the blockchain network,
while also maintaining the decentralization and security that
blockchain promises.

In TruFLaaS, we use a DON as a middleware layer between
the service provider and the blockchain. Without a DON, val-
idation data have to be published on the blockchain. As a
negative side effect, all participants may exploit published val-
idation data for forging a partial model that, even if malicious,
passes the validation phase. To ensure the integrity and secu-
rity of the FL process, validation data should only be provided
after the necessary requirements for performing aggregation
have been met. For example, concerning the predictive main-
tenance use case, a malicious client may attempt to construct
a partial model that achieves satisfying performance on the
validation data although its model fails while estimating the
remaining useful lifetime (RUL) when it falls under a certain
threshold.

B. Client

Clients collect data provided by IoT and IIoT devices and
use them to train local models, independently from the ML
algorithm employed. Once the training is completed, the par-
tial model is forwarded to a smart contract deployed on the
blockchain. Thus, a client has a module to perform tasks
related to the FL and hosts a node of the blockchain to join
the service. Before joining an FL, the client has to express its
willingness to join an FL. In case existing processes do not

meet its demands, the client can provide new conditions to the
service provider that meet them while setting up a novel FL
training.

C. Blockchain Node

As discussed above, we leverage blockchain and smart
contracts to improve the trustworthiness among unknown par-
ticipants in the FL process. Therefore, the service provider has
to deploy blockchain nodes. Clients may either run locally a
blockchain node, as shown in Fig. 1, or connect to one of those
deployed by the service provider. On the one hand, running
a blockchain node can provide clients with direct visibility of
FL processes. On the other hand, it comes with the poten-
tial downside of consuming a nonnegligible amount of client
resources, which can be a challenge for clients with limited
computing power or storage capacity. Therefore, it is important
to carefully consider the tradeoffs between direct monitoring
and resource consumption when deciding whether to run a
blockchain node or connect to one of the proxy nodes and
submit its partial model. This flexible configuration increases
the ease of use of FL since each participant is not involved in
the operations to manage a blockchain node, while it has to
only train partial models and send them to the corresponding
smart contract.

1) Validation and Aggregation: The validation and aggre-
gation of the global model are performed through a smart
contract, which is implemented according to the client’s
requirements. The smart contract first verifies whether the
client is authorized or not to join the desired FL process.
Then, before validating and aggregating partial models, it waits
until the training requirements are satisfied. For example, if the
aggregation strategy foresees that all participants have to pro-
vide their contributions, the smart contract waits until all the
clients have submitted their partial models and then it sends
a request for the validation set for that round. As anticipated
above, the validation set is provided by the service through a
DON. All the partial models are validated against the collected
validation set and, if they achieve satisfying performance on
the selected threshold, are considered in the aggregation phase.

2) DID-Based Access Control System: We regulate access
to the FLaaS through DIDs and VCs. Each client has only one
digital identity, which is a DID issued by the service provider,
but has multiple claims (i.e., VCs) that prevent misuse of
services and Sybil attacks [36]. Such identity information is
not stored or controlled by other parties, rather they are kept
in a wallet under the surveillance of the user, thus, improv-
ing both the control over the client’s data and the degree
of trust and security for external entities (e.g., apps or ser-
vice providers) [37]. Our DID-based access control system
comprises the following actors.

1) Claim Holder: To access the FLaaS, clients need VCs
issued by the claim issuer and associated with their DID.
A VC represents proof of membership for a specific FL
training.

2) Claim Issuer: The service provider attests to the proof
provided by the claim holder and generates a VC and
signs it with its DID. Such a VC, which includes the

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21271

TABLE I
CONFIGURATION PARAMETERS

claim holder’s DID as the subject DID, is returned to the
claim holder that will use it to join the corresponding
FL process.

3) Claim Verifier: Verifying claims is implemented through
a smart contract. A client signs a verifiable presentation
(VP), which embeds a VC, with its DID and sends it
to the claim verifier that checks if the client owns a
valid VC to participate in the FL training for which it
is applying.

IV. TRUFLAAS TRUSTWORTHINESS PROTOCOL

This section discusses the main phases that enable achieving
trustworthiness in an FLaaS environment. Let us consider a
service provider s that offers FL training fl ∈ F to its client
set C to collaboratively train, according to given requirements,
a global model mgl on a given task. To join the FLaaS offered
by s, a client ci ∈ C must be already registered with that s.
Once ci is registered with s, it owns a DID issued by s that
enables it to join the FLaaS.

A. Starting and Joining FL Training

A client ci can either join an existing fl or start a new one
if the requirements implemented by existing processes do not
satisfy its demands. TruFLaaS employs a robust authorization
workflow, illustrated in Fig. 2, that leverages DIDs and VCs to
regulate all interactions. In the following, we detail the steps
involved in initiating a new fl or becoming a member of an
existing one.

1) ci presents its DID and provides s with the requirements
that fl has to address. Table I summarizes the parameters
that can be customized.

2) In case there are no preexisting smart contracts scl that
meet the client’s needs, s creates a novel scl that verifies
and aggregates partial models according to the specified
criteria. However, if such scl does exist, refer to step 3).

3) s returns to ci a VC vci,l signed with its DID that enables
ci to interact with the deployed scl.

4) once the local training is completed, ci signs with its
DID the previously obtained vci,l generating a VP vpi,l.
Then, it provides such vpi,l and the partial model mpi,l

to scl.
5) scl verifies the validity of vpi,l through the DID of s,

which has released the vci,l, and subsequently grants or
denies the participation to fl.

It is worth noting that starting a new fl is an expensive oper-
ation that should be avoided if there is existing training that
already satisfies the client’s demands.

B. Trust Level

Each client ci ∈ C is assigned a trust level ti,l ∈ [0, 1].
As pointed out in [38], most trust models in P2P networks
distinguish trust toward a peer into direct and indirect. Direct
trust is based on previous interactions with that peer, while
indirect trust is based on that peer’s global reputation. We
denote with TARi,l the Transaction Acceptance Rate, which is
defined as

TARi,l = TAi,l

Ti,l
(1)

where TAi,l is the number of accepted transactions and Ti,l is
the total number of transactions made, both referred to the fl
process. The Global Trust Value, which is denoted with GTi,
is defined as

GTi =
∑N

j=1 ti,j

N
(2)

where the trust levels are obtained by the clients in past or
current FL processes. Thus, leveraging the direct and indirect
trust, we calculate the trust level as follows:

ti,l = GTi + TARi,l

2
. (3)

These values are updated at each round, through the specific
smart contract (Fig. 3, step 11). At this point, we also consider
whether to revoke the vci,l from client ci in case its TARi,l

does not meet minimum requirements (i.e., pass a threshold).
At each round, the average TAR μTAR, among all participants,
and the corresponding standard deviation σTAR are calculated.
Then, we estimate whether or not a client can, considering the
number of remaining rounds, exceed the threshold value set to
μTAR−σTAR. In case it fails, the corresponding vci,l is revoked
and the client is excluded from fl.

C. Validation and Aggregation

After having started a novel fl or joined an existing one, a
client is provided with the necessary vci,l to contribute to that
training. In the following, we detail the validation and aggre-
gation workflow depicted in Fig. 3. These steps are repeated
for each round k.

1) Each ci,l ∈ Cl collects local data from the deployed
IoT/IIoT devices.

2) Data are used to locally train a partial model mpk
i,l.

3) Each ci,l provides mpk
i,l and vpi,l, which is obtained by

signing vci,l through its DID, to scl that validate and
aggregate all partial models MPk

l . Algorithm 1 shows the
algorithm implemented by the smart contract to validate
and aggregate partial models.

4) scl forwards vpi,l to a smart contract responsible for
authorizing participants.

5) This smart contract will grant or deny access to fl.
Specifically, it jointly verifies the validity of vpi,l and
ensures that the embedded vci,l has not been revoked.

6) Before aggregating all partial models MPk
l , scl waits

until the aggregation requirements are met and validates
MPk

l against a validation set Vk
l ⊂ Vl provided by a

DON d.

21272 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

Fig. 3. Validation and aggregation workflow.

7) d requests Vk
l to s;

8) s provides Vk
l to d. Given two round j, z, where j < z, Vz

l
must be �= Vj

l ; otherwise, ci,l could craft mpz
i to achieve

satisfying performance on a known Vl [].
9) d returns Vk

l to scl.
10) scl validates MPk

l against Vk
l . To be accepted, a partial

model must achieve performance equal to or better than
a specific threshold. We employ the interquartile range
(IQR) method for detecting outliers. This method does
not use the median, mean, and standard deviation, being
more robust to extremely large or small values. The IQR
is calculated as Q3−Q1, where Q1 is the first quartile of
the data, and Q3 is the third quartile. To detect outliers,
we calculate the threshold as Q1− 1.5 ∗ IQR. Any data
that falls below this value is considered an outlier and
consequently discarded.

11) According to the collected metrics, scl sends the updated
reputations to a smart contract employed to trace the ti
of each ci.

12) The smart contracts calculate all the trust levels Tk of
each ci,l and returns them to scl.

13) scl aggregate all validated all mpk
i ∈ MPk

l weighting
them according to the corresponding tki ∈ Tk.

14) The global model mgk
l is provided to all ci,l.

It is worth outlining that transparent collaboration among
smart contracts plays a key role in achieving a TruFLaaS. In
particular, such a design choice is justified by the following
considerations.

1) All MPk
l are validated and aggregated without any

biases, guaranteeing the correctness of gmk
l .

2) Only ci,l having satisfying the process can join fl.
3) Reputations of ci,l are calculated by a smart contract

using as input the output of scl. Thus, we ensure the
correctness of ti for each participant.

Algorithm 1 Smart Contract—Validation and Aggregation

Input: didsk, partialModelsk, valSetk, metric
Output: globalModelk

acceptedPartialModelsk ← []
acceptedDidsk ← []
performancesk ← []
for i← 1, partialModelsk.size() do

mp← partialModels(i)k

performance← evaluate(mp, valSetk, metric)
performancesk.push(performance)

end for
threshold← generatedThreshold(performances)
for i← 1, didsk.size() do

did← dids(i)k

mp← partialModels(i)k

accepted← false
if performancesk(i) ≥ threshold then

acceptedPartialModelsk.push(mp)

acceptedDidsk.push(did)

accepted← true
end if
updateReputation(did, accepted)

end for
tk ← getTrustLevels(acceptedDidsk)

globalModelk ←
∑M

i=1 t(i)kacceptedPartialModels(i)k
∑M

i=1 t(i)k

D. Incentives and Penalization

To start a novel fl or join an existing one, clients use
tokens that are by design the natural incentive mechanism
for blockchain-based platforms. Tokens are purchased from s
and earned by clients through positive participation. Moreover,

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21273

in order to participate in an already settled fl, tokens are
also required to discourage malicious behavior. Participants
who provide incorrect contributions are penalized by having a
portion of their tokens withdrawn in proportion to their con-
tribution quality score (GTi). This ensures that all participants
have a vested interest in contributing high-quality work and
helps maintain the integrity of the fl. More in detail, at the
time of the creation of a new fl, the budget bl (i.e., tokens)
is locked up into the corresponding scl by the ci,l that initial-
ized that fl. This budget represents an incentive to promote
participation to freshly started fl. Indeed, at the end of fl, it
will be distributed among the participants Cl according to the
corresponding TARi,l. The reward ri,l assigned to each ci is
calculated as follows:

ri,l = bl
TARi,l

∑N
j=1 TARj,l

. (4)

Such an incentive scheme fairly distributes bl according to the
contributions of all the ci,l ∈ Cl. For each ci,l, the contribution
corresponds to its TARi,l. It is clear that, given ci,l, cj,l ∈ Cl,
and TARi,l > TARj,l, it follows that ri,l > rj,l.

Furthermore, to deter malicious behavior, before joining fl,
each ci,l has to deposit an amount of tokens di,l bounded by
to bl(1/GTi). Thus, the higher a client’s reputation, the less it
will have to deposit, and vice versa. This amount will be fully
returned to the participant ci,l at the end of fl only if the TARi,l

is greater than a threshold. Otherwise, the amount returned will
be equal to di,lTARi,l. Such a mechanism is a strong deterrent
to voluntarily submitting malicious or inaccurate models, as it
would result in an economic loss of tokens.

V. EVALUATION RESULTS

To validate our proposal and compare it with the exist-
ing literature, we consider predictive maintenance and botnet
attack detection use cases, which are of high interest for
industrial deployment environments and call for data collec-
tion from multiple distributed sources. We first describe the
implementation setup for our experiments and the employed
data sets, then we present the details of the performed experi-
ments, and, finally, we discuss the performance indicators that
we have experimentally measured, by drawing some related
considerations.

A. Implementation Setup

TruFLaaS can be integrated into any blockchain infrastruc-
ture that supports smart contracts and DONs. For instance,
for the following assessment and evaluation, we have made
TruFLaaS work with Hyperledger Fabric,1 an open-source,
modular, and extensible framework for deploying permis-
sioned blockchains. Fabric-based applications are enterprise-
grade and offer a high level of security, scalability, and
performance [39]; in particular, Fabric smart contracts are
written in general-purpose languages, such as Java, Go, and
NodeJS. To implement the proposed validation protocol,
we have implemented our smart contracts in NodeJS by

1https://www.hyperledger.org/use/fabric

using TensorFlow libraries. This choice is motivated by the
need to recreate an ML model directly in the smart con-
tract: TensorFlow is one of the few frameworks that imple-
ment ML also in JavaScript [40]. Concerning the DON,
we have used Provable,2 whose only requirement is to
deploy a specific smart contract that acts as a connec-
tor between the blockchain and the outside world. Our
experiments were run on a Python-simulated FL frame-
work.3

B. Data Set

For the predictive maintenance use case, we selected the
NASA Turbofan Jet Engine data set [41], which is a widely
accepted and well-known baseline data set from NASA for
engine degradation modeling. It enables estimating the RUL
of the considered engine; the data set was generated through
the simulation of the commercial modular aero-propulsion
system. Specifically, it comprises four subdatasets, with tem-
poral signals from 21 sensors (e.g., temperature and fuel flow
ratio); each of the subdatasets consider different combina-
tions of operational conditions and fault modes. To employ the
data set effectively, first, we performed a data preprocessing
step to remove features with nonconsistent values. In addi-
tion, since the training set does not present RUL values but
only the number of time cycles of engine usage, we were
forced to calculate them manually. For the purpose of the fol-
lowing evaluation, We assume that RUL decreases linearly
over time so that it would have a value of 0 at the last time
cycle of the engine: for each engine, RUL is calculated as
max_time_cycle − time_cycle; moreover, as usual for regres-
sion problems, we have normalized the input values. Finally,
we have split the data set into training and testing subsets for
100 engines to replicate the behavior of an FL network during
the training phase.

Concerning the botnet attack detection use case, we
employed the N-BaIoT data set [42], which contains real traffic
data gathered from nine commercial IoT devices authenti-
cally infected by Mirai and BASHLITE. Malicious traffic is
divided into multiple different attacks (e.g., network scanning
and firmware), thus, enabling us to use it for multiclass clas-
sification: 10 classes of attacks, plus 1 class of benign. To
prepare the data for training, we first used a Label Encoder
to convert the target value for each sample into a numer-
ical value. The target value indicates the type of network
traffic, either benign or belonging to one of the ten pos-
sible attacks. Next, we applied one-hot encoding to these
values, resulting in a vector for each sample. Additionally,
we normalize each feature by using a MinMaxScaler, which
scales the data in the range of [0, 1]. To minimize the
number of features, we implemented a feature selection mech-
anism based on an ExtraTreesClassifier. Tree estimators are
utilized to compute feature importance through impurity cal-
culations, which can subsequently be used in combination with
the SelectFromModel meta-transformer to eliminate irrelevant
features.

2https://provable.xyz
3https://github.com/MMw-Unibo/TruFLaaS

21274 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

TABLE II
BOTNET ATTACK DETECTION—TRUFLAAS EXPERIMENTS RESULTS

C. Experiments

To show the effectiveness of our solution, we conducted
several experiments considering the application domains of
predictive maintenance and botnet attack detection. In each
of them, we considered both honest clients with a limited
data set and malicious nodes, which aim to either disrupt
the training process or introduce backdoors within the global
model. We compare TruFLaaS against both the conventional
baseline (i.e., no validation mechanisms) and TrustFed [21],
i.e., a framework for fair and trustworthy FL. For the sake
of fairness, in the predictive maintenance use case, we use
the same FL model, configured as follows. The input layer
takes input_size × 24 input neurons for each window.
Two middle dense layers represent 24 × 24 neurons, while the
output dense layer is mapped on 24 × 1 neurons. The ReLU
activation function is used for all the layers and weights are
adjusted through stochastic gradient descent (SGD) optimizer.
Mean absolute percentage error (MAPE) is used to evaluate
the accuracy of each model at the end of the final aggre-
gation, while we calculated mean absolute error (MAE) to
validate partial models and identify the most beneficial ones
for training. However, TrustFed was not thoroughly validated
against multiple data sets and models. Therefore, for the bot-
net attack detection scenario, we developed a novel FL model
consisting of four layers. The first two layers are Dense layers
with ReLU activation functions, comprising 64 and 32 neu-
rons, respectively, followed by a Dropout layer with a rate of
0.2 to minimize overfitting. The final layer is a Dense layer
with 11 neurons, one for each class to be predicted, utiliz-
ing a softmax activation function. Due to the nature of the
problem being a multiclass classification, we used categorical
cross-entropy as the loss function. Moreover, since this use
case does not aim to solve a regression problem, in Table II,
we report the final evaluation metrics for the experiments
conducted.

1) Heterogeneous Data Distribution: First, we consider a
scenario where the distribution of data, among honest clients,
is heterogeneous. Hence, some nodes have more or fewer data
samples than others. Having clients with heterogeneous data
distribution is one of the major cases that justifies the adoption
of FL: this situation is quite common in industrial environ-
ments since the size of enterprises directly affects the amount
of data generated. We run this type of experiment while vary-
ing the number of participants and with different percentages
of nodes having augmented data.

Fig. 4. NASA Turbofan Jan Engine—10th percentile distribution of training
data.

2) Heterogeneous Data Distribution on Rare Cases: This
experiment is a special case of the previous set. In FLaaS,
clients may be interested only in a specific subtask (e.g., RUL
under a given threshold or a specific botnet attack). We focus
on a deployment environment where some nodes have no data
on a particular class of events, which we define as rare cases.
For example, there may be smart manufacturing enterprises
that have not experienced the breakdown of specific machin-
ery yet or have never been affected by a certain attack. In
this experiment, for the predictive maintenance use case, we
discriminate the data records accordingly to their RUL val-
ues. In particular, we tag as rare records all the samples inside
a low percentile of a pseudo-normal distribution, by separat-
ing the low RUL values from the others. We identify, through
statistical analysis, a subset of the data containing the data
records with low RUL. To do that, we calculate the 10th per-
centile values on both the training and the validation sets.
Since NASA data do not follow a normal distribution, we
operate a standardization process to use z-score table to calcu-
late exact areas for any given normally distributed populations.
Mathematically, the standardization operation is described by
the following formula:

z = x− μ

σ
(5)

where z is the z-score value, x is the observation value, μ

is the mean of the distribution, and σ is the standard devia-
tion of the distribution. Figs. 4 and 5 illustrate the obtained
percentiles on training and validation data sets, respectively.
For the botnet attack detection use case, a multiclass classi-
fication approach is used. Thus, we consider the two attack
classes with the lowest occurrence as rare cases. Specifically,
as shown in Fig. 6, such classes are represented by junk and
scanning attacks. Our experiments involve varying the num-
ber of nodes without rare cases and the strategy for discarding
nodes. We test four strategies using two validation sets: one
with only rare cases (Rares) and another with the same data
distribution as the global test set (Overall). The first strategy
entails discarding nodes that perform poorly on the validation
set that contains only rare cases. The second strategy involves
discarding nodes that perform poorly on the second validation
set. The third strategy requires discarding nodes that perform
poorly on both the first and second validation sets. Finally, the

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21275

Fig. 5. NASA Turbofan Jan Engine—10th percentile distribution of testing
data.

Fig. 6. N-BaIoT—Types of botnet attacks and their occurrences.

fourth strategy involves discarding nodes that perform poorly
on either the first or second validation set.

3) Model Forging Attack: Ensuring the security and
integrity of FL platforms is a major concern due to their
widespread adoption in various domains. In model forging
attacks, a malicious participant could craft a partial model
to introduce backdoors into the global model or simply dis-
rupt the training process. To assess the resilience of TruFLaaS
against this class of attacks, we conducted several experiments
with different percentages of malicious nodes. In these exper-
iments, as done in TrustFed, we simulated malicious nodes’
behavior by performing training on data containing random
noise to corrupt the model.

D. Results and Associated Considerations

The experimental results reported in this section show that
our solution outperforms conventional baselines and TrustFed
under all the considered circumstances.

1) Heterogeneous Data Distribution: TrustFed only aggre-
gates partial models whose accuracy falls in the interval
identified by the neighborhood of the medium and standard
deviation. However, the TrustFed approach neglects clients
with a heterogeneous data distribution that results in high-
quality partial models (which can achieve performance results
that overcome the bound of the interval). Also, TruFLaaS dis-
cards partial models whose performance is below its threshold;
on the opposite, in the aggregation phase, TruFLaaS involves

all the partial models whose accuracy is more significant than
the lower neighborhood of the medium and the standard devia-
tion. Figs. 7 and 8 show how TruFLaaS outperforms TrustFed
by better identifying clients’ contributions with significantly
larger data sets. TruFLaaS not only reaches the target accu-
racy faster than the others but also gains a greater advantage
with the increase in the number of nodes with augmented data.

2) Heterogeneous Data Distribution on Rare Cases: In this
type of experiment, for the sake of fairness, we have not com-
pared TruFLaaS with TrustFed because the latter does not
make any distinctions on the rare cases and our approach
would certainly perform better. Figs. 9 and 10 highlight the
experiment results by varying the number of nodes with no
rare data and the strategy used to discard nodes with poor
performance. We can observe that in the predictive mainte-
nance scenario the first two strategies, i.e., discarding nodes
that perform poorly on the validation set comprising only rare
cases and discarding nodes that perform poorly on the valida-
tion set with the same distribution as the test set, performing
better than the other aggregation strategies considered. In the
botnet attack scenario, we can see the resilience of our solu-
tion to an increasing amount of nodes without rare data. The
accuracy is not affected negatively by the higher amount of
heterogeneous nodes.

3) Model Forging Attack: In the predictive maintenance
use case, since the FL configuration employed by TrustFed
was not leading to acceptable results in comparison with
our solution, we increased the number of FL rounds to 100.
Figs. 11 and 12 sharply outline how TruFLaaS is more robust
than TrustFed against model forging attacks by varying the
number of malicious nodes. This is mainly motivated by the
fact that TrustFed, by using the mean and standard deviation to
detect outliers, is less accurate in the presence of excessively
large or small values. For example, there might be an outlier
with such poor performance that would significantly shift the
total mean. In this case, TrustFed ends up accepting outliers
with performance that should not be accepted under nomi-
nal conditions. Moreover, by not weighing the partial models,
aggregating an outlier will completely ruin the training per-
formed up to that point. It is also interesting to observe that,
in the predictive maintenance experiment, TrustFed performs
worse than the baseline with 0 malicious nodes. This could
be caused by the fact that TrustFed also removes nodes that
reach performances much greater than the average.

On the contrary, TruFLaaS employs a more robust out-
lier detection algorithm, achieving in all cases very similar
performance. Moreover, due to the use of weights based on
the number of accepted transactions (i.e., level of trust), spo-
radic errors during the validation process would result in very
little influence on the global model, without disrupting the
whole training process. These results provide valuable insights
into the robustness of our proposal and help ensure that it can
effectively protect from model forging attacks.

VI. RELATED WORK

One of the biggest challenges facing the widespread adop-
tion of FL in real-world scenarios is the lack of trust among

21276 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

(a) (b) (c)

Fig. 7. Predictive maintenance: heterogeneous data distribution—Accuracy comparison of different node selection strategies with (a) 0 nodes having augmented
data, (b) 10 nodes having augmented data, and (c) 25 nodes having augmented data.

(a) (b) (c)

Fig. 8. Botnet attack detection: heterogeneous data distribution—Accuracy comparison of different node selection strategies with (a) 0 nodes having augmented
data, (b) 10 nodes having augmented data, and (c) 25 nodes having augmented data.

(a) (b) (c)

Fig. 9. Predictive maintenance: heterogeneous data distribution on rare cases—Accuracy comparison of different node selection strategies with (a) 0 nodes
without rare data, (b) 10 nodes without rare data, and (c) 25 nodes without rare data.

unknown participants. However, in recent years, there has been
a growing interest to design novel solutions that can increase
the trustworthiness and fairness of FL environments. Many of
these proposals are made possible by blockchain technology,
which, in some cases, only ensures the correctness of the gen-
erated global model by replacing the centralized server (as
in [47] and [48]). In this section, we review some of the most
relevant works that aim to enhance the trustworthiness of FL.
Table III provides an overview of such approaches and their
main limitations, while Table IV summarizes their key features.

A. Accountability and Fairness

Blockchain technology can be utilized as a reliable data
source that offers all participants a consistent and transpar-
ent view of the stored data. For this purpose, Lo et al. [23]
employ blockchain to enable accountability and improve fair-
ness in FL systems. Data-model provenance is granted through
the blockchain that stores the hashed value of data, local,
and global model versions. To increase fairness, the authors
present an algorithm that dynamically samples training data
from classes poorly represented according to the inverse of

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21277

(a) (b) (c)

Fig. 10. Botnet attack detection: heterogeneous data distribution on rare cases—Accuracy comparison of different node selection strategies with (a) 0 nodes
without rare data, (b) 10 nodes without rare data, and (c) 25 nodes without rare data.

(a) (b) (c)

Fig. 11. Predictive maintenance: model forging attack—Accuracy comparison of the compared approaches with (a) 0 malicious nodes, (b) 10 malicious
nodes, and (c) 25 malicious nodes.

(a) (b) (c)

Fig. 12. Botnet attack detection: model forging attack—Accuracy comparison of the compared approaches with (a) 0 malicious nodes, (b) 10 malicious
nodes, and (c) 25 malicious nodes.

the weight distribution of the data set used for testing. Their
approach can contribute to building fairer models in a scenario
where each client trusts the other. However, they do not prevent
malicious participants are excluded from the model aggrega-
tion which is, as discussed above, one of the major concerns
in an FLaaS context. Abdel-Basset et al. [24] presented Fed-
Trust, a blockchain-orchestrated edge intelligence framework
for trustworthy cyberattack detection in IIoT. However, their
approach does not bring remarkable novelties in terms of vali-
dation of partial models since the verification phase consists in
allowing fog nodes to collect the block comprising the partial

models from all contributors to calculate the global model. In
this work, trustworthiness is intended as one of the main tar-
gets of cyberattacks for the IIoT that can be protected through
a distributed temporal convolution generative network.

B. Validation Mechanisms

The absence of adequate validation mechanisms led to
the aggregation of any submitted model, leaving room for
the introduction of malicious backdoors. Consequently, many
papers in the literature have been dedicated to introducing
novel validation methods. TrustFed [21] is a blockchain-based

21278 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

TABLE III
COMPARISON OF RELATED WORK APPROACHES AND LIMITATIONS

TABLE IV
COMPARISON OF RELATED WORK BASED ON THEIR FEATURES

framework for fully decentralized cross-device FL systems.
It provides fairness by removing malicious participants from
the training distribution through statistical outlier detection
techniques. While it employs blockchain and smart con-
tracts to maintain participating devices’ reputations. However,
their approach removes outliers including contributions of
clients that may have performed significantly better by hav-
ing a local training set bigger than all the other participants.
Experimental results demonstrate that TruFLaaS outperforms
TrustFed under different circumstances. Chen et al. [22]
presented a blockchain-based decentralized FL framework
that validates partial models through a decentralized valida-
tion mechanism. During each round of the FL training, a
set of devices is selected to act as validators. All the local
updates are validated by all of them using their local data
set. After having observed the experimental results, a valida-
tor casts its vote on the legitimacy of each model. Collecting

votes from multiple validators enables removing malicious
devices that are associated with a negative model. Such an
approach improves robustness since validating operations can
be properly performed despite several compromised validators.

Li et al. [8] proposed a dynamic verification strategy to
decrease the influence of abnormal customers on the global
model. Similarly to our work, the authors use a secondary
server-side data set to validate the contribution of each client.
Only the partial models that achieve satisfying accuracy are
involved in the model aggregation process. However, their
approach still suffers from all the weaknesses related to using
a centralized server for model aggregation. Recently, there
has been a rise in novel approaches that ensure the correct-
ness of partial model aggregation without being dependent
on blockchain and smart contracts. However, these new tech-
niques still have a vulnerability to a single point of failure,
which can compromise the entire system. Wang et al. [45]

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21279

proposed PTDFL, a decentralized FL scheme that prioritizes
privacy and trustworthiness. Their method employs a local
proof mechanism to verify that the partial model submitted
by the client is the genuine output of their training. However,
it is worth noting that a malicious model could still be aggre-
gated if the corresponding proof is correct. The previous two
approaches do not rely on blockchain technology, which means
they are vulnerable to the drawbacks associated with utilizing
a centralized server for model aggregation. Gao et al. [46]
developed SVeriFL a novel protocol based on BLS and
multiparty security that enables verifying the integrity of par-
tial models provided by clients and the correctness of their
aggregation. However, like previous work, the authors do
not prioritize the quality of the submitted partial models.
Furthermore, their protocol relies on a trusted authority, which
introduces an additional element of centralization and potential
vulnerability.

C. Reputations and Weighted Contributions

To improve trustworthiness among participants, clients can
be selected according to their reputations and partial models
can be weighted based on a trust score associated with each
participant. Kang et al. [43] proposed to evaluate the reputa-
tion, stored on a consortium blockchain while selecting the
participants of an FL training. According to the authors, rep-
utation is measured from its training task completion history
with the past behaviors of good or unreliable activities. Their
approach is specifically for mobile devices. Indeed, it may not
apply to scenarios, with a restricted number of clients that
impede discarding nodes in advance. In these cases, only a
small number of participants may satisfy the threshold mak-
ing FL pointless. When the number of clients is not huge, all
the contributions can be relevant to improve the quality of the
global model.

Cao et al. [44] introduced FLTrust, a Byzantine-robust FL
method that protects against malicious attacks by training a
server model using a small, manually collected clean training
data set as if it were a client. FLTrust assigns trust scores to
each local model update based on its similarity with the server
model update. Such trust scores are then used for weight-
ing local model updates and generating the global model.
Beyond the weaknesses of the centralized server, FLTrust
heavily depends on the training data set provided to the server.
In addition, honest clients that perform much better could be
assigned with a low trust score.

VII. CONCLUSION

Service providers can simplify and promote the use of FL
by offering it as a service. FLaaS significantly reduces the
overhead and technological knowledge to develop and tune
algorithms and tools for collaboratively training a global model
on a shared task. However, despite the discussed advantages,
designing and developing effective FLaaS still arise several
technical challenges that have to be properly addressed.

In particular, the lack of trustworthiness among unknown
participants is one of the major factors that hinders the adop-
tion of FL in real-world scenarios. To overcome this concern,

this article proposes a novel blockchain-based architecture and
approach, which transparently validate partial models by lever-
aging blockchain, smart contracts, and a DON. In particular,
before being aggregated, partial models are validated against
a sample of the validation set, different for each round, pro-
vided by the service provider through a DON. TruFLaaS uses
smart contracts to keep the level of trust of each participant,
which is used to weigh the contributions of each partial model
during the aggregation phase. The extensive experimentation
work described in this article shows that TruFLaaS outper-
forms conventional baselines and the state-of-the-art literature
for the detection of malicious nodes under different relevant
families of use cases, i.e., when forging an ad-hoc model to
pass the validation process, or discarding low-quality models
on rare data, or making a global model converge by varying
the number of malicious nodes.

REFERENCES

[1] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,
“Internet of Things (IoT) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging 5G-IoT
scenarios,” IEEE Access, vol. 8, pp. 23022–23040, 2020.

[2] “The Internet of Things: A movement, not a market.” IHS Markit.
Accessed: Oct. 6, 2022. [Online]. Available: https://cdn.ihs.com/www/
pdf/IoT_ebook.pdf

[3] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated
learning for Internet of Things: Recent advances, taxonomy, and
open challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1759–1799, 3rd Quart., 2021.

[4] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Gener. Comput. Syst., vol. 115, pp. 619–640,
Feb. 2021.

[5] M. Mendula and P. Bellavista, “Energy-aware edge federated learn-
ing for enhanced reliability and sustainability,” in Proc. TEC Workshop
Trustworthy Edge Comput., 2022, pp. 349–354.

[6] “Regulation (EU) 2016/679 of the European Parliament and of the coun-
cil of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/EC (general data protection regula-
tion).” EU. 2016. [Online]. Available: https://eur-lex.europa.eu/eli/reg/
2016/679/oj/eng

[7] P. Bellavista, L. Foschini, and A. Mora, “Decentralised learning in fed-
erated deployment environments: A system-level survey,” ACM Comput.
Surv., vol. 54, no. 1, pp. 1–38, Feb. 2021.

[8] Y. Li, Y. Chen, K. Zhu, C. Bai, and J. Zhang, “An effective feder-
ated learning verification strategy and its applications for fault diagnosis
in industrial IoT systems,” IEEE Internet Things J., vol. 9, no. 18,
pp. 16835–16849, Sep. 2022.

[9] J. Zhang, Y. Wang, K. Zhu, Y. Zhang, and Y. Li, “Diagnosis of interturn
short-circuit faults in permanent magnet synchronous motors based on
few-shot learning under a federated learning framework,” IEEE Trans.
Ind. Informat., vol. 17, no. 12, pp. 8495–8504, Dec. 2021.

[10] U. Ahmed, J. C.-W. Lin, and G. Srivastava, “5G-empowered drone
networks in federated and deep reinforcement learning environ-
ments,” IEEE Commun. Standards Mag., vol. 5, no. 4, pp. 55–61,
Dec. 2021.

[11] U. Ahmed, G. Srivastava, and J. C.-W. Lin, “Reliable customer analysis
using federated learning and exploring deep-attention edge intelligence,”
Future Gener. Comput. Syst., vol. 127, pp. 70–79, Feb. 2022.

[12] C. Mazzocca, N. Romandini, M. Colajanni, and R. Montanari,
“FRAMH: A federated learning risk-based authorization middleware for
healthcare,” IEEE Trans. Computat. Social Syst., early access, Oct. 10,
2022, doi: 10.1109/TCSS.2022.3210372.

[13] P. Boobalan et al., “Fusion of federated learning and industrial
Internet of Things: A survey,” Comput. Netw., vol. 212, Jul. 2022,
Art. no. 109048.

http://dx.doi.org/10.1109/TCSS.2022.3210372

21280 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

[14] N. Kourtellis, K. Katevas, and D. Perino, “FLaaS: Federated learn-
ing as a service,” in Proc. 1st Workshop Distrib. Mach. Learn., 2020,
pp. 7–13.

[15] R. Philipp, A. Mladenow, C. Strauss, and A. Völz, “Machine learning
as a service: Challenges in research and applications,” in Proc. 22nd Int.
Conf. Inf. Integr. Web-Based Appl. Serv., 2020, pp. 396–406.

[16] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168–2181, Jul. 2021.

[17] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.

[18] D. C. Nguyen et al., “Federated learning meets blockchain in edge com-
puting: Opportunities and challenges,” IEEE Internet Things J., vol. 8,
no. 16, pp. 12806–12825, Aug. 2021.

[19] R. K. Mobley, An Introduction to Predictive Maintenance. Amsterdam,
The Netherlands: Elsevier, 2002.

[20] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proc. 23rd Int. Conf. Artif. Intell. Stat.,
Aug. 2020, pp. 2938–2948.

[21] M. H. U. Rehman, A. M. Dirir, K. Salah, E. Damiani, and D. Svetinovic,
“TrustFed: A framework for fair and trustworthy cross-device federated
learning in IIoT,” IEEE Trans. Ind. Informat., vol. 17, no. 12,
pp. 8485–8494, Dec. 2021.

[22] H. Chen, S. A. Asif, J. Park, C.-C. Shen, and M. Bennis, “Robust
blockchained federated learning with model validation and proof-of-
stake inspired consensus,” 2021, arXiv:2101.03300.

[23] S. K. Lo et al., “Toward trustworthy AI: Blockchain-based archi-
tecture design for accountability and fairness of federated learning
systems,” IEEE Internet Things J., vol. 10, no. 4, pp. 3276–3284,
Feb. 2023.

[24] M. Abdel-Basset, N. Moustafa, and H. Hawash, “Privacy-preserved
cyberattack detection in industrial edge of things (IEoT): A blockchain-
orchestrated federated learning approach,” IEEE Trans. Ind. Informat.,
vol. 18, no. 11, pp. 7920–7934, Nov. 2022.

[25] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2019,
pp. 2512–2520.

[26] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and M. Aloqaily,
“Privacy-preserving multiobjective sanitization model in 6G IoT envi-
ronments,” IEEE Internet Things J., vol. 8, no. 7, pp. 5340–5349,
Apr. 2021.

[27] C.-W. Lin, T.-P. Hong, and H.-C. Hsu, “Reducing side effects of hiding
sensitive itemsets in privacy preserving data mining,” Sci. World J.,
vol. 2014, Apr. 2014, Art. no. 235837.

[28] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[29] J. Park and H. Lim, “Privacy-preserving federated learning using
homomorphic encryption,” Appl. Sci., vol. 12, no. 2, p. 734, 2022.

[30] J. Geng, N. Kanwal, M. G. Jaatun, and C. Rong, “DID-eFed: Facilitating
federated learning as a service with decentralized identities,” in Proc.
Int. Conf. Eval. Assess. Softw. Eng., 2021, pp. 329–335.

[31] “Decentralized identifiers (DIDs) v1.0.” W3 Recommendation. 2022.
[Online]. Available: https://www.w3.org/TR/did-core/

[32] “Verifiable credentials data model v1.1.” W3 Recommendation. 2022.
[Online]. Available: https://www.w3.org/TR/vc-data-model/

[33] Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based incentive
mechanism for federated learning,” IEEE Internet Things J., vol. 7, no. 7,
pp. 6360–6368, Jul. 2020.

[34] G. Caldarelli, “Understanding the blockchain oracle problem: A call for
action,” Information, vol. 11, no. 11, p. 509, 2020.

[35] L. Breidenbach et al., Chainlink 2.0: Next Steps in the Evolution of
Decentralized Oracle Networks, Chainlink Labs, San Francisco, CA,
USA, 2021.

[36] D. Maram et al., “CanDID: Can-do decentralized identity with legacy
compatibility, Sybil-resistance, and accountability,” in Proc. IEEE Symp.
Security Privacy (SP), 2021, pp. 1348–1366.

[37] O. Avellaneda et al., “Decentralized identity: Where did it come from
and where is it going?” IEEE Commun. Standards Mag., vol. 3, no. 4,
pp. 10–13, Dec. 2019.

[38] D. D. S. Braga, M. Niemann, B. Hellingrath, and F. B. D. L. Neto,
“Survey on computational trust and reputation models,” ACM Comput.
Surv., vol. 51, no. 5, pp. 1–40, Nov. 2018.

[39] M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S. Rahman,
“Performance analysis of a hyperledger fabric blockchain framework:
Throughput, latency and scalability,” in Proc. IEEE Int. Conf. Blockchain
(Blockchain), 2019, pp. 536–540.

[40] D. Smilkov et al., “TensorFlow.js: Machine learning for the Web
and beyond,” in Proc. Int. Conf. Mach. Learn. Syst., vol. 1, 2019,
pp. 309–321.

[41] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propaga-
tion modeling for aircraft engine run-to-failure simulation,” in Proc. Int.
Conf. Prognostics Health Manag., 2008, pp. 1–9.

[42] Y. Meidan et al., “N-BaIoT—Network-based detection of IoT botnet
attacks using deep autoencoders,” IEEE Pervasive Comput., vol. 17,
no. 3, pp. 12–22, Jul.–Sep. 2018.

[43] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Commun., vol. 27, no. 2, pp. 72–80, Apr. 2020.

[44] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-robust
federated learning via trust bootstrapping,” 2022, arXiv:2012.13995.

[45] L. Wang, X. Zhao, Z. Lu, L. Wang, and S. Zhang, “Enhancing privacy
preservation and trustworthiness for decentralized federated learning,”
Inf. Sci., vol. 628, pp. 449–468, May 2023.

[46] H. Gao, N. He, and T. Gao, “SVeriFL: Successive verifiable federated
learning with privacy-preserving,” Inf. Sci., vol. 622, pp. 98–114,
Apr. 2023.

[47] Z. Yang, Y. Shi, Y. Zhou, Z. Wang, and K. Yang, “Trustworthy federated
learning via blockchain,” IEEE Internet Things J., vol. 10, no. 1,
pp. 92–109, Jan. 2023.

[48] Y. Qu et al., “Decentralized privacy using blockchain-enabled federated
learning in fog computing,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5171–5183, Jun. 2020.

Carlo Mazzocca (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in computer
engineering from the University of Naples Federico
II, Naples, Italy, in 2018 and 2020, respectively.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with the University of
Bologna, Bologna, Italy.

His research interests mainly include security
mechanisms based on distributed ledger technolo-
gies, and authentication and authorization solutions
for the cloud-to-thing continuum.

Nicolò Romandini (Graduate Student
Member, IEEE) received the M.Sc. degree in
computer science engineering from the University
of Bologna, Bologna, Italy, in 2021, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering.

His research focuses mainly on blockchain,
cybersecurity, and machine learning, and how to
integrate them into IoT domains.

Matteo Mendula (Graduate Student Member, IEEE)
received the M.Sc. degree in software engineer-
ing from the University of Bologna, Bologna, Italy,
in 2020, where he is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering.

His main research interests include big data pro-
cessing and distributed learning on the edges of
the network. In particular, his research relates to
architectural aspects and machine learning-enhanced
techniques in fog computing scenarios.

MAZZOCCA et al.: TruFLaaS: TRUSTWORTHY FEDERATED LEARNING AS A SERVICE 21281

Rebecca Montanari (Member, IEEE) received the
Ph.D. degree in computer science engineering from
the University of Bologna, Bologna, Italy, in 2001.

She has been a Full Professor with the University
of Bologna, since 2020, where she carries out her
research in the area of information security and the
design/development of middleware solutions for the
provision of services in mobile and IoT systems. Her
research is currently focused on blockchain tech-
nologies to support various supply chains, including
agrifood, manufacturing, and fashion and on security
systems for Industry 4.0.

Paolo Bellavista (Senior Member, IEEE) received
the Ph.D. degree in computer science engineering
from the University of Bologna, Bologna, Italy, in
2001.

He is currently a Full Professor with the
University of Bologna. His research interests include
middleware for mobile computing, QoS manage-
ment in the cloud continuum, infrastructures for
big data processing in industrial environments, and
performance optimization in wide-scale and latency-
sensitive deployment environments.

Prof. Bellavista serves on the editorial boards of IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON SERVICES

COMPUTING, ACM Computing Surveys, ACM Transactions on Internet of
Things, and Pervasive and Mobile Computing (Elsevier). He is the Scientific
Coordinator of the H2020 IoTwins Project (https: www.iotwins.eu).

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

