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Abstract
In this note we study in detail the geometry of eight rational elliptic surfaces naturally
associated to the sixteen reflexive polygons. The elliptic fibrations supported by these surfaces
correspond under mirror symmetry to the eight families of smooth del Pezzo surfaces with
very ample anticanonical bundle.

Keywords Elliptic fibrations · Mirror symmetry · Toric geometry

1 Introduction

Reflexive polygons are the lattice polygons such that the origin is their unique interior lattice
point [6, 42, 46]. There are exactly 16 GL2(Z)-equivalence classes of reflexive polygons (see
Fig. 2).

For each reflexive polygon P , we can construct two toric del Pezzo surfaces with Goren-
stein singularities: XP , associated to the face fan of P , and YP , associated to the normal fan
of P; these are toric varieties with respect to mutually dual algebraic tori. By performing a
certain blowup of YP (see Construction 4.5), we obtain a rational elliptic surface Y → P

1,
we study the singular fibres of this elliptic fibration and its Mordell–Weil group. Our results
are summarised in Table 2 in §5.17. The number of rational elliptic surfaces arising this way
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3186 A. Grassi et al.

from reflexive polygons is 8, as different reflexive polygons can give the same rational elliptic
surface. The Mordell–Weil groups of these rational elliptic surfaces have low rank, precisely
0 or 1.

These rational elliptic surfaces are mirror to the 8 deformation families of smooth del
Pezzo surfaces with very ample anticanonical class, i.e. P

1 × P
1 and the blowup of P

2 in at
most 6 points.

Notation and conventions

Apolytope is the convex hull of finitelymany points in a real vector space of finite dimension.
A polygon is by definition a polytope of dimension 2.

All varieties we consider are varieties over C, the field of complex numbers. Every toric
variety or toric singularity is assumed to be normal. A Fano variety is a normal projective
variety whose anticanonical divisor is Q-Cartier and ample. A del Pezzo surface is a Fano
variety of dimension 2. By a curve we mean a 1-dimensional integral scheme of finite type
over C.

The symbol χtop stands for the topological Euler characteristic.

2 Preliminaries on rational elliptic surfaces

The material in this section can be found in [28, 32, 33, 45].

2.1 Setting

In §2 we fix, once for all, a morphism

f : Y → C

such that

• Y is a smooth projective surface,
• C is a smooth projective curve,
• f is a relatively minimal elliptic fibration, i.e. f is a surjective morphism with connected

fibres such that the general fibre of f is a curve of genus 1 and no (−1)-curve of Y is
contained in a fibre of f ,

• there exists at least a section of f , i.e. a morphism σ : C → Y such that f ◦ σ = idC ,
• f has at least one singular fibre.

In this case, the surface Y is called a (Jacobian) elliptic surface. In what follows, we will
usually drop the word ‘Jacobian’.

2.2 First properties

We recall the following well-known classification of singular fibres of f .

Theorem 2.1 ([28, Theorem 6.2]) Let F be a fibre of f : Y → C. Then exactly one of the
following possibilities holds.

• F is irreducible and reduced, and exactly one of the following possibilities holds: F is a
smooth elliptic curve (I0), F is a nodal cubic (I1), F is a cuspidal cubic (I I ).
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Reflexive polygons and rational elliptic surfaces 3187

Fig. 1 Some singular fibres of an elliptic fibration. The bold curves denote components with multiplicity > 1.
We have not depicted fibres of type In for n ≥ 6 nor of type I∗n for n ≥ 3

• F is reducible, every irreducible component of F is a (−2)-curve (i.e. a smooth rational
curve with self-intersection −2), and the configuration of the irreducible components of
F has one of the following types as described in Fig. 1: In for an integer n ≥ 2, I I I ,
I V , I ∗

n for an integer n ≥ 0, I I ∗, I I I ∗, I V ∗.

For a fibre F of f , we define r(F) to be the number of components of F minus 1, i.e. the
number of components of F which do not intersect a fixed section. The values of χtop and of
r for all possible fibres are contained in Table 1.

2.3 TheMordell–Weil lattice

Fix a section σ0 of f . The set of sections of f has the structure of a finitely generated abelian
group, in which σ0 is the identity element. This group is denoted by MW(Y/C) or MW(Y )

and is called theMordell–Weil group of f or of Y . The section σ0 is called the 0-section. The
isomorphism class of the group MW(Y ) does not depend on the choice of σ0.
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3188 A. Grassi et al.

Table 1 The invariants χtop and r
for the possible fibres on an
elliptic surface

χtop r

I0 0 0

In (n ≥ 1) n n − 1

I∗n (n ≥ 0) n + 6 n + 4

I I 2 0

I I I 3 1

I V 4 2

I V ∗ 8 6

I I I∗ 9 7

I I∗ 10 8

Let R(Y ) be the subgroup of NS(Y ) generated by the components of the fibres not meeting
σ0. One has

rank R(Y ) =
∑

F singular fibre

r(F).

Let T (Y ) be the subgroup of NS(Y ) generated by σ0 and by the components of the fibres.
One has

T (Y ) = Zσ0 ⊕ ZF ⊕ R(Y ),

where F is the class of a fibre.
The following theorem states that, modulo T (Y ), NS(Y ) can be understood in terms of

sections.

Theorem 2.2 ([45, Theorem 6.5]) There is an isomorphism of abelian groups

MW(Y ) � NS(Y )/T (Y ).

Moreover, there exists an injective group homomorphism (see [45, Lemma 6.17])

ϕ : MW(Y )/MW(Y )tors → NS(Y ) ⊗Z Q,

which can be used to endow the Mordell-Weil group MW(Y ) with the structure of a lattice.
The homomorphism ϕ is called the Shioda homomorphism.

Theorem 2.3 ([45, Theorem 6.20]) Let ϕ be the Shioda homomorphism and let · be the
intersection product on Y . For all sections σ1, σ2, set:

〈σ1, σ2〉 := −ϕ(σ1) · ϕ(σ2)

Then 〈·, ·〉 is a symmetric bilinear Q-valued pairing onMW(Y ) and induces the structure of
a positive definite lattice onMW(Y )/MW(Y )tors.

In particular a section σ is torsion if and only if 〈σ, σ 〉 = 0.

Definition 2.4 ([45, Definition 6.21]) (MW(Y )/MW(Y )tors, 〈·, ·〉) is called theMordell–Weil
lattice and 〈·, ·〉 is called the height pairing.
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The following result gives an explicit formula for the height pairing. Given a singular fibre
F and two sections σ1 and σ2, there is a notion of local contribution contrF (σ1, σ2), which
registers the way F is met by σ1 and σ2 [45, Definition 6.23]. The explicit description of
contrF (σ1, σ2) will be used in this paper only for the singular fibers of type In , see Example
2.6.

Given a section σ we define contrF (σ ) = contrF (σ, σ ).

Theorem 2.5 ([45, Theorem 6.24]) Let σ0 be the zero section. Then for all sections σ1 and
σ2

〈σ1, σ2〉 = χ(OY ) + σ1 · σ0 + σ2 · σ0 − σ1 · σ2 −
∑

F singular fibre

contrF (σ1, σ2),

In this work we will use only the particular case when the fibre F is of type In , which we
present here:

Example 2.6 ([45, Table 6.1]) Let F be of type In and σ1 and σ2 intersect the i th and j th
component respectively, for 1 ≤ i ≤ j ≤ n − 1. Assume that we label the components
cyclically from 0 to n − 1 and the 0-section is labelled with 0, then:

contrF (σ1, σ2) = i(n − j)

n
.

In [32] Miranda proves the following:

Proposition 2.7 ([32, Proposition 3.1, Corollary 4.1, Corollary 4.3]) Let Y → P
1 be an

elliptic surface with semistable fibres only, that is with singular fibres of type In only. Let
{Imv }v∈P1 be the collection of such singular fibres. Denote the components of the Imv fibre
as {m0(v),m1(v), · · · ,mmv−1(v)}. Assume that a torsion section σ = σ0 intersects the fibre
component m j (v). Without loss of generality we assume m j (v) ≤ m(v)/2. Then

(1)
∑

v m j (v) · 1−m j (v)

mv
= 2χ(OY ).

(2) Let σ be a torsion section of order n. Then

∑

v

m j (v) =
{
4χ(OY ) if n = 2

3χ(OY ) if n ≥ 3.

In characteristic 0, [45, Proposition 6.33], if σ is a torsion section, then σ · σ0 = 0.

2.4 Rational elliptic surfaces

Suppose now that the surface Y is rational. This implies that C = P
1 [45, §7.1]. A rational

elliptic surface has a very restricted topology:

Proposition 2.8 ([45, §7.2])We have:

(1) ωY � f ∗OP1(−1) and every fibre of f is an anticanonical divisor;
(2) K 2

Y = 0;
(3) q(Y ) = 0, pg(Y ) = 0, χ(OY ) = 1;
(4) χtop(Y ) = 12, h1,1(Y ) = 10;
(5) C is a section of f if and only if C is a (−1)-curve in Y ;
(6) Pic(Y ) � NS(Y ) � H2(Y , Z) � Z

10.
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3190 A. Grassi et al.

It follows from Theorem 2.2 that

10 = rank NS(Y ) = rankMW(Y ) + rank T (Y )

and

8 = rankMW(Y ) + rank R(Y ).

Moreover, the pairing 〈σ, σ 〉 simplifies. Indeed, Theorem 2.5, the adjunction formula, and
χ(OY ) = 1 = −σ 2 give:

Corollary 2.9 For every section σ

〈σ, σ 〉 = 2 + 2σ · σ0 −
∑

F singular fibre

contrF (σ, σ ).

2.5 Extremal rational elliptic surfaces

Let f : Y → P
1 be a rational elliptic surface.

Proposition 2.10 ([33, Introduction]) The following are equivalent:

(1) the morphism f : Y → P
1 has finitely many sections;

(2) MW(Y ) is a finite (abelian) group;
(3) rankMW(Y ) = 0;
(4)

∑
F singular fibre r(F) = 8.

(5) the number of representations of Y as a blow-up of P
2 is finite;

(6) the number of rational curves on Y with negative self-intersection is finite;
(7) the number of reduced effective divisors on Y with negative self-intersection is finite.

Definition 2.11 ([33, Introduction]) The rational elliptic surface Y is called extremal if it
satisfies one (and hence every) condition in Proposition 2.10.

3 Preliminaries on reflexive polygons and toric del Pezzo surfaces

The material in this section can be found in [12].

3.1 Lattices

Let N be a lattice, i.e. a free abelian group of finite rank. LetM denote the dual lattice of N , i.e.
M = HomZ(N , Z). We consider the R-vector spaces NR = N ⊗Z R and MR = M ⊗Z R =
HomZ(N , R). Let 〈·, ·〉 : M × N → Z denote the duality pairing; we use the same symbol
to denote the duality pairing between MR and NR. We consider the two following mutually
dual algebraic tori: TN = SpecC[M] = N ⊗Z Gm and TM = SpecC[N ] = M ⊗Z Gm.

3.2 Polarised toric varieties

A polytope in NR is the convex hull of finitely many points of NR. It is a rational polytope in
N if its vertices are rational, i.e. elements of N ⊗Z Q. A lattice polytope in N is a polytope
in NR whose vertices are elements of N . The same terminology works for polytopes in M .
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Reflexive polygons and rational elliptic surfaces 3191

In what follows, unless otherwise stated, every polytope will have full dimension, i.e. the
smallest affine subspace containing the polytope is the ambient vector space itself.

If P is a full-dimensional lattice polytope in M , then one can consider the cone over P
placed at height 1

R≥0(P × {1}) ⊆ MR ⊕ R

and the projective TN -toric variety

YP := ProjC
[(

R≥0(P × {1})) ∩ (M ⊕ Z)
]
,

where theN-grading is given by the projectionM⊕Z � Z. The toric variety YP is associated
to the normal fan of P , which is the fan in N consisting of the cones orthogonal (and inward-
directed) to the faces of P .

In addition to YP , associated to P there is an ample effective Cartier divisor DP on YP .
If P changes by translation, then DP changes by linear equivalence, so the isomorphism
class of the line bundle LP := OYP (DP ) does not change. There are two links between the
geometry of the polytope P and the geometry of the variety YP , as follows.

(1) For every integer m ≥ 0, there is a natural 1-to-1 correspondence between the lattice
points of the polytope mP and the monomial basis of H0(YP , LP ).

(2) The top self-intersection (also called degree) of the ample line bundle LP on YP is equal
to the volume1 of the polytope P:

(LP )n = Vol(P)

where n = dim YP = rank N and Vol(P) is equal to n! times the Lebesgue measure of
P .

If one starts from a rational polytope in N and applies the constructions described above,
then one gets a projective TM -toric variety together with an ample Q-Cartier Q-divisor.

Of course the roles of M and N could be swapped: if one starts from a lattice polytope in
N and applies the constructions described above then one gets a polarised projective TM -toric
variety.

3.3 Toric Fano varieties

A Fano polytope in N is a full-dimensional lattice polytope P in N such that the origin 0 ∈ N
is in the interior of P and every vertex of P is a primitive lattice vector of N , i.e. there is no
lattice point on the segment between the origin and every vertex. If P is a Fano polytope in
N , then the face fan (also called the spanning fan) of P is the fan in N consisting of the cones
over the faces of P; we denote by XP the toric variety associated to the face fan of a Fano
polytope P . We have that XP is Fano, more precisely the toric boundary (i.e. the reduced
sum of the torus-invariant prime divisors) is anticanonical, Q-Cartier and ample.

If P is a Fano polytope in N , then the polar of P is the following rational polytope in M :

P◦ := {u ∈ MR | ∀v ∈ P, 〈u, v〉 ≥ −1}.
One can see that P◦ is full-dimensional and that the face fan of P coincides with the normal
fan of P◦; therefore XP = YP◦ .

1 Some authors call this the ‘normalised volume’, but we avoid to do this.
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3.4 Reflexive polytopes

A reflexive polytope in N is a Fano polytope P in N such that its polar P◦ is a lattice
polytope in M — this definition dates back to [6, 46]. If P is a reflexive polytope in N , then
the following statements hold:

• P◦ is a reflexive polytope in M ;
• the toric Fano variety XP is Gorenstein, i.e. its canonical divisor is Cartier;
• for every integer m ≥ 0, there is a natural 1-to-1 correspondence between the lattice

points of the polytope mP◦ and the monomial basis of H0(XP ,−mKXP ).
• we have an equality of polytopes (P◦)◦ = P;
• we have equalities of Gorenstein toric Fano varieties:

XP = YP◦ and YP = XP◦ ;

• the ample Cartier divisor DP on YP associated with the polytope P coincides with the
toric boundary of YP , i.e. the reduced sum of the torus-invariant prime divisors of YP ,
so DP is effective, reduced and anticanonical (i.e. linearly equivalent to −KYP );

• if n = dim N = dim XP = dim YP , then

(−KXP )n = Vol(P◦) and (−KYP )n = Vol(P);

• the Hilbert series of −KXP is equal to the Ehrhart series of P◦, and the Hilbert series of
−KYP is equal to the Ehrhart series of P .

To summarise, to every reflexive polytope P one can associate two Gorenstein toric Fano
varieties: XP is the one associated to the face fan of P , whereas YP is the one associated to
the normal fan of P; their big tori, namely TN and TM , are dual to each other.

3.5 Reflexive polygons

A reflexive polygon is a reflexive polytope of dimension 2. There are exactly 16 reflexive
polygons, up to lattice isomorphism; these are depicted in Fig. 2, ordered by their volume.
We will refer to them by P3, . . . , P9. One can check the following equalities:

• (P3)◦ = P9,
• (P4i )◦ = P8i for i = a, b, c,
• (P5i )◦ = P7i for i = a, b,
• (P6a)◦ is isomorphic to P6a via GL2(Z),
• (P6b)◦ is isomorphic to P6b via GL2(Z),
• (P6c)◦ = P6c,
• (P6d)◦ = P6d .

Actually, for each reflexive polygon P we have

Vol(P) + Vol(P◦) = 12; (3.1)

we refer the reader to [35] for more details.
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Reflexive polygons and rational elliptic surfaces 3193

Fig. 2 The 16 reflexive polygons, up to GL2(Z)

4 Rational elliptic surfaces arising from reflexive polygons

Now we explain a construction which starts from a reflexive polygon P and produces a
rational elliptic surface Y together with a non-isotrivial relatively minimal elliptic fibration
f : Y → P

1 with at least a section.

Construction 4.1 Fix a rank 2 lattice N and a reflexive polygon P in N . Use the following
notation as in §3.2:

• YP is the (possibly singular) Gorenstein TM -toric del Pezzo surface YP associated to the
normal fan of P;

• DP is the ample Cartier divisor on YP associated with P , i.e. DP is the toric boundary
of YP and is a cycle of smooth rational curves;

• LP = OYP (DP ) is isomorphic to −KYP , which is ample.
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The lattice points of P correspond bijectively to the monomial basis of H0(YP , LP ), hence
there is a naturalC-vector space isomorphismbetweenH0(YP , LP ) and the space of functions
P ∩ N → C. We consider two special elements of H0(YP , LP ):

• 1P corresponds to the function P ∩ N → C which takes the value 1 on the origin 0 ∈ N
and takes the value 0 elsewhere;

• fP corresponds to the function P ∩ N → C which takes the value 0 on the origin and
takes binomial values on the edges of P . This means that, for each edge e of P with
lattice length �(e), the values of the function P ∩ N → C on the ordered �(e) + 1 lattice
points of e are the positive integers

(
�(e)
i

)
for 0 ≤ i ≤ �(e).

We denote by ZP the divisor of zeroes of fP ; it is an anticanonical effective divisor on YP .
We denote by dP the pencil on YP spanned by 1P , fP and we consider the corresponding
rational map YP ��� P

1.

Example 4.2 We consider the polygon P = P3 in N = Z
2. Then YP is the singular cubic

surface {x1x2x3 − x30 = 0} ⊂ P
3. There are 3 singular points of type A2: [0 : 1 : 0 : 0],

[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]. The toric boundary DP of YP is the union of 3 coplanar lines
YP ∩ {x0 = 0} = {x1x2x3 = x0 = 0} and the line bundle LP = OYP (DP ) is isomorphic to
OP3(1)|YP . The section 1P is x0, whereas the section fP is x1 + x2 + x3. The rational map
YP ��� P

1 is given by

[x0 : x1 : x2 : x3] �→ [x0 : x1 + x2 + x3].
The scheme-theoretic base locus of this pencil is reduced and supported at the 3 points
[0 : 0 : 1 : −1], [0 : 1 : 0 : −1], [0 : 1 : −1 : 0] of YP . The divisor DP , the base points of
dP and the singularities of YP are depicted at the bottom right corner of Fig. 3.

Now we begin to study the base locus of the pencil dP .

Remark 4.3 Let P be a reflexive polygon and let YP , DP , LP , 1P , fP , ZP , dP be as in Con-
struction 4.1.

(1) The divisor of zeroes of 1P is the toric boundary DP .
(2) Fix an edge e of P , denote by �(e) the lattice length of e, and denote by DP,e the

component of DP corresponding to e. Using toric geometry, there are two choices of
an isomorphism between DP,e and P

1: they map the two torus-invariant points of DP,e

to 0 = [1 : 0], ∞ = [0 : 1] and they differ by composing with the involution of
P
1 given by [x0 : x1] �→ [x1 : x0]; in particular, there is a well-defined point pe on

DP,e which corresponds to [1 : −1] ∈ P
1. The section 1P ∈ H0(LP ) restricts to 0 on

DP , and consequently to 0 also on DP,e, whereas the section fP ∈ H0(LP ) restricts to
(x0 + x1)�(e) on DP,e under both of the isomorphisms between DP,e and P

1 discussed
above. Therefore the effective divisors ZP = { fP = 0} and DP,e intersect in the point
pe with multiplicity �(e). More precisely, the scheme-theoretic intersection ZP ∩ DP,e

is given by the ideal (x, y�(e)), where x, y are local coordinates of YP at the smooth point
pe such that DP,e is locally defined by x = 0.

(3) The effective divisors ZP = { fP = 0} and DP = ∑
e≤P DP,e = {1P = 0} intersect at

the points {pe | e edge of P} with local structure given above.
(4) The base points of the pencil dP are disjoint from the singularities of YP .
(5) For each edge e of P , the indeterminacies at the point pe of the rational map YP ��� P

1

given by the pencil dP are resolved by blowing up �(e) times above pe in the proper
transform of DP ; this introduces a chain of smooth rational curves: a (−1)-curvemeeting
transversally the proper transform of DP,e, and �(e) − 1 (−2)-curves.
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Lemma 4.4 Let P be a reflexive polygon and let dP be the pencil on the surface YP , as in
Construction 4.1. Then every member V of dP is connected and such that h1(OV ) = 1.

Proof Let LP = OYP (DP ) � ω∨
YP

be the line bundle on YP associated to P . More generally,
we prove that for every non-zero global section s of LP the divisor V = {s = 0} of zeroes
of s is connected. Consider the short exact sequence

0 −→ L∨
P

s−→ OYP −→ OV −→ 0

and the corresponding long exact sequence in cohomology. We observe that H0(L∨
P ) and

H1(L∨
P ) vanish, because they are Serre-dual to H2(OYP ) and H1(OYP ) which vanish by the

Kodaira Vanishing Theorem. From the long exact sequence in cohomology we deduce that
the restriction H0(OYP ) → H0(OV ) is an isomorphism, hence V is connected.

Since H2(L∨
P ) is Serre-dual to H0(OYP ), we have that H2(L∨

P ) has dimension 1. The
vanishing of H1(OYP ) and of H2(OYP ) implies that H1(OV ) has dimension 1. ��
Construction 4.5 Let P be a reflexive polygon and let YP , DP , dP be as in Construction 4.1.
We construct 3 projective surfaces with effective divisors on them, as follows.

• Y ′ → YP is the minimal resolution of the indeterminacies of the pencil dP in such a way
Y ′ is smooth in a neighbourhood of the preimage of the base locus of dP ; in other words,
Y ′ → YP is obtained from YP by blowing up �(e) times above the point pe in the proper
transform of DP , for all edges e of P . Let D′ ⊂ Y ′ be the strict transform of DP ⊂ YP .

• Y P → YP is the minimal resolution of the singularities of YP . Recall that they are DuVal
singularities of type A, because YP is Gorenstein toric of dimension 2, so Y P → YP is
crepant. Let DP ⊂ Y P be the preimage of DP ⊂ YP .

• Consider Y = Y P ×YP Y ′. Let D ⊂ Y be the strict transform of DP ⊂ Y P along
Y → Y P .

We denote by

f : Y → P
1

the composition of the proper birational morphism Y → YP with the rational map YP ��� P
1

induced by the pencil dP .

Y Y ′

Y P YP P
1

Remark 4.6 Let P be a reflexive polygon in a rank-2 lattice N , let YP , dP be as in Construc-
tion 4.1, and let Y ′, Y P , Y be as in Construction 4.5.

By Remark 4.3(3), the base points of the pencil dP are disjoint from the singularities
of YP . Therefore Y ′ and YP have the same singularities, Y is the minimal resolution of the
singularities ofY ′, themorphismY → Y ′ is crepant,Y is a smooth rational projective surface,
and D is the preimage of D′.

Example 4.7 We continue Example 4.2, so P = P3. The surface YP is depicted at the bottom
right corner of Fig. 3: the black curves denote the 3 components of DP , the red points are
the 3 A2-singularities, the blue points are the 3 base points of the pencil dP .

The surface Y ′ is obtained by blowing up the 3 base points, so it has 3 (−1)-curves, which
are depicted in blue in the top right corner of Fig. 3. It has 3 A2-singularities.
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3196 A. Grassi et al.

Fig. 3 The surfaces constructed
in Construction 4.5, when the
reflexive polygon P is P3, as
considered in Example 4.2 and in
Example 4.7. The red points
denote the singularities of YP and
of Y ′. The blue points in YP
denote the base points of the
pencil dP . The red curves denote
the exceptional curves of
Y P → YP and of Y → Y ′. The
blue curves denote the
exceptional curves arising from
resolving the indeterminacies of
YP ��� P

1 (i.e. of the pencil dP )
and of Y ��� P

1. The black
segments denote the irreducible
components of the toric boundary
DP in YP and their proper
transforms in Y P , Y

′ and Y
(Color figure online)

Y Y ′

Y P YP

The surface Y P is obtained by resolving the 3 A2-singularities of YP with 3 chains of 2
(−2)-curves; they are depicted in red in the bottom left corner of Fig. 3. The surface Y P is
smooth. The strict transforms in Y P of the 3 components of DP are (−1)-curves.

The surface Y P can be constructed torically. The surface YP is the toric variety associated
to the normal fan of P = P3, i.e. the face fan of P◦ = P9: the rays of this fan are in black in
Fig. 4. The fan of Y P is the complete fan with the 9 rays depicted in Fig. 4.

The surface Y , depicted in the top left corner of Fig. 3 is smooth. The exceptional curves
of Y → Y P , depicted in blue, are (−1)-curves, the exceptional curves of Y → Y ′, depicted
in red, are (−2)-curves, the strict transforms of the components of DP , depicted in black, are
(−2)-curves. Therefore the divisor D, which is the sum of the red curves and of the black
ones is a cycle of 9 (−2)-curves.

Proposition 4.8 Let P be a reflexive polygon in a rank-2 lattice N, let YP , DP , dP be as in
Construction 4.1, and let Y ′, Y P , Y , f and D′, DP , D be as in Construction 4.5. Then the
following statements hold.

(1) The divisors DP , D′, DP , D on YP , Y ′, Y P , Y , respectively, are anticanonical.
(2) Y P is the smooth toric surface associated to the complete fan in M whose rays are the

rays with apex at the origin and passing through all lattice boundary points of P◦.
(3) DP is the toric boundary of Y P and consists of a reduced cycle of smooth rational curves.

Fig. 4 The rays of the fan defining the smooth toric surface Y P when the reflexive polygon P is P3, as
considered in Example 4.7. The black rays correspond to the proper transforms of the irreducible components
of the toric boundary of YP , whereas the red rays correspond to the exceptional curves of Y P → YP (Color
figure online)
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(4) Pic(Y P ) is a free abelian group of rank equal to 10 − Vol(P) = Vol(P◦) − 2.
(5) The exceptional locus of Y ′ → YP (resp. of Y → Y P) has Vol(P) irreducible compo-

nents, all of which are smooth rational curves contained in the smooth locus of Y ′ (resp.
Y ) and are either (−1)-curves or (−2)-curves.

(6) Pic(Y ) is a free abelian group of rank 10.
(7) D is a reduced cycle of 12 − Vol(P) (−2)-curves and is the fibre of f : Y → P

1 over
∞ = [0 : 1] ∈ P

1.
(8) The morphism f : Y → P

1 is a non-isotrivial relatively minimal elliptic fibration with
at least a section, hence Y is a rational elliptic surface.

(9) The Mordell–Weil group of Y has cardinality ≥ #{edges of P}.
Proof Below we will freely use the equality (3.1).

(1)We already know that DP is an anticanonical divisor on YP . Since Y P → YP is crepant
and DP is the pull-back of DP , also DP is anticanonical. When we blow up a smooth point
p, then the strict transform of an anticanonical divisor which is reduced and smooth at p
is anticanonical. This implies that D′ is anticanonical on Y ′. Using the crepant morphism
Y → Y ′ or the morphism Y → Y P which is a composition of blow ups of smooth points,
we deduce that D is anticanonical on Y .

(2) Minimal resolutions of toric surfaces can be constructed torically. The fan of the toric
variety YP is the normal fan of P , i.e. the face fan of P◦: its rays are the rays with apex at the
origin and passing through the vertices of P◦. The minimal resolution Y P of YP is associated
to a refinement of this fan, namely to the fan described in (2).

(3) Obvious.
(4) The divisor DP is the reduced sum of two types of curves: the exceptional curves E j

of Y P → YP (which are (−2)-curves), and the strict transforms DP,e of DP,e with respect
to Y P → YP , as e runs among the edges of P . The number of components E j is equal to
the number of interior lattice points of the edges of P◦. The number of components DP,e is
equal to the number of vertices of P◦. In total, the number of components of DP is equal
to Vol(P◦), which is also the number of rays of the fan defining Y P . In other words, the
number of torus-invariant prime divisors on Y P is Vol(P◦) − 2. By [12, Theorem 4.1.3] the
rank of the divisor class group of Y P is Vol(P◦) − 2. Since Y P is Q-factorial, the rank of
the Picard group of Y P is Vol(P◦) − 2. Moreover, the Picard group of Y P is free abelian by
[12, Proposition 4.2.5].

Now we make a computation which will be useful below. Fix an edge e of P . Now we
compute the self-intersection of DP,e in Y P . Since DP,e ⊂ YP is associated to the edge
e of lattice length �(e) in the polytope P which is given by the polarisation DP , we have
DP,e · DP = �(e). Since π : Y P → YP is crepant, DP is anticanonical on YP , and DP is
anticanonical on Y P , by using projection formula we have

�(e) = DP,e · DP = π∗DP,e · DP = DP,e · π∗DP = DP,e · DP = (DP,e)
2 + 2.

The last equality holds because DP is the reduced sum of a cycle of smooth curves meeting
transversally and DP,e is a component of DP . Therefore

(DP,e)
2 = �(e) − 2. (4.1)

This equality will be useful below.
(5) Obvious.
(6) Combine (4) and (5).
(7) In the proper birational morphism Y → Y P we blow up (consecutively) �(e) times an

interior point of DP,e, for each edge e of P . Let De denote the strict transform of Dp,e with
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respect to Y → Y P . This implies that (De)
2 = (DP,e)

2 − �(e). Combining with (4.1) we
get that De is a (−2)-curve. Therefore D is a cycle of Vol(P◦) = 12−Vol(P) (−2)-curves.

(8) By Lemma 4.4 every fibre of f : Y → P
1 is connected and the general one is a smooth

elliptic curve. The fibre D = f −1(∞) is reducible and contains no (−1)-curve. For each
edge e of P , the last exceptional curve of Y → Y P over the point in DP,e is a (−1)-curve
and a section of f . We now prove that f is relatively minimal and Y is a rational elliptic
surface.

By contradiction, we can contract all (−1)-curves of Y contained in the fibre of f (one
by one), so we factorise f as

Y
ε−→ Y0

f0−→ P
1,

where Y0 is smooth and projective, ε is proper birational and not an isomorphism, and f0 is
relatively minimal. It is clear that f0 is a relatively minimal elliptic fibration which admits at
least a section. Hence Y0 is a rational elliptic surface, in particular the Picard rank of Y0 is
10. But, by (6) the Picard rank of Y is 10, hence ε : Y → Y0 is an isomorphism, and this is a
contradiction.

We also have that f : Y → P
1 is not isotrivial (i.e. the smooth fibres of f are not all

isomorphic) because f has at least a non-smooth semistable fibre (i.e. a fibre of type In for
some n ≥ 1), namely D. Indeed, a non-smooth semistable fibre has j-invariant equal to ∞
(see for instance [33, p. 540]), so j cannot be constant in a punctured neighbourhood of the
critical value corresponding to a non-smooth semistable fibre.

(9) In the proof of (8) we have constructed a section of f for each edge of P . ��

Remark 4.9 Let P be a reflexive polygon and let Y , D, f be as in Construction 4.5. Then
(Y , D) is a log Calabi–Yau pair, i.e. Y is smooth projective and D is a simple normal crossing
reduced divisor on Y such that KY + D is linearly trivial. Moreover, f : (Y , D) → (P1,∞)

and D = f −1(∞).

5 Analysis of the singular fibres

Here we consider each of the 16 reflexive polygons P and the elliptic fibration f : Y → P
1

constructed in Construction 4.5. For every λ ∈ C, let Fλ denote the zero-locus of fP + λ1P
in YP ; this is an element of dP . For every λ ∈ C, let f −1(λ) ⊂ Y denote the fibre of f which
contains the strict transform of Fλ, i.e. the fibre of f over [1 : −λ] ∈ P

1. The morphism
f −1(λ) → Fλ is not always an isomorphism: it depends if Fλ is non-reduced at the base
points of the pencil dP ; in this case f −1(λ) can acquire certain exceptional (−2)-curves of
Y → Y P , with multiplicity.

We want to study the singular fibres of f . Recall that D = f −1(∞), the fibre at infinity, is
a singular fibre of type I12−Vol(P); in particular χtop(D) = 12−Vol(P), therefore the sum of
the topological Euler characteristics of the remaining singular fibres of f is equal to Vol(P).

5.1 3

Set P = P3. The divisor Fλ onYP is given by the equations x30 = x1x2x3, x1+x2+x3+λx0 =
0 in P

3, so Fλ is isomorphic to the plane curve

{x30 + x1x2(λx0 + x1 + x2) = 0} ⊂ P
2.
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The partial derivatives of this cubic polynomial are

3x20 + λx1x2,

x2(λx0 + 2x1 + x2),

x1(λx0 + x1 + 2x2).

The singularities of Fλ are given by
⎧
⎨

⎩

x1 = 0
λx0 + 2x1 + x2 = 0
3x20 + λx1x2 = 0

,

⎧
⎨

⎩

λx0 + x1 + 2x2 = 0
x2 = 0
3x20 + λx1x2 = 0

,

⎧
⎨

⎩

λx0 + x1 + 2x2 = 0
λx0 + 2x1 + x2 = 0
3x20 + λx1x2 = 0

which are equivalent to
⎧
⎨

⎩

x1 = x2
λx0 + 3x1 = 0
3x20 + λx21 = 0

i.e. to
⎧
⎨

⎩

x1 = x2
3x1 = −λx0
(27 + λ3)x20 = 0

.

Let ζ ∈ C be a primitive 3rd root of unity. Then Fλ is smooth for λ = −3,−3ζ,−3ζ 2.
Let us analyse the singularities of F−3 ⊂ P

2. The unique singular point of F−3 ⊂ P
2 is

[1 : 1 : 1] ∈ P
2. We dehomogeneise the polynomial defining F−3 using affine coordinates

x = (x1 − x0)/x0, y = (x2 − x0)/x0 (i.e. x0 = 1, x1 = x + 1, x2 = y + 1): we get the
polynomial

1 + (x + 1)(y + 1)(−3 + x + 1 + y + 1) = x2 + xy + y2 + x2y + xy2,

whose quadratic part x2 + xy + y2 is non-degenerate. Therefore F−3 is a nodal irreducible
cubic curve, i.e. a fibre of type I1. In a similar way one can prove that F−3ζ and F−3ζ 2 are
fibres of type I1.

To sum up, the fibration Y → P
1 has one I9 fibre and 3 I1 fibres.

We now apply the above analysis to the study of the Mordell–Weil group and lattice:

Remark 5.1 Let σ0, σ3, σ6 be the three sections, intersecting the 0th, third, and sixth compo-
nent of I9 respectively. Let σ0 be the 0-section. Following Example 2.6 we find:

contr I9(σ3) = 3(9 − 3)

9
= 2

contr I9(σ6) = 6(9 − 6)

9
= 2

The Shioda homomorphism and the height pairing in Corollary 2.9 give:

〈σ3, σ3〉 = 〈σ6, σ6〉 = 0,

hence the sections are torsion, by Theorem 2.3. Let n be the order of MW(Y )tors. Then n2

must divide the determinant of the trivial sublattice T , where det T = det(A8) = 9 (see for
example [45, Proposition 6.3.1]). Then MW(Y )tors � Z/3Z.

123



3200 A. Grassi et al.

Fig. 5 The surface Y when
P = P4a

5.2 4a

Let P = P4a . Label the lattice points of P as follows: x0 = (0, 0), x1 = (1, 0), x2 = (0, 1),
x3 = (−1, 0), x4 = (0,−1). Then the toric surface YP is given by:

{
x20 − x1x3 = x20 − x2x4 = 0

} ⊂ P
4

It has 4 A1 singularities. The toric boundary DP ⊂ YP is YP ∩ {x0 = 0} ⊂ P
4. The section

1P is x0 and the section fP is x1 + x2 + x3 + x4, thus the base locus of dP is given by the
four points [0 : 0 : 0 : 1 : −1], [0 : 0 : 1 : −1 : 0], [0 : 1 : 0 : 0 : −1], [0 : 1 : −1 : 0 : 0].

The minimal resolution Y P contains 4 (−2)-curves. The strict transforms in Y P of the 4
components of DP are (−1)-curves.

The exceptional curves of Y → Y P are 4 (−1) curves. We draw them in blue in Fig. 5.
The divisor D = f −1(∞) ⊂ Y is a I8 fibre. The curve Fλ = λ1P + fP is cut out of YP by
the equation λx0 + x1 + x2 + x3 + x4, thus it is isomorphic to the curve:

{
x20 − x1x3 = x20 + x2(λx0 + x1 + x2 + x3) = 0

} ⊂ P
3 (5.1)

The affine patch Fλ ∩ {x3 = 0} is isomorphic to the affine curve Cλ:
(
x2 + y(λx + x2 + y + 1) = 0

) ⊂ A
2 (5.2)

The curve Cλ is singular at a point p if and only if p satisfies the 2 equations:

2x(1 + y) + λy = 0,

x2 + λx + 2y + 1 = 0.
(5.3)

By the second equation of (5.3), it must be

y = −1

2
(x2 + λx + 1) (5.4)

The resultant of the two polynomials in x that one gets by replacing y with (5.4) in (5.2) and
in the first equation of (5.3) is − 1

64λ
2(λ− 4)(λ+ 4). We have that C0 = ((1+ y)(x2 + y) =

0) ⊂ A
2. The two components of C0 intersect transversely at (±1,−1). Thus f −1(0) � F0

is a I2 fibre. The curve C±4 has a node at (∓1, 1).
The sum of the topological Euler characteristic of the singular fibres different from the I8

fibre must be 4. It follows that f has singular fibres of type I8, I2, I1, I1.
We now apply the above analysis to the study of the Mordell–Weil group and lattice:

Remark 5.2 Let σ0, σ2, σ4, σ6 be the 4 sections described above, with σ j intersecting the j th
component of I8. Let σ0 be the 0-section. Tate–Shioda formula implies that rank(MW(Y )) =
0, hence the sections are torsion, by Theorem 2.3. Let n be the order of MW(Y )tors. Since n2

must divide the determinant of the trivial sublattice T , we have that n2 must divide 16 = 2×8
and MW(Y ) = MW(Y )tors � Z/4Z (Proposition 2.7).
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5.3 4b

Set P = P4b. Label the lattice points of P as follows: x0 = (0, 0), x1 = (1, 0), x2 = (0, 1),
x3 = (−1, 1), x4 = (−1, 0). This implies that YP is the complete intersection of the quadrics
x20 − x2x4 = 0 and x1x3 − x0x2 = 0 in P

4. The divisor Fλ ⊂ YP is given by the equation
λx0 + x1 + x2 + x3 + x4 = 0. Therefore Fλ is isomorphic to the intersection of the quadrics
x20 + x2(λx0 + x1 + x2 + x3) = 0 and x1x3 − x0x2 = 0 in P

3. We need to understand when
Fλ is singular.

We work in the affine chart {x2 = 0}. We use the coordinates x = x1/x2, y = x3/x2.
Hence x0 = xyx2 and x4 = x2y2x2. This implies that Fλ ∩ {x2 = 0} is isomorphic to the
affine curve

Cλ = {1 + x + y + λxy + x2y2 = 0} ⊂ C
2

We analyse when Cλ is singular. The singular points of Cλ must satisfy the equations
⎧
⎨

⎩

1 + x + y + λxy + x2y2 = 0
1 + λy + 2xy2 = 0
1 + λx + 2x2y = 0

which are equivalent to
⎧
⎨

⎩

1 + x + y + λxy + x2y2 = 0
1 + λy + 2xy2 = 0
(λ + 2xy)(x − y) = 0

.

We have two cases: (i) xy = −λ/2 and (ii) x = y.

(i) If xy = −λ/2, then the equations become
⎧
⎨

⎩

1 + x + y − 1
4λ

2 = 0
1 + 2λy = 0
1 + 2λx = 0

;

subtracting the second equation from the third one we get λ(x− y) = 0. It is quite clear λ
cannot be zero, otherwise the equations are impossible. Therefore we must have x = y,
which is a case treated in (ii).

(ii) If x = y, then the equations become
⎧
⎨

⎩

1 + 2x + λx2 + x4 = 0
1 + λx + 2x3 = 0
x = y

.

The resultant of the first two polynomials is g = λ4 − λ3 − 8λ2 + 36λ − 11, whose
discriminant is −22665187 = 0. Therefore g has 4 distinct roots in C.

Hence there are exactly 4 values of λ ∈ C such that Cλ is a singular curve. Since Cλ is an
open subset of Fλ, we have found at least 4 values of λ ∈ C such that Fλ (and consequently
f −1(λ)) is a singular curve.
We already know that there is a I8 fibre. By comparing the topological Euler characteristic

we have that there are no more than 4 further singular fibres. Hence the 4 singular fibres we
have found must have topological Euler characteristic equal to 1, thus they must be of type
I1.

To sum up, the singular fibres of f are one of type I8 and 4 of type I1.
We now apply the above analysis to the study of the Mordell–Weil group and lattice:
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Remark 5.3 Let σ0, σ2, σ5, σ7 be the four sections described above, with σ j intersecting the
j th component of I8. Let σ0 be the 0-section. Following Example 2.6 we find:

contr I8(σ2) = 2(8 − 2)

8
= 3

2

contr I8(σ5) = 5(8 − 5)

8
= 15

8

contr I8(σ7) = 7(8 − 7)

8
= 7

8

and:

contr I8(σ2, σ5) = 2(8 − 5)

8
= 3

4

contr I8(σ5, σ7) = 5(8 − 7)

8
= 5

8

contr I8(σ7, σ2) = 2(8 − 7)

8
= 2

8
.

The sections σ2, σ5, σ7 are not torsion, by Theorem 2.3. The Shioda homomorphism and the
height pairing in Corollary 2.9 give the height matrix:

1

8

⎡

⎣
4 2 6
2 1 3
6 3 9

⎤

⎦ . (5.5)

The matrix has rank 1, as predicted by the Tate–Shioda formula. Moreover, since 8 appears
as a denominator in 〈σ5, σ5〉 = 1

8 , it follows from the classification of Mordell–Weil lattices
of rational elliptic surfaces (see [45, Theorem 8.8]) that the Mordell–Weil lattice with the
height pairing must be 〈 18 〉, hence there is no torsion in MW(Y ).

5.4 4c

Let P = P4c. The normal fan of P is the face fan of P8c. The toric surface YP is the quotient
P(1, 1, 2)/Z/2Z(0,1,1). It is isomorphic to:

{
x22 − x1x3 = x20 − x2x4 = 0

} ⊂ P
4 (5.6)

The surface YP has two A1 singularities, at [0 : 0 : 0 : 1 : 0] and at [0 : 1 : 0 : 0 : 0], and one
A3 singularity, at [0 : 0 : 0 : 0 : 1]. The toric boundary DP ⊂ YP is YP ∩ {x0 = 0} ⊂ P

4.
The sections 1P , fP are x0, x1+2x2+ x3+ x4, thus the base locus of dP is given by 4 points:
[0 : 0 : 0 : 1 : −1], [0 : 1 : 0 : 0 : −1], [0 : 1 : −1 : 1 : 0] and an infinitely near basepoint
of the first order at [0 : 1 : −1 : 1 : 0].

The minimal resolution Y P has 5 (−2)-curves. The strict transforms in Y P of the three
components of DP are two (−1)-curves, and a 0-curve.

The exceptional curves of Y → Y P are 3 (−1) curves, and a (−2)-curve. In Fig. 6, we
draw the (−1)-curves in blue, the (−2)-curve in cyan. The divisor D = f −1(∞) ⊂ Y is a I8
fibre. The curve Fλ = λ1P + fP is cut out of YP by the equation λx0 + x1 + 2x2 + x3 + x4,
thus it is isomorphic to the curve

{
x22 − x1x3 = x20 + x2(λx0 + x1 + 2x2 + x3) = 0

} ⊂ P
3. (5.7)

123



Reflexive polygons and rational elliptic surfaces 3203

Fig. 6 The surface Y when
P = P4c

The curve F0 has a node at [0 : 1 : −1 : 1 : 0], thus f −1(0) is a I2 fibre (the union of the
purple curve and the cyan curve in Fig. 6). The curve F±4 has a node at [∓2 : 1 : 1 : 1], thus
f −1(±4) � F±4 is a I1 fibre.
The sum of the topological Euler characteristic of the singular fibres different from the I8

fibre must be 4. It follows that f has singular fibres of type I8, I2, I1, I1.

5.5 5a

Let P = P5a . The normal fan of P is the face fan of P7a . Then the toric surface YP is the
weighted blow up of P

2 at [0 : 1 : 0] and [0 : 0 : 1] with weights (1, 2). It has two A1

singularities. The base locus of the pencil dP is formed by 5 points.
The minimal resolution Y P contains two (−2)-curves. The strict transforms of the com-

ponent of DP in Y P are all (−1)-curves.
The exceptional curves of Y → Y P are five (−1)-curves (in blue in Fig. 7). The divisor

D = f −1(∞) is a I7 fibre. The affine curve Cλ = Fλ ∩ Uσ , where σ is the cone of the
normal fan of P spanned by e1 and −e2, is given by

{
λxy + x2y + x + 1 + y + y2x = 0

} ⊂ A
2. (5.8)

The curve Cλ is singular at a point p if and only if p satisfies the two equations:

λy + 2xy + 1 + y2 = 0,

λx + x2 + 1 + 2xy = 0.
(5.9)

By the first equation above we obtain

x = −λy + 1 + y2

2y
(5.10)

The resultant of the two polynomials in y that one gets by replacing x with (5.10) in (5.8)
and the second equation of (5.9) and clearing the denominators is

(λ − 1)2(λ3 − λ2 − 18λ + 43).

The curve C1 is {(x + y + 1)(xy + 1) = 0} ⊂ A
2. The two components of C1 intersect

transversely.
The sum of the topological Euler characteristic of the singular fibres different from the I7

fibre is 5. It follows that f has fibres of type I7, I2, I1, I1, I1.
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Fig. 7 The surface Y when
P = P5a

Fig. 8 The surface Y when
P = P5b

5.6 5b

Let P = P5b. The normal fan of P is the face fan of P7b. Then YP is the weighted blow up of
P(1, 1, 2) at [0 : 1 : 0] with weights (1, 3). It has one A1 singularity and one A2 singularity.
The base locus of the pencil dP is given by 5 points, one of which is infinitely near of the
first order.

The minimal resolution Y P of YP contains three (−2)-curves. The strict transform in YP

of the four components of DP are three (−1)-curves and a 0-curve.
The exceptional curves of Y → Y P are four (−1)-curves and a (−2)-curve. The divisor

D = f −1(∞) is a I7 fibre.
The affine curve Cλ = Fλ ∩ Uσ , where σ is the cone of the normal fan of P spanned by

e1 and −e2, is given by

{
λxy + y + xy2 + 1 + 2x + x2 = 0

} ⊂ A
2. (5.11)

The curve C1 has a node at the point (−1, 0). By (5.11) this point is where there is the
infinitely near base point of dP of the first order. Then f −1(1) is a I2 fibre (the union of the
purple and the cyan curve in Fig. 8). The curve Cλ, where λ is a root of λ3 − λ2 − 18λ+ 43,
is nodal.

The sum of the topological Euler characteristic of the singular fibres different from the I7
fibre must be 5. It follows that f has singular fibres of type I7, I2, I1, I1, I1.

5.7 6a

Set P = P6a . Then YP = Y P is the smooth del Pezzo surface of degree 6, i.e. the blow-up
of P

2 at 3 distinct points. The toric boundary of YP is made up of 6 (−1)-curves, which
becomes an I6 fibre in Y .
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Fig. 9 The surface Y when P = P6a

Let us use the affine chart U of YP isomorphic to A
2 associated to the cone with rays e2

and −e1. Then Fλ ∩U is isomorphic to

Cλ = {
1 + x + y + λxy + x2y + xy2 + x2y2 = 0

} ⊂ A
2.

C3 is reduciblewith equation (1+x+xy)(1+y+xy) = 0.The two irreducible components
of C3 intersect transversally away from the toric boundary DP . Therefore f −1(3) is an I2
fibre.

C2 is reducible with equation (1+x)(1+y)(1+xy) = 0. Each pair of the three irreducible
components of C2 intersects transversally in one distinct point. Therefore f −1(2) is an I3
fibre.

With a topological Euler characteristic count, we see that there must be also an I1 fibre.

5.8 6b

Let P = P6b. The toric surface YP is the weighted blow-up of P(1, 1, 2) at [0 : 1 : 0] with
weights (1, 2). It has two A1 singularities. The base locus of the pencil dP is made up of 6
points, two of which are infinitely near of the first order.

The minimal resolution Y P of YP contains two (−2)-curves. The strict transforms of the
components of DP in Y P are two (−1)-curves, and two 0-curves.

The exceptional curves of Y → Y P are four (−1)-curves and two (−2)-curves. In Fig.
10 we draw the (−1)-curves in blue, the (−2)-curves in cyan. The divisor D = f −1(∞) is
a I6 fibre.

The affine curve Cλ = Fλ ∩ Uσ , where σ is the cone of the normal fan of P spanned by
e1 and −e2, is given by

{
λxy + 2y + 1 + 2x + x2 + y2 + y2x = 0

} ⊂ A
2. (5.12)

For λ = 2 we get

C2 = {
(x + 1)(x + y2 + 2y + 1) = 0

} ⊂ A
2;

the component {x+y2+2y+1 = 0}ofC2 meets the other component {x+1 = 0} transversely
at (−1, 0) and (−1,−2). By (5.12) the point (−1, 0) is where we have an infinitely near base
point of dP of the first order. Then f −1(2) is a I3 fibre (the triangle formed by the two purple
curves and one of the cyan curves in Fig. 10).

The curve C3 has a node at (0,−1). By (5.12) the point (0,−1) is where we have the
other infinitely near base point of dP of the first order. Then f −1(3) is a I2 fibre (the union
of the yellow curve and the other cyan curve in Fig. 10).
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Fig. 10 The surface Y when
P = P6b

The sum of the topological Euler characteristic of the singular fibres different from the I6
fibre must be 6. It follows that f has fibres of type I6, I3, I2, I1.

5.9 6c

Set P = P6c. The toric surface YP has one A1-singularity. Resolving, the toric boundary
of Y P has six components, giving rise to an I6 fibre over ∞. The base locus of the pencil
consists of six basepoints, one of which is infinitely near of the first order. Y P has a smooth
affine patch in which Fλ is given by the equation

x2y + x2 + 2x + 1 + y + y2x + λxy = 0.

By observing that P admits two different Minkowski decompositions into two pieces, we see
that (the affine patches) of F2 and of F3 are reducible, more precisely given by the equations

(1 + x + y)(1 + x + xy) = 0 and (1 + y)(1 + 2x + x2 + xy) = 0,

respectively.
By checking the other charts, we verify that the singular locus of F3 is disjoint from the

toric boundary, so that F3 gives rise to a I2 fibre. On the other hand, the two branches of F2
meet the toric divisor {y = 0} transversely at the point (−1, 0). The general member of Fλ

is tangent to order 2 to {y = 0} at (−1, 0), so that after blowing up the base locus, F2 picks
up an exceptional divisor (in cyan in Fig. 11), and becomes a I3 fibre (the purple curves in
Fig. 11 are the proper transforms of the two components of F2).

To find the other singular fibres, we can solve ∂F
∂x = 0 for x , and substitute into F = ∂F

∂ y

= 0. The resultant of F and ∂F
∂ y is a polynomial in λ with roots at λ = 2, 3 and −6. Since the

Euler numbers of the singular fibres must add up to 12, we must have an I1 fibre at λ = −6.

5.10 6d

Set P = P6d . The toric surface YP has one A1-singularity and one A2-singularity. Resolving,
the toric boundary of Y P has six components, giving rise to an I6 fibre over ∞. The base
locus of the pencil consists of 6 basepoints, two of which are infinitely near of the first order,
and one which is infinitely near of the second order. Y P has a smooth affine patch in which
Fλ is given by the equation

x3 + 3x2 + 3x + 1 + 2y + y2 + λxy = 0
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Fig. 11 The surface Y when
P = P6c

Fig. 12 The surface Y when
P = P6d

To find the singular fibres, we can solve ∂F
∂ y = 0 for y, and substitute into F = ∂F

∂x = 0.

The resultant of F and ∂F
∂x is a polynomial in λ with roots at λ = 2,3 and −6. We check that

F2, F3, F−6 are irreducible curves.
The curve F2 has a node at the point (−1, 0), with principal tangents {y = 0} (which is a

component of the toric boundary DP ⊂ YP ) and {2x + y+2 = 0} (which is transverse to the
toric boundary DP ⊂ YP ). Since at the point (−1, 0) there are an infinitely near base point
of the pencil of the first order and an infinitely near base point of the pencil of the second
order, we have that f −1(2) is the union of the strict transform of F2 (in purple in the middle
of Fig. 12) and of two (−2)-curves which lie over the point (−1, 0) (in cyan in the middle
of Fig. 12), hence f −1(2) an I3 fibre.

The curve F3 has a node at the point (0,−1), with principal tangents given by the equation
αx − y − 1 = 0, where α ∈ C is such that α2 + 3α + 3 = 0. Therefore the fibre f −1(3) is
the union of the proper transform of F3 (in yellow in Fig. 12) and the (−2)-curve over the
point (0,−1) (in cyan on the left of Fig. 12), hence it is an I2-fibre.

The curve F−6 is smooth along the base locus of the pencil andmust be singular somewhere
in YP � DP . Since the Euler numbers of the singular fibres must add up to 12, we must have
a I1 fibre at λ = −6.

5.11 7a

Set P = P7a . The toric surface YP is smooth, so Y P = YP . The toric boundary gives rise to
an I5 fibre over ∞. The base locus of the pencil consists of 7 basepoints, two of which are
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Fig. 13 The surface Y when
P = P7a

infinitely near of the first order. Y P has a smooth affine patch in which Fλ is given by the
equation

y2 + xy2 + x2y + x2 + 2x + 1 + 2y + λxy = 0

To find the singular fibres, we can solve ∂F
∂ y = 0 for y, and substitute into F = ∂F

∂x = 0. The

resultant of F and ∂F
∂x is a polynomial in λ with roots at λ = 3 and 5

2 (−1± √
5). Observing

that P admits a Minkowski decomposition into three pieces, we can factor

F3 = (1 + x)(1 + y)(1 + x + y)

as a triangle of lines singular at (0,−1), (−1, 0) and (−1,−1). At (0,−1), the curve {F3 = 0}
meets the toric divisor {x = 0} transversely, with the tangents to the two branches being
distinct, and similarly at (−1, 0). Since the general member of Fλ is tangent to order 2 at
(0,−1) and (−1, 0),wehave that, after blowingup the base locus, F3 picks up twoexceptional
curves, so that the fibre of Y corresponding to F3 is of type I5. An Euler number count now
shows that the other two singular fibres are of type I1.

5.12 7b

Set P = P7b. The toric surface YP has one A1-singularity. Resolving, the toric boundary
of Y P has five components, giving rise to an I5 fibre over ∞. The base locus of the pencil
consists of seven basepoints, two of which are infinitely near of the first order, and one which
is infinitely near of the second order. The toric surface has a smooth affine patch in which Fλ

is given by the equation

x3 + 3x2 + 3x + 1 + 2y + y2 + x2y + λxy = 0

To find the singular fibres, we can solve ∂F
∂ y = 0 for y, and substitute into F = ∂F

∂x = 0. The

resultant of F and ∂F
∂x is a polynomial in λ with roots at λ = 3 and 5

2 (−1± √
5). Observing

that P admits a Minkowski decomposition into two pieces, we can factor

F3 = (1 + x + y)(1 + 2x + x2 + y)

as a union of two curves meeting at (0,−1), (−1, 0). At (0,−1), the two components fo
F3 meet the toric divisor {x = 0} transversely, with the tangents to the two curves being
distinct. Since the point (0,−1) is where we have an infinitely near base point of first order,
F3 picks up one exceptional divisor here when resolving the base locus. On the other hand,
at (−1, 0), one curve meets the divisor {y = 0} transversely, and the other curve is tangent
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Fig. 14 The surface Y when
P = P7b

Fig. 15 The surface Y when
P = P8a

to {y = 0}. The point (−1, 0) is where we have an infinitely near base point of first order and
an infinitely near base point of second order, so that F3 picks up two exceptional divisors.
Summarising, we see that F3 gives rise to an I5 fibre at λ = 3. An Euler number count now
shows that the other two singular fibres are of type I1.

5.13 8a

Set P = P8a . Then YP = Y P = P
1 × P

1 with coordinates ([x0 : x1], [y0 : y1]) and

Fλ = {(x0 + x1)
2(y0 + y1)

2 + (λ − 4)x0x1y0y1 = 0} ⊂ P
1 × P

1.

The base locus of dP consists of 4 reduced points, namely ([1 : −1], [0 : 1]), ([1 : −1], [1 :
0]), ([0 : 1], [1 : −1]), ([1 : 0], [1 : −1]), and 4 infinitely near base points of the first order.

The surface Y is obtained by blowing up these 4 points 2 times. The situation is described
in Fig. 15: the strict transforms of the 4 components of the toric boundary of P

1 × P
1

are depicted in black, are (−2)-curves, and constitute D; there are 8 exceptional curves of
Y → P

1 × P
1: 4 of them, depicted in blue, are (−1)-curves; the remaining 4, depicted in

cyan, are (−2)-curves.
The reducible curve in purple in Fig. 15 is the strict transform of the curve {(x0+x1)(y0+

y1) = 0} ⊂ P
1 × P

1, which is the reduction of F4. The fibre f −1(4) is equal to the sum of:
2 times the two purple curves, 1 time the cyan curves. Hence f −1(4) is of type I ∗

1 .
Considering the topological Euler characteristic we deduce that there must be also a I1

fibre. Hence, the singular fibres are one I4, one I1 and one I ∗
1 .

5.14 8b

Let P = P8b. Then YP = Y P is the first Hirzebruch surface F1. The fibre D is of type I4.
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Fig. 16 The surface Y when
P = P8b

Let us use the affine chart U of YP isomorphic to A
2 associated to the cone with rays e1

and e2. Then Fλ ∩U is isomorphic to

Cλ = {
(1 + x)(1 + y + xy)2 + (λ − 4)xy = 0

} ⊂ A
2.

Clearly C4 is reducible and has two components: {1 + x = 0} with multiplicity 1, and
{1 + xy + y = 0} with multiplicity 2. These components do not intersect. We obtain that
f −1(4) ⊂ Y is an I ∗

1 fibre, (the union of the cyan and purple curves in Fig. 16).
With a topological Euler characteristic count, we see that there must be also an I1 fibre.

5.15 8c

Let P = P8c. The normal fan of P is the face fan of P4c. Then YP is P(1, 1, 2). It has one A1

singularity. Let x, y, z be weighted homogeneous coordinates on P(1, 1, 2). Then 1P is xyz,
and fP is (x + y)4 + z(2x2 +2y2 + z). The base locus of the pencil δP is made of 8 points: 3
reduced points and 3 infinitely near base points of the first order at [1 : −1 : 0], [0 : 1 : −1],
[1 : 0 : −1], and an infinitely near base pint of the second order and an infinitely near base
pint of the third order at [1 : −1 : 0].

Theminimal resolutionY P has one (−2)-curve and is the 2ndHirzebruch surfacePP1(O⊕
O(2)). The strict transforms inY P of the components of DP are two0-curves and one 2-curve.

The exceptional curves of Y → Y P are five (−2)-curves (in cyan in Fig. 17) and three
(−1)-curves (in blue in Fig. 17). The divisor D = f −1(∞) is a I4 fibre.

The curve F4 is the non-reduced curve:
{(

(x + y)2 + z
)2 = 0

}
⊂ P(1, 1, 2).

The rational curve
{
(x + y)2 + z = 0

}
intersects {x = 0} transversely at [0 : 1 : −1],

{y = 0} transversely at [1 : 0 : −1], and is tangent to {z = 0} at [1 : −1 : 0]. Then the
fibre f −1(4) is given by the union of twice the strict transform of

{
(x + y)2 + z = 0

}
in

Y (in purple in Fig. 17), once the four (−2)-curves that do not intersect F̃4, and twice the
(−2)-curve intersecting F̃4. Thus f −1(4) is a fibre of type I ∗

1 .
The sum of the topological Euler characteristic of the singular fibres different from I4

must be 8. It follows that f has fibres of type I4, I ∗
1 , I1.

5.16 9

Set P = P9. Then YP = Y P = P
2 and

Fλ = {(x0 + x1 + x2)
3 + (λ − 6)x0x1x2 = 0} ⊂ P

2.
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Fig. 17 The surface Y when
P = P8c

Fig. 18 The surface Y when
P = P9

The base locus of dP is made up of 9 points: the 3 points [0 : 1 : −1], [1 : 0 : −1],
[1 : −1 : 0], 3 infinitely near points of the first order, 3 infinitely near points of the second
order.

The surface Y is obtained by blowing up these 3 points 3 times. The situation is described
in Fig. 18: the strict transforms of the coordinate lines of P

2 are depicted in black and are
(−2)-curves; there are 9 exceptional curves of Y → P

2: 3 of them, depicted in blue, are
(−1)-curves; the remaining 6, depicted in cyan and in green, are (−2)-curves.

The curve depicted in purple in Fig. 18 is an interesting curve: it is the strict transform
of the line {x1 + x2 + x3 = 0} ⊂ P

2, which is the reduction of F6. One sees that the fibre
f −1(6) is equal to the sum of: 3 times the purple curve, 2 times the green curves, 1 time the
cyan curves. Hence f −1(6) is of type I V ∗.

Considering the topological Euler characteristic we deduce that there must be also a I1
fibre. Hence, the singular fibres are one I3, one I1 and one I V ∗.

5.17 Conclusion

The analysis of the singular fibres of the elliptic fibrations Y → P
1 constructed as in Con-

struction 4.5 from all reflexive polygons P is summarised in Table 2. The properties of
the sections described in the examples can be calculated as we do for the polytopes 3, 4a,
and 4b. In the same table we also list the corresponding number in [45, Table 8.2] and the
corresponding Mordell–Weil group.

We have the following consequences:

• if P is not GL2(Z)-equivalent to P4b nor to P5a nor to P5b, then Y is extremal andMW(Y )

is a finite cyclic group;
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Table 2 The singular fibres, the
number in [45, Table 8.2], and the
Mordell–Weil group of the
rational elliptic surface Y
constructed as in
Construction 4.5, for each
reflexive polygon P . Different
reflexive polygons can give the
same rational elliptic surface (see
Remark 5.4)

P Singular fibres of f No. MW(Y )

P3 I9, 3 × I1 63 Z/3Z

P4a , P4c I8, I2, 2 × I1 70 Z/4Z

P4b I8, 4 × I1 45 Z

P5a , P5b I7, I2, 3 × I1 47 Z

P6a , P6b, P6c, P6d I6, I3, I2, I1 66 Z/6Z

P7a , P7b 2 × I5, 2 × I1 67 Z/5Z

P8a , P8b, P8c I4, I∗1 , I1 72 Z/4Z

P9 I3, I V ∗, I1 69 Z/3Z

• if P is GL2(Z)-equivalent to P4b or to P5a or to P5b, then MW(Y ) is an infinite cyclic
group.

Remark 5.4 Another interesting feature is that, with only one exception, reflexive polygons
with the same volume give the same rational elliptic surface. The exception is for reflexive
polygons with volume 4: the rational elliptic surface of P4b is different from the rational
elliptic surface of P4a and of P4c. We explain this phenomenon below.

Remark 5.5 The classification of the singular fibres of the elliptic fibrations associated to P3
and to P4a also appears in [13, p. 504].

6 Mutations

6.1 Algebraic mutations

Let M be a lattice of rank n with dual lattice N = HomZ(M, Z) and consider the algebraic
torus TM = SpecC[N ] = M ⊗Z C

×. Let v ∈ M be primitive and h ∈ C[v⊥] ⊂ C[N ].
Following [14, 17, 19], we define the automorphism of the function field C(N ) = FracC[N ]

xu �→ xuh−〈u,v〉

which induces a birational map

μh : TM ��� TM .

We call μh an algebraic mutation, and h the factor of the mutation. If we extend v to a basis
e1 = v, e2, . . . en of M and x1, . . . , xn are the coordinates on TM which correspond to the
dual basis e∗

1, . . . , e
∗
n of N , then h is a Laurent polynomial in x2, . . . xn and μh is given by

(x1, . . . xn) �→ (h(x2, . . . xn)
−1x1, x2, . . . xn).

Let P be the toric variety defined by the fan consisting of the two rays R≥0v and R≤0v in
the lattice M . P is isomorphic to P

1 × TM/Zv , and the projection to P
1 is induced by the

lattice homomorphism M � M/Zv. P comes with two toric divisors D+ and D−. Since
HomZ(M/Zv, Z) = v⊥, h is canonically a regular function on the torus TM/Zv , and we write
Z± = π−1(V(h))∩D± ⊂ P, where π : P = P

1×TM/Zv → TM/Zv is the second projection.
Let b± : P̃± → P be the blowup of P at Z±.
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Lemma 6.1 ([17, Lemma 3.2]) μh extends to a regular isomorphism P̃+ → P̃−.

P̃+

b+

�
P̃−

b−

Z+ P P Z−

TM
μh

TM

Proof Note first that μh extends to a birational map on P = P
1
x1,y1 × TM/Zv given by

μh : ([x1 : y1], x2, . . . xn) �→ ([x1 : h(x2, . . . xn)y1], x2, . . . xn)
μh is undefined iff x1 = 0 and h = 0, i.e. exactly at Z+, and μ−1

h is undefined where y1 = 0
and h = 0, i.e. at Z−. By definition, P̃± are the subvarieties of P

1
s,t × P

1
x1,y1 × TM/Zv cut out

by the equations

x1t − y1sh = 0, y1t − x1sh = 0

respectively. Noting that [s : t] = [x1 : hy1] for ([s : t], [x1 : y1], x2, . . . xn) ∈ P̃+ away
from the exceptional divisor, it follows that the isomorphism P̃+ → P̃− defined by

([s : t], [x1 : y1], x2, . . . xn) �→ ([y1 : x1], [s : t], x2, . . . xn)
gives the required extension of μh . ��

In other words, μh is the map which blows up Z+ and blows down the strict transform of
the fibre through Z−.

6.2 Combinatorial mutations of reflexive polygons

Let us now specialise to the situation at hand, where N and M have rank 2. We make the
following definition, which is a special case of [2, Definition 5].

Definition 6.2 Let P be a reflexive polygon in the rank 2 lattice N and let v ∈ M be the inner
normal to an edge of P . Choose a primitive line segment H ⊂ v⊥ ⊂ N . For every d ∈ Z,
write Pd for the slice of P at height d with respect to v, i.e.

Pd = {x ∈ P | 〈v, x〉 = d}.
We assume that Pd is empty for d > 1 (but see Remark 6.3 below). Decompose P−1 =
R−1 + H as a Minkowski sum for some line segment R−1. Then the combinatorial mutation
of P with respect to (v, H) is defined to be the reflexive polygon

P† = conv (R−1 ∪ P0 ∪ (P1 + H)) .

Remark 6.3 This definition is usually stated in more generality; for instance see [2]. In par-
ticular, we usually do not require H to be primitive, and the condition that Pd be empty for
d > 1 is only needed to ensure that P† is again a reflexive polygon. If one works with the
larger class of Fano polygons, this condition can and should be removed.
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Fig. 19 Mutation of the polygon P4c with respect tomutation data given by v = (0, −1) and H = Newt(1+x).
The mutated polygon is SL2(Z)-equivalent to P4a

The effect of a mutation on the normal fan �P of P is easy to describe. Note that �P

contains the ray R≥0v, whereas �P† , the normal fan of the mutated polygon P†, contains
the ray R≤0v. Let �+ (resp. �−) be the fan obtained by adding the ray R≤0v (resp. R≥0v) to
�P (resp. �P† ). Assume H = conv(0, w), where w ∈ N is primitive. Define the piecewise
linear map

trop : MR → MR, m �→ m − min{0, 〈m, w〉}v
trop acts as the identity on the half space 〈·, w〉 > 0 and acts as a simple shear on the half

space 〈·, w〉 < 0. Then we see that �− is obtained by applying trop to each ray of �+. Let
D+ be the toric divisor on YP corresponding to R≥0v in �+ and D− be the toric divisor on
YP† corresponding to R≤0v in �−. Let v0 = v, v1, . . . vm be the inner normals to the edges
of P . Define Dj,+ to be the divisor corresponding to R≥0v j in �+ and Dj,− be the divisor
corresponding to R≥0trop(v j ) in�−. In particular, we have that D+ = D0,+ = D0,−. Given
h ∈ C[N ], and a fan � ⊂ M , we write V̄ (h) for the closure of V (h) ⊂ TM in Y� .

Let h = 1 + xw (note that Newt(h) = H ) and define Z± = V̄ (h) ∩ D±. Let w0 = w

(recall that w ∈ v⊥), and for each other j , choose a primitive generator w j of v⊥
j and set

h j =
{

(1 + xw j )� j for j = 0

(1 + xw j )� j−1 for j = 0

where � j the lattice length of the edge corresponding to v j . Following [17, Lemma 3.6], we
define

Z j,+ = V̄ (h j ) ∩ Dj,+

Z j,− =
{
V̄ (h j ) ∩ Dj,− if 〈w, v j 〉 ≥ 0

V̄ ((1 + xw j+〈w j ,v〉w)� j ) ∩ Dj,− if 〈w, v j 〉 < 0

Note that the divisor given by the sum of the points Z+ and the Z j+ on the toric boundary
of Y�+ is by construction the base locus of the pencil of fP . Note also that Dj,− has inner
normal v′

j = v j − 〈v j , w〉v so that a primitive generator for v′⊥
j is given by w j + 〈w j , v〉w.

It follows that the divisor given by the sum of Z− and the Z j− on the toric boundary of Y�−
is the base locus of the pencil of fP† .

We have the following result, which is a strengthening of [17, Lemma 3.6] for the very
special situation at hand. We will closely follow their proof, adapting it to our notation.

Proposition 6.4 Let v ∈ M, let w ∈ N, let H = conv(0, w) and let h, Z±, Z j,± as above.
Suppose that P and P† are reflexive polygons such that P† is obtained from P by a mutation
with respect to (v, H). Let Y (resp. Y †) be the rational elliptic surface obtained from the
polygon P (resp. P†) as in Construction 4.5. Then Y and Y † are isomorphic.
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The idea of the proof is that algebraic mutations (for Laurent polynomials in 2 variables)
and combinatorial mutations (for polygons) are actually the same thing. We try to informally
explain this now. If P and P† are related via a combinatorial mutation, then the pencils dP and
dP† are closely related. Indeed, ifwe consider the sections fP and fP† of the anticanonical line
bundles of toric surfaces YP and YP† as in Construction 4.1 and we consider their restrictions
to the tori TM ⊂ YP and TM ⊂ YP† , then these restrictions are regular functions on TM
(i.e. elements of the ring C[N ]) and they are related via an algebraic mutation TM ��� TM .
The reason is that if one applies the functor “Newton polytope” to an algebraic mutations
between Laurent polynomials then one gets a combinatorial mutation between their Newton
polytopes. This birational selfmap of the torus TM gives rise to an isomorphism between Y
and Y † (which are the rational elliptic surfaces associated to P and to P†, respectively).

Proof of Proposition 6.4 We first show that the mutation μh : TM ��� TM extends to a reg-
ular isomorphism after only blowing up Z+ on Y�+ and Z− on Y�− , and then show that
μh(Z j,+) = Z j,−. This will show that μh extends to an isomorphism after blowing up the
base locus of fP on Y�+ and the base locus of fP† on Y�− . By definition of Y and Y †, this
will then give the required result.

Abusing notation, let temporarily Y be the blowup of Y�+ along Z+ and Y † the blowup
of Y�− along Z−. LetU ⊂ Y be the union of P̃+ for v = v0 and the open subsets of the form
Uρ � V̄ (h) where ρ ranges over rays of �P not equal to R≥0v or R≤0v, andUρ is the affine
toric variety associated to the fan with only one ray ρ, i.e. the union of the dense torus and
the toric divisor Dρ . We claim that in our situation, these open sets actually cover Y . Indeed,
note that Dρ ∩ V̄ (h) = ∅ if 〈w, ρ〉 = 0, since then either xw or x−w vanishes along Dρ and
therefore V̄ (1+ xw) = V̄ (1+ x−w). So we only fail to cover codimension 2 sets of the form
Dρ ∩ V̄ (h) such that w is zero on ρ. Since we are in dimension 2, this can only happen if
ρ = R≥0v or R≤0v, so by definition of the range of ρ, there are no such sets, and therefore
U = Y .

By Lemma 6.1, μh extends to a well-defined morphism on the open set isomorphic to
P̃+, so we need to check that μh is well-defined on the remaining sets. If 〈w, ρ〉 > 0, then
h j ≡ 1 on Dρ . For any n ∈ ρ∨ ∩ N = trop(ρ)∨ ∩ N , we have that

μ∗
h(x

n) = xnh−〈n,v〉

so it follows thatμh takes regular functions to regular functions onUρ � V̄ (h). If 〈w, ρ〉 < 0,
then h j is not defined on Dρ . For any n ∈ trop(ρ)∨ ∩ N , we have that

μ∗
h(x

n) = xn(1 + xw)−〈n,v〉 = xn−〈n,v〉w(1 + x−w)−〈n,v〉

and n − 〈n, v〉w ∈ ρ∨ by definition of trop, so that this is again a regular function on
Uρ � V̄ (h). This shows that μh extends to a regular morphism on Y , and we can repeat the
same argument for μ−1

h to show that μh defines an isomorphism Y → Y †.
To complete the proof, it suffices to show thatμh(Z j,+) = Z j,−. We work by cases again.

If 〈w, v j 〉 > 0, then h|Dj ≡ 1, so μ∗
h( f j )|Dj = f j |Dj . If 〈w, v j 〉 = 0, then we must have

〈w j , v〉 = 0 as well, so that μ∗
hx

w j = xw j and hence also μ∗
h f j = f j . If 〈w, v j 〉 ≤ 0, then

(noting the definition of Z j,− in this case)

μ∗
h((1 + xw j+〈w j ,v〉w)� j ) = (1 + xw j+〈w j ,v〉w(1 + xw)−〈w j ,v〉)� j

= (1 + xw j (1 + x−w)−〈w j ,v〉)� j

Since x−w vanishes along Dj in this case, we obtain that

μ∗
h((1 + xw j+〈w j ,v〉w)� j )|Dj = (1 + xw j )� j |Dj
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and therefore that μh(Z j,+) = Z j,−, as required. ��
Proposition 6.4 explains why, with only one exception, two reflexive polygons with the

same volume give the same rational elliptic surface (see Remark 5.4). Indeed, from Fig. 19,
we have that P4c and P4a are mutation equivalent, hence the corresponding rational elliptic
surfaces are isomorphic. However, one could prove that P4a is not mutation equivalent to
P4b, and indeed their corresponding rational elliptic surfaces are different. More generally,
it is easy to verify that if P and P† are reflexive polygons with the same volume and their
volume is different from 4, then P and P† are mutation equivalent. This explains why there
are so few rational elliptic surfaces in Table 2.

7 Periods of Laurent polynomials

In this section we recall the notion of classical period of a Laurent polynomial2 and we
describe the local systems encoding the variation of cohomology of the elliptic fibrations
f : Y → P

1 studied in §5.

7.1 The classical period of a Laurent polynomial

Let (C×)n be an algebraic torus with coordinates x1, . . . , xn .

Definition 7.1 ([8, Definition 3.1]) Let g : (C×)n → C be a Laurent polynomial, i.e. an
element of the ring C[x±1

1 , . . . , x±1
n ]. The classical period of g is defined as:

πg(t) =
∫

�

1

1 − tg
� (7.1)

where

� =
(

1

2π i

)n dx1 ∧ · · · ∧ dxn
x1 · · · xn

is the normalised holomorphic volume form on (C×)n , and � = (|x1| = · · · = |xn | = 1) ⊂
(C×)n is the real compact torus. For |t | very small, we have � ⊂ (C×)n � (1 − tg = 0),
thus the integral is well defined.

The period πg(t) is solution to a differential operator L ∈ C〈t, D〉, where D = t d
dt . To

see this, one can use the fact that πg is a specialisation of certain solutions to Gel’fand–
Kapranov–Zelevinsky (GKZ) hypergeometric systems, see [8, Theorem 3.2].

Definition 7.2 ([8, Definition 3.3]) Write L ∈ C〈t, D〉 as L = ∑h
k=0 pk(t)D

k , with pk ∈
C[t]. The Picard–Fuchs operator Lg of a Laurent polynomial g is the unique operator (up
to multiplication by a constant) such that Lg · πg = 0, the integer h is as small as possible
and, once h is fixed, the degree deg pk is as small as possible. We refer to the integer h as the
order of Lg . Note that Lg only depends on πg , that is, Lg = Lg† if πg = πg† .

The local system of solutions of Lg is a complex local system of rank h on U = P
1

� S,
where S is the set of singularities of Lg .3 We denote it by Sol(Lg).

2 The notion of classical period we present here is the one that appears in the Mirror Symmetry program [8].
It also arises in more recent developments on Mirror Symmetry by Mandel [30, §1.4].
3 The operator Lg can have apparent singularities, i.e. singularities around which the monodromy represen-
tation is trivial. Here S is the set of genuine singularities of Lg .
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Remark 7.3 Write L ∈ C〈t, D〉 as L = ∑l
j=0 t

j Pj (D), with Pj (D) ∈ C[D]. A formal
series

∑∞
m=0 cmt

m is annihilated by the differential operator L if and only if it satisfies the
linear recursion relation:

∑

j≤m

Pj (m − j)cm− j = 0 ∀m ≥ 0.

By expanding 1
1−tg in power series and applying iteratively the Residue Theorem, one finds

that around t = 0 the classical period πg is defined by the power series:

πg(t) =
∞∑

m=0

c1(g
m)tm ∈ C[[t]] (7.2)

where c1 denotes the coefficient of the monomial 1. Then, one can compute the Picard–Fuchs
operator Lg by calculating enough coefficients c1(gm) of the series (7.2) to guess the linear
recursion relation.

Remark 7.4 Let g be a Laurent polynomial, letμ : (C×)n ��� (C×)n be a volume-preserving
birational map, and let g† = g ◦ μ. In general g† is not a Laurent polynomial but only a
rational function. Despite this, it still makes sense to define the period πg† as above. Then, an
application of the change-of-variables formula to (7.1) gives that πg = πg† . Observe that any
algebraic mutation, introduced in §6.1, is volume preserving. Therefore Laurent polynomials
that are mutation-equivalent have the same classical period.

7.2 Certain Laurent polynomials on reflexive polygons and their periods

Fix a reflexive polygon P in a rank 2 lattice N . In Construction 4.1 we have introduced the
TM -toric surface YP and a specific section fP of a line bundle LP on YP . This line bundle
is canonically trivial away from the toric boundary DP ⊂ YP because DP is in the linear
system |LP |, therefore the restriction of fP to TM = YP �DP can be identified with a regular
function on the torus TM = SpecC[N ], i.e. with a Laurent polynomial in C[N ]. With small
abuse of notation, we use the symbol fP also to denote this Laurent polynomial.

Y

fTM

fP

YP

A
1

P
1

In other words, fP is the Laurent polynomial in C[N ] with zero coefficient for the constant
monomial, and binomial coefficients for the monomials corresponding to the edges of P . We
can consider the classical period π fP .

The curve (1 − t fP = 0) ⊂ (C×)2 along which the integrand form in the definition of
π fP (t) (see (7.1)) is meromorphic in the intersection4

F−1/t ∩ TM � f −1(−1/t) ∩ TM .

4 The minus sign in front of −1/t is due to our conventions at the beginning of §5.
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ThePicard–Fuchs operator L fP is an irreducible order-two differential operator, thus the local
system Sol(L fP ) is an irreducible rank-two local system on the complementU = P

1
� S of

the singularities of L fP .
It follows that we have the identities:

Sol(L fP ) = grW1 R1( fPU )! Z = R1( fU )! Z (7.3)

where fPU is the restriction of fP : (C×)2 → C to the preimage of U via fP and fU is the
restriction of f : Y → P

1 to the preimage of U via f . Indeed, on the one hand, Sol(L fP )

is an irreducible summand of grW1 R1( fPU )!Z (see [8, Remark 3.4]), on the other hand,
grW1 R1( fPU )!Z = R1( fU )!Z has rank two since f is an elliptic fibration.

Example 7.5 We continue our running Example 4.7, so P = P3. Then π fP is the series:

π fP (t) =
∞∑

j=0

(3 j)!
( j)!3 t

3 j

This series satisfies the two-term recursion:

j2c3 j − 3(3 j − 1)(3 j − 2)c3 j−3 = 0 ∀ j ≥ 1

Setting P0(3 j) = j2 we have that P0(0) · c0 = 0.
Then by Remark 7.3 the Picard–Fuchs operator L fP is the irreducible order-two operator:

L fP = 1

27
· D2 − t3(D + 2)(D + 1)

Note that L fP is singular at t = 0, 1
3 , ζ · 1

3 , ζ
2 · 1

3 ,∞, with ζ a primitive third root of unity.
The point t = ∞ is an apparent singularity of L fP . This is consistent with our analysis of
the local system R1 f!Z (i.e. of the singular fibres and of the monodromy) of the family of
curves f : Y → P

1 in §5.1.

8 Mirror symmetry for del Pezzo surfaces

Here we put our explicit examples into the broader context of Mirror Symmetry for del Pezzo
surfaces. Our presentation is necessarily limited and may not include all relevant citations.5

The Fano/Landau–Ginzburg (LG) correspondence predicts that the mirror of a Fano orb-
ifold X , i.e. a canonical stack whose coarse moduli space is a Fano variety with quotient
singularities, is an LGmodel, i.e. a pair (M, w), where M is a non-compact manifold (carry-
ing a complex and a symplectic structure) and w is a complex-valued function on M called
(super)potential. At a categorical level, a formulation of the correspondence6 predicts an
equivalence between the bounded derived category of coherent sheaves on X and a suitable
analog of the Fukaya category for the symplectic fibration w : M → C – we refer the reader
to [3–5, 24] and to the references therein. At a Hodge-theoretic level, the correspondence
is interpreted as an identity between two cohomological invariants: the regularised quantum
period of X (which is a generating function for certain genus-0 Gromov–Witten invariants of

5 We apologise in advance for any omission.
6 A parallel formulation, translating the Hodge-theoretic version of Mirror Symmetry given here, is an equiv-
alence between the Fukaya category of the Fano variety and the category of matrix factorisations of (M, w),
see [4, Remark 1.2] and the references therein.
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X ), and a distinguished period of the mirror (M, w) – see [1, 2, 8–10, 15, 26, 27, 30, 37–41]
and the references therein.

When an n-dimensional Fano orbifold X has a Q-Gorenstein (qG) degeneration to a toric
variety, it is expected that the LG model M is covered by open subsets isomorphic to (C∗)n ;
the restriction ofw to each torus chart gives a Laurent polynomial. We say that a Fano variety
X is mirror to a Laurent polynomial g if the regularised quantum period of X coincides with
the classical period of g.

This is one of the most straightforward definitions of Mirror Symmetry for Fano varieties.
For related and/or more refined versions, in the case of smooth del Pezzo surfaces, we refer
the reader to the works [4, 7], which construct and study LG mirrors with proper potentials,
and to [16], which studies the relation between the infinite torus charts of the LG model –
see also [36] in the case of P

2, [43, 44] for more insights into the tropical geometry related
to Mirror Symmetry, and [18, 20–23, 31] and the references therein for more insights into
the algebraic geometry related to Mirror Symmetry.

The relation between degenerations of smooth del Pezzo surface to toric Gorenstein del
Pezzo surfaces and Mirror Symmetry is explained in the following result, which is contained
in the cited works above in different flavours and here is stated in the language and notation
used in this article:

Theorem 8.1 Let P be a reflexive polygon in the rank 2 lattice N. Let XP (resp. YP) be the
TN -toric (resp. TM-toric) del Pezzo surface associated to the face (resp. normal) fan of P.

• Let X be a general smoothing of XP; so X is a smooth del Pezzo surface with very ample
anticanonical class.

• Let Y → YP be the blowup described in Construction 4.5 and let Y → P
1 be the elliptic

fibration. Let fP ∈ C[N ] be the Laurent polynomial, with Newton polytope P, discussed
in §7.2.

Then fP is mirror to X.

So, the mirror of (the deformation family of) the smoothings of the (possibly singular)
toric del Pezzo surface XP is an open part of the elliptic fibration f : Y → P

1 constructed
in Construction 4.5 from P . One could also see that the 8 mutation-equivalence classes of
reflexive polygons 1-to-1 correspond to the 8 deformation families of smooth del Pezzo
surfaces with very ample anticanonical class (namely, P

1 × P
1 and the blowup of P

2 in at
most 6 points).

Example 8.2 (Interpretation of reflexive polygons of volume 4) We saw that P4a is mutation-
equivalent to P4c, but not to P4b. Indeed, P(1, 1, 2) = XP4c (the quadric cone) deforms to
P
1 × P

1 = XP4a (the quadric surface), but not to F1 = XP4b .

In general, one can prove that two del Pezzo surfaces which are associated to the face
fan of mutation-equivalent polygons are actually deformation-equivalent (see [25] and also
[34]).

One can also treat Mirror Symmetry for smooth del Pezzo surfaces whose anticanonical
class is not very ample: there is a toric degeneration to a non-Gorenstein toric surface and
the mirror is related to a non-reflexive polygon [1, 29]. The same is true for del Pezzo
surfaces with cyclic quotient singularities which admit toric degenerations. If there is no
toric degeneration, there are no polygons involved and no systematic mirror construction
exists. An ad hoc mirror construction for an explicit family of del Pezzo surfaces without a
toric degeneration is given in [11].
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