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ABSTRACT
Edge cloud computing is a promising programming and deployment
paradigm to empower delay-sensitive applications. By executing
close to the network edge, distributed applications can have quicker
reactions to event occurrence and consequently prompter dynamic
adaptations. In addition, recent improvements in connectivity sup-
port allow developers to benefit from heterogeneous and alternative
communication technologies (e.g., RDMA, DPDK, XDP, etc.) to meet
the requirements of network-intensive edge applications. However,
exploiting these technologies makes applications statically tailored
to a specific network interface; this significantly limits the potential
of edge cloud computing, where application components should be
able to migrate seamlessly at runtime. INSANE aims at solving that
issue by exposing a technology-agnostic middleware API that lets
developers simply specify their QoS communication requirements;
the dynamic selection of the most appropriate technology on the
currently hosting edge node is delegated to INSANE. The paper
also presents how it is possible to develop two different INSANE-
based applications (a decentralized messaging system and an image
streaming framework) with a few lines of code. Finally, an exten-
sive performance evaluation shows that our middleware adds very
limited ns-scale overhead to the raw acceleration technologies.
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1 INTRODUCTION
In the last few years, edge cloud computing emerged as an extension
of the cloud computing paradigm outside datacenters [6, 48]. This
paradigm envisions a network of small-scale cloud environments
close to data sources and promises to enable a new generation of
intelligent, data-driven applications even in latency-sensitive do-
mains, such as industrial automation, autonomous transportation,
and next-generation telco services. The availability of relatively
powerful local resources, combined with new cost reduction strate-
gies for Machine Learning (ML) algorithms such as the popular
Large Language Models (LLMs) [10, 12, 46], will eventually enable
applications to locally provide intelligent responses to external
events with µs-scale latency [5, 18, 51].

Since most of these applications are network-intensive, edge de-
velopers would greatly benefit from the adoption of state-of-the-art
network acceleration techniques to meet their stringent performance
requirements. Compared to standard networking solutions, recent
technologies like the Linux eXpress Data Path (XDP), the Data
Plane Development Kit (DPDK), and Remote Direct Memory Ac-
cess (RDMA) [30, 39, 53] can achieve very interesting performance
by minimizing overhead and by reducing data copies and context
switches on critical paths [9]. More and more often, the price of
these options in terms of higher resource usage, or even dedicated
hardware, is affordable for edge cloud platforms.

However, the adoption of network acceleration technologies in
edge cloud platforms comes nowadays with a practical yet funda-
mental problem of code portability. In fact, these technologies are
relatively hard to use for non-experienced system programmers, as
they expose different and very low-level programming abstractions
and interfaces [58]. Hence, developers tend to tailor their code to the
specific network acceleration technology used, which could be not
available at any deployment node, in particular when dealing with
edge cloud hosts that may be significantly heterogeneous. Even
worse, the hardware and software components supporting these
network acceleration techniques are in rapid evolution, thus forcing
the continuous update of the application code and endangering cost-
effective maintainability. Overall, at the current state-of-the-art,
despite their potential performance advantages, network accelera-
tion technologies are currently hard to combine with the intrinsic
dynamicity of edge cloud computing.

To address these technical challenges, this paper presents IN-
SANE, a middleware designed to make latency-critical edge cloud
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applications portable across heterogeneous edge nodes equipped
with differentiated network acceleration technologies. The key prin-
ciple of our proposed approach is to move the choice of a given
network acceleration technology from the developer to the mid-
dleware: with INSANE, developers do not have direct access to
the native APIs of the actual technology; on the opposite, they
use a general-purpose and technology-agnostic middleware API,
offering easily customizable and higher-level abstractions. In fact,
in INSANE developers express their communication requirements
through a set of Quality of Service (QoS) parameters that control
performance, resource usage, and time sensitiveness. INSANE dy-
namically and automatically maps these parameters into the most
appropriate network technology available at runtime on the em-
ployed edge nodes, thus enabling the dynamic deployment and mi-
gration of application components across possibly heterogeneous
edge locations.

By looking at its architecture, INSANE follows a micro-kernel-
inspired approach [28, 33] and consists of two primary components:
a client library that exposes the technology-agnostic API to devel-
opers, and a userspace module (runtime) that centralizes the host
networking functionality and exposes it as a service to the local ap-
plications. The INSANE runtime abstracts the commonmechanisms
of network acceleration techniques, such as zero-copy transfers, into
a novel and technology-agnostic framework for high-performance
host networking. Moreover, it enables specializations via plugins
(datapaths), one per specific technology. This design is particularly
suitable for edge cloud environments because it enables developers
to isolate their applications (e.g., in containers) and to transparently
attach them to different network options depending on runtime
conditions and situations. About performance, the paper reports
an extensive quantitative evaluation of the INSANE runtime, show-
ing how its performance-oriented design and implementation only
introduce ns-scale overhead on network operations.

The remainder of the paper presents the technical characteristics
and in-depth technical insights about INSANE. Section 2 introduces
our definition of edge cloud computing. Sections 3 and 4 provide
an overview of the network acceleration technologies considered
in INSANE and of the related literature. Section 5 details the IN-
SANE API and runtime. Section 6 reports our experience (and the
associated quantitative performance results) with the deployment
of INSANE-based application components over two different edge
testbeds. Our extensive performance benchmarking has demon-
strated that INSANE-based applications can achieve an average
round-trip as low as 4.9 µs, and an average bandwidth utilization
as high as 86.9Gbps, when using DPDK. Section 7 proves the ease
of use of our middleware API, by describing how it is possible to
develop two edge cloud applications, i.e., a decentralized messaging
application and a streaming one, with a few lines of INSANE code,
with extremely good performance results.

2 EDGE CLOUD COMPUTING
The success of the concept of Internet of Things (IoT) and the conse-
quent digital transformation of virtually any application domain are
pushing toward an evolution of the cloud computing paradigm. The
pervasive availability of connected devices increasingly requires ap-
plications to consume, analyze and generate all kinds of data from

a variety of sources with heterogeneous performance constraints,
which can be only partially fulfilled by the traditionally centralized
cloud infrastructures, originally designed mostly to support offline
computations on large data batches.

To support latency-critical applications that need to provide on-
line timely answers to external events, a recent trend is to extend
cloud infrastructures beyond their traditional boundaries, by in-
cluding a hierarchy of virtualized computing resources physically
located between traditional cloud datacenters and data sources. The
resulting computing model is a continuum of virtualized resources,
spanning from traditional centralized datacenters to the network
edge [6, 48]. Across the continuum, providers can offer cloud-like
features, for example by assigning slices of the resources to differ-
ent applications, by guaranteeing isolation, and by distributing the
workload at all levels of the infrastructure. In this context, com-
panies are increasingly moving performance-critical application
components physically close to data sources, thus significantly
improving response times and service interactivity.

This paper will mainly target two core components of the con-
tinuum, the traditional core cloud datacenters and the edge cloud
datacenters. Whereas the concept of core cloud datacenter is well
known in literature, the more recent idea of edge cloud is still not
widely recognized. In this paper, with the term edge cloud we refer to
small-scale computing environments deployed in the same location
as edge devices (e.g., IoT devices) but managed as full-fledged cloud
platforms. Edge clouds are increasingly common in many domains,
such as telco (Multi-access Edge Computing, MEC [1]), industrial
automation (e.g., factory-local server racks [16]), autonomous trans-
portation, etc. The kind of resources available in these scenarios
are comparable to those in core clouds, although at a smaller-scale,
powerful enough to run fairly heavy workloads and serve as a first
hop to interact with the smaller devices, thus ensuring minimal
response latencies from local instances of critical services.

Motivated by this trend, our research work aims at simplify-
ing and supporting the development of high-performance edge
services, by considering that edge resources may be far more het-
erogeneous than in large-scale traditional cloud datacenters and
thus the portability of edge cloud services is still an open research
challenge.

3 NETWORK ACCELERATION
TECHNOLOGIES

Communication links are rapidly evolving to support higher band-
width and lower latency, largely outpacing the evolution rate of
other host resources (e.g., core speeds, cache sizes, etc.). The main
consequence is that the operating system kernel-level networking
stack, designed under the assumption of slower I/O operations,
is no longer able to keep up with the available access link band-
widths and latencies [9]. Although this trend started in datacenter
environments, the problem is especially relevant for edge com-
puting scenarios, as datacenter-like resources are available at the
network edge and latency requirements become extremely demand-
ing [48, 51]. Major sources of network overhead in the OS kernel
are data copies, inefficient cache usage, protocol processing delays,
and context switches [9, 19, 42].
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Technology Kernel integration API Zero-copy CPU consumption Dedicated Hardware

Kernel TCP/IP In-kernel AF_INET Socket No Per-packet No
XDP In-kernel AF_XDP Socket Yes Per-packet No
DPDK Kernel-bypassing RTE Yes Busy polling No
RDMA Kernel-bypassing Verbs Yes Hardware offloading Yes

Table 1: A comparison between the main options for end-host networking in the edge cloud.

To fully exploit the communication capabilities of modern hard-
ware, new forms of highly efficient end-host networking have
emerged. Three of them, in particular, are increasingly popular:
the Linux eXpress Data Path (XDP), which provides fast in-kernel
packet processing [53]; the Data Plane Development Kit (DPDK)
and Remote Direct Memory Access (RDMA), which bypass the ker-
nel and allow the direct interaction between userspace and Network
Interface Cards (NICs) [30, 39].

All these technologies follow a similar approach to improve the
network performance: for example, they remove data copies by
letting the hardware NIC directly access the memory of user appli-
cations (zero-copy transfers). However, the mechanisms to provide
these advanced features substantially differ across technologies, in
terms of API, resource usage, hardware requirements, and perfor-
mance. Such diversity reflects the original specific purposes they
were built for: for example, XDP and DPDK for fast packet process-
ing, RDMA as a networking technique for HPC. Table 1 reports the
main differences among these technologies; in the following, we
discuss them with specific focus on zero-copy transfer capability.

The Linux kernel introduced XDP as the lowest layer of its net-
work stack, located within the driver of network devices. At this
stage, XDP is able to execute user-provided code (eBPF programs)
for each packet, including forwarding the packet itself to and from
a userspace socket. In this way, XDP allows to send and receive
packets without involving the other network stack components,
thus avoiding expensive operations such as memory allocation for
incoming packets. The price to pay is that some amount of CPU is
spent to forward each packet between the driver and the socket. To
use XDP, developers have first to open a socket of type AF_XDP and
a shared memory area to allow the zero-copy packet writes/reads
(directly or through higher-level libraries such as libxdp [56]). Then,
users send packets by placing data into the memory area and writ-
ing a packet descriptor to the socket. Once received the descriptor,
the eBPF program will send the packet on the network without
copies. Packet reception works in the same way, but roles are re-
versed. If the network card supports it, it is possible to offload the
eBPF program execution to the hardware. Therefore, this approach
bypasses the kernel TCP/IP network stack, achieving efficient zero-
copy and low-overhead data transfers. In turn, however, the user
has to provide its own userspace network and transport protocols
(e.g., mTCP [22]).

DPDK and RDMA, instead, take a step further and completely
bypass the OS kernel. This approach results in a reduced scheduling
overhead, because there is no context change between userspace
and kernel processes on the critical datapath. DPDK, in particu-
lar, consists of a set of C libraries that let users directly interact
with a userspace version of the network device drivers (Poll Mode

Drivers, PMD). Hence, also in this case the user has to provide its
own network protocol stack. The user and the userspace driver
exchange packet data on a shared memory area called mempool.
To send a packet, the user will provide to the driver a pointer to
the appropriate memory area. On the receive side, to minimize the
communication overhead, DPDK dedicates one or more threads
(lcores), each pinned to a separate core, to busy poll for new mes-
sages. Detected packets are placed by the driver into the shared
memory, and the corresponding pointers are returned to the user.
Although this high resource consumption makes DPDK extremely
fast, it might not be suitable for all the network edge environments.

To this end, RDMA provides a more resource-efficient approach.
RDMA is a network model that allows a process on one machine to
directly access the memory of another process on a remote machine.
Unlike XDP and DPDK, this model avoids the need for the user
to provide userspace network and transport protocols. To achieve
exceptional performance, including high throughput (∼200Gbps)
and low latency (<1 µs), RDMA offloads the network operations
directly to the network card (NIC). Thus, a compatible network card
is required. After registering a memory area with the network card
(memory region), users establish a remote connection by opening a
Queue Pair (QP), which comprises a couple of work queues for send
and receive operations. Indeed, RDMA operations are asynchronous
by nature: a node can issue a series of service requests to be executed
by the hardware, pushing them to the proper queue. Those requests
include the transfer of portions of local memory to remote memory
regions, or vice versa. The network card enforces these requests in
a transparent way, by implementing in hardware protocols such
as RDMA over Converged Ethernet (RoCEv2) [3]. There are two
possible kinds of transfers: two-sided, which requires the receiver
to actively listen to incoming data, and one-sided, which allows
a process on one machine to asynchronously access a region of
application memory on a remote node. A great advantage of the
latter is that the remote CPU is not involved at all in the network
operation, thus making the latter kind of operations generally faster.

As these technologies become increasingly common to acceler-
ate the end-host networking of general-purpose systems, INSANE
abstracts their common design principles and designs a technology-
agnostic userspace network stack that offers typical system features,
such as memory management for zero-copy transfers, efficient
packet processing, and different packet scheduling strategies. A
plugin-based architecture allows the specialization of such features
for each supported network acceleration technology, thus offering
developers access as a service to the most appropriate technology
for the dynamically selected context, without the hassle of dealing
with heterogeneous and low-level interfaces. However, INSANE
only provides access to the minimum set of common functions
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among the supported technologies: for example, INSANE plans to
support RDMA only through the use of two-sided operations. IN-
SANE is not designed to support applications with more advanced
needs, such as the use of one-sided RDMA or higher degree of
control on the system resources. Lower-level interfaces are more
suitable for those applications (§ 4).

4 RELATEDWORK
INSANE enables edge cloud applications to dynamically bind to
the high-performance networking capabilities available on possibly
heterogeneous hosts. We achieve this goal through an innovative
approach that combines a technology-agnostic API and a general-
purpose runtime framework, specifically designed for the edge
cloud environment. While building upon previous research, our
solution stands out from prior works in this area, which consider
these two aspects separately and primarily within the traditional
datacenter setting.

In the space of agnostic network API, both libfabric [41] and
Demikernel [58] provide a uniform interface on top of heteroge-
neous network acceleration technologies, although at different ab-
straction layers. The libfabric library enables RDMA applications
to run independently of the presence of the necessary supporting
hardware. Developers code against a transparent set of communica-
tion primitives, which the library translates either to native RDMA
operations, if the suitable support is locally available (e.g., RDMA
NIC), or to kernel-based TCP/IP, although non-RDMA transports
are intended mostly for debug purposes. The libfabric interface is
very low-level and is generally adopted by experienced developers
that need full control on system resources (e.g., memory manage-
ment) and benefit from the most advanced features of the native
technology (e.g., HPC, RDMA databases, RPC libraries, etc.).

On the opposite, Demikernel targets standard cloud users as it ex-
poses a higher-level interface, specifically an extension of the stan-
dard POSIX primitives, that lets applications submit asynchronous
I/O operations. Demikernel implements these primitives through
a set of userspace libraries, each specialized for a different I/O
technology (DPDK, RDMA, and kernel networking are supported).
These libraries offer typical OS services (memory management,
I/O scheduling, network stack) to users when the OS kernel is by-
passed, according to the library OS approach also explored by some
previous literature [4, 24, 43, 45].

Sharing the samemotivation, the INSANE client library exposes a
high-level uniform interface, but it introduces two relevantly novel
aspects compared to the above works. First, it offers a higher-level
interface that simplifies the development of typical edge applica-
tions (§ 5.1), thus aligning more effectively with our goals of ease of
development and portability compared to reworking interfaces of
commodity OSs. Second, whereas libfabric and Demikernel require
the users to choose which I/O technologies to bind to the interface
in a static way (at compile time), our QoS-based solution delegates
this choice to the middleware, which dynamically selects the most
appropriate binding among those available at deployment site.

From an architectural perspective, INSANE does not follow the
library OS approach. On the contrary, our work is influenced by the
microkernel-inspired model introduced by TAS [28] and Snap [33].

Although these works do not target heterogeneous network acceler-
ation technologies, they create a userspace module that centralizes
standard host networking and offers it as a service: applications post
I/O operations through shared-memory channels, and the module
executes the necessary network processing. TAS adopts this model
to provide a fast path for the TCP protocol in the context of RPC
workload; Snap is more general and allows the definition of custom
packet processing modules (called engines). This approach retains
the advantages of a centralized network stack even in presence
of kernel-bypassing technologies: an efficient management of all
the OS resources for all the local applications, including memory
allocation, cache-efficient thread scheduling, and the support to
transparent software upgrades. In the edge cloud, this model pro-
motes reduced resource usage and higher flexibility: applications
can dynamically attach to the network service on the local host,
without the need to instantiate additional resources. Whereas the
use of uncoordinated OS libraries would instantiate a technology-
specific datapath per application, requiring dedicated resources
(e.g., at least one CPU core), our centralized design instantiates
each datapath at most once per physical host, within the INSANE
runtime. Therefore, INSANE offers a novel solution to easily and
transparently access heterogeneous networking technologies, but
it is also designed to efficiently answer to the resource consumption
requirements of edge cloud environments.

Some acceleration technologies require a userspace network
stack (§ 3); a populated line of previous work addressed this need [8,
22, 25]. Although these solutions might be integrated into our mid-
dleware, they are usually tailored for a specific network technology,
and would require profound adjustments to fit our internal design.
When needed, INSANE defines a custom andminimal network stack
that can introduce only ns-scale overhead on packet processing.

5 INSANE: A UNIFORMMIDDLEWARE API
In this paper, we propose INSANE, a novel middleware designed
and optimized for the emerging class of edge cloud applications
that combine intelligent logic, stringent performance requirements,
and heterogeneous deployment scenarios. INSANE lets developers
declare their communication requirements through high-level QoS
policies and uses them as hints to dynamically bind each communi-
cation flow to the most appropriate network acceleration technol-
ogy available locally. Thus, INSANE effectively decouples applica-
tion code from the specific technology dynamically found at the
participating nodes; a very relevant capability in cloud continuum
scenarios; in addition, it maintains high network efficiency, while
also easing code development and portability. INSANE consists of
two main components: a runtime, which represents the middleware
core and must be in execution on each participating host, and a
client library that exposes the API to the applications, allowing
them to interact with the runtime.

In the following, we describe more in detail the INSANE API and
how it can ease the portability of latency-sensitive and network-
intensive edge applications (§ 5.1 and § 5.2). Then, we provide
an overview of the runtime architecture to understand how the
INSANE primitives are mapped to heterogeneous network tech-
nologies (§ 5.3).
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5.1 INSANE API
The INSANE client library exposes a minimal interface that meets
three key requirements. First, developers must find it easy to use, in
contrast with the currently available interfaces of network accelera-
tion techniques that require them to know a myriad of complex and
low-level details. At the same time, the interface must be expressive
enough to enable the efficient implementation of heterogeneous
domain-specific abstractions on top of INSANE. Furthermore, the
interface must be agnostic to the underlying transport protocols
and only expose high-level policies to inform the middleware about
the quality requirements of different data flows.

To keep the interface as simple as possible, the INSANE API
defines few basic concepts. A communication channel represents
a unidirectional data flow among endpoints, which can interact
locally or through the network. A channel may only exist within
a stream, an abstract concept that associates a set of quality re-
quirements to one or more channels. In the context of a stream,
a communication channel is established among endpoints called
sources, which produce data, and sinks, which consume data. Each
channel is uniquely identified by an application-provided channel
id, that users must pick according to their higher-level business
logic. For example, an INSANE-based Message-oriented Middle-
ware (MoM) would typically assign channel ids according to topic
names. Figure 1 shows an example of an INSANE channel: sources
and sinks opened within the same stream andwith the same channel
id will communicate on the same channel.

The concept of the stream is fundamental in this interface. Only
sources and sinks belonging to the same stream can exchange data,
because the stream defines the set of quality requirements for the
communication. Depending on those requirements, INSANE will
transparently map the channel to a technology-specific concept,
e.g., a kernel-based socket. When sinks and sources are co-located,
we enable direct data forwarding using shared memory.

Figure 2 shows the complete INSANE APIs. Any application
must first open a communication session with the local runtime.
Then, it can open one or more streams by specifying a set of quality
options, which Section 5.2 will cover extensively. Once a stream
is open, it is possible to create sinks and sources to define the
desired communication channels using the channel id mechanism
previously described.

All the available operations on sinks and sources are asynchro-
nous in order to ease zero-copy communication. To send a new
message from a source, users have to first require a memory area
(buffer) from the runtime. Then, the application can write the mes-
sage into that buffer and emit it, thus signaling to the middleware
that data is ready to be sent. This operation returns a token that can
later be used to retrieve the outcome of the operation. Similarly to
Demikernel [58], we do not offer after-write protection: developers
must not modify the buffer content once it has been emitted. On
the sink side, we offer three different ways to receive data. Users
can register a callback to be called every time a new message is
received for that sink. Alternatively, users can directly call the
consume operation, which can be configured to either return imme-
diately, regardless of the presence of new data, or to block until new
data is available. In any case, to preserve the zero-copy semantic,
new data is returned as a pointer to a memory area borrowed from

Stream

Source
(id=4)

Sink
(id=4)

Figure 1: An INSANE channel is created between sources and
sinks with the same channel id within the same stream.

1 /* Open and close a session */

2 int init_session();

3 int close_session();

4
5 /* Stream */

6 stream_t create_stream(options_t opts);

7 void close_stream(stream_t stream);

8
9 /* Source APIs */

10 source_t create_source(stream_t stream, int channel);

11 void close_source(source_t source);

12 buffer_t get_buffer(source_t src, size_t size, int flags);

13 int emit_data(source_t src, buffer_t buffer);

14 int check_emit_outcome(source_t source, int id);

15
16 /* Sink APIs */

17 sink_t create_sink(stream_t stream, int channel, data_cb cb);

18 void close_sink(sink_t sink);

19 int data_available(sink_t sink, int flags);

20 buffer_t consume_data(sink_t sink, int flags);

21 void release_buffer(sink_t sink, buffer_t buffer);

Figure 2: The INSANE API.

the runtime. Hence, as soon as the user finishes processing the
data, it should return the memory to the middleware by explicitly
releasing that buffer.

We believe that this set of primitives answers our design goals of
simplicity, flexibility, and transparency toward multiple network ac-
celeration options. At the same time, this API is expressive enough
to allow the definition of very different higher-level interfaces. To
demonstrate this claim, in Section 7 we report our experience in
implementing and deploying two very different applications, a de-
centralized messaging queue and an image streaming framework.
Both the applications were easy to develop and demonstrate a sig-
nificant performance advantage from the selective acceleration
capabilities guaranteed by INSANE.

5.2 INSANE QoS policies
A key contribution of this work is the possibility to associate a set
of quality requirements to each communication channel through
the concept of stream. These requirements are defined in terms of
high-level Quality of Service (QoS) policies, thus effectively mak-
ing INSANE transparent toward the low-level network details. In
line with our goal of maximum simplicity, we reduce the num-
ber of available options to the essential. INSANE currently defines
three possible quality options that can be associated to a stream:
the degree of datapath acceleration, the level of tolerable resource
consumption, and the time-sensitive constraints of a data stream.

The datapath acceleration policy signals to the middleware whe-
ther a specific data flow requires any network acceleration or the
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regular kernel-based networking would suffice. In case the accel-
eration is needed, edge developers must have control over the
associated cost. For this purpose, users can set the resource con-
sumption policy to specify whether resource usage is a concern to
take into account when mapping data flows to specific technologies.
For example, DPDK requires a high CPU consumption that may be
unacceptable in some contexts. Finally, a third policy allows users
to characterize data flows depending on their time sensitiveness.
This policy specifies the packet scheduling strategy for the packets
of that flow. By default, a FIFO scheduler handles all the packets
and sends them to the network as soon as the user code emits them.
Instead, if the stream is labeled as time sensitive, we offer a schedul-
ing strategy compliant with the Time-Sensitive Networking (TSN)
standard [14] to provide a deterministic network behavior (§ 5.3).

As soon as a new stream is created, INSANE maps the stream
quality requirements to the most appropriate network technologies
available in the dynamically determined deployment environment,
according to a user-configured mapping strategy. If no custom
strategy is provided, INSANE acts as follows. If no acceleration is
required, the kernel-based UDP protocol is always used. Otherwise,
RDMA is the best alternative, because it offers the best network
performance for a low resource usage (network operations are of-
floaded to the NIC). However, RDMA is typically used in bare-metal
deployments and is not yet available in most cloud settings. Hence,
INSANE alternatively maps user code to DPDK if resource usage is
not a concern, otherwise to XDP. In fact, XDP is generally slower
but does not require a set of CPU cores to continuously spin to
detect the arrival of new packets [27]. Because this mapping is per-
formed at runtime by INSANE, triggered by the creation of a stream,
the user code always remains unchanged, independently of the ac-
tual deployment execution. In any case, INSANE considers these
policies as hints about the application performance requirements
and adopts a best-effort attempt to build the mapping between qual-
ity and actual technologies. Thus, if acceleration is required but no
acceleration technology is available, INSANE will fall back to the
standard kernel-based network stack and warn the user about this
decision.

Following a precise design choice, INSANE does not offer addi-
tional communication control policies. Thus, for example, there is
no built-in way to define a specific fault tolerance semantic. The
adopted approach is that developers are responsible to design mech-
anisms as part of their own custom logic. In this way, we leave them
free to easily re-implement existing solutions on top of INSANE
with little effort. This is in line with manymiddleware systems, such
as the OMG DDS [17], that already assume a best-effort network
and provide their own solutions to build additional guarantees [40].

5.3 INSANE runtime
This section discusses the architecture of the INSANE runtime. In
particular, we focus on the novel abstractions that we designed to
uniform the network operations of heterogeneous technologies,
which we use as a support for the primitives discussed in the previ-
ous sections.

According to the microkernel-inspired design (§ 4), the client
library and the runtime framework of INSANE reside in separate
processes. The advantages of this model in terms of flexibility,
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Figure 3: The INSANE Architecture.

dynamicity, and address space isolation come at the price of a
necessary inter-process communication (IPC) between the two
components, which is absent in systems that run their own logic in
the same polling thread. However, not only the associated overhead
is small in our case of zero-copy networking [33], but many factors
contribute to minimize it while also retaining the advantages of
this model: in particular, state-of-the-art lock-free queues [31, 54],
combined with modern multi-core processors and IPC optimization
techniques [20, 35, 52].

The INSANE runtime has four main components, represented in
Figure 3: a memory manager, a packet scheduler, a pool of polling
threads, and a set of datapath plugins. The memory manager is
the most important element, because it effectively implements the
abstraction that decouples the homogeneous interface offered to
the applications from the highly heterogeneous details of each
transport technology. As noted in Section 3, all the considered tech-
nologies adopt a similar approach to achieve the goal of zero-copy
data transfers: they place data to send or receive in a shared mem-
ory area registered with the NIC for Direct Memory Access (DMA).
Starting from this insight, we designed a technology-agnostic mech-
anism for zero-copy communication based on sharedmemory. Then,
we implement this abstraction differently for different transport
options. At the system startup, the memory manager reserves a
memory area (memory pools) to contain application data. That area
is divided into memory slots, uniquely identified within the pool
by a slot id. When a new application connects to the runtime, it
maps part of that area in its own address space. From then on, the
application and the memory manager communicate by exchanging
slot ids that refer relevant parts of that area.

Importantly, our design based on sharedmemory enables applica-
tions in cloud platforms to efficiently leverage network acceleration
technologies, which currently are difficult to integrate within con-
tainers and virtual machines without harming either their dynam-
icity (e.g., live migration) or performance [21, 29, 44]. By enabling
applications to dynamically (re)attach to a local instance of the
runtime, INSANE offers the innovative option of Network Acceler-
ation as a Service, while also fulfilling the edge cloud requirements
of application portability and seamless migration in the resource
continuum (§ 2). We will discuss more about this topic in § 8.
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Figure 4: The INSANE communication flow.

Figure 4 illustrates the communication flow between a sink and a
source. As a preliminary operation, each application must connect
to the runtime (init_session). Then, to send a new packet, the
application requires to the manager a memory slot ( 1 ). If a free
slot exists, the manager sends the corresponding slot id to the client
library, which provides the application with a pointer to the associ-
ated memory area. Thus, the user can directly write the packet con-
tent in the shared memory. Once finished writing, the application
emits the packet ( 2 ) and the INSANE client library communicates
the corresponding slot id to the runtime. Once received the token,
the packet scheduler schedules the packets for send according to
the time sensitiveness policy. By default, our scheduler adopts a
FIFO strategy. For time sensitive data, the scheduler supports the
Time-Sensitive Networking (TSN) standard, implementing the IEEE
802.1Qbv time-aware scheduler [36], specifically designed for edge
soft real-time applications. On the reception side, the mechanism
works symmetrically. The NIC places the newly arrived packets in a
designated memory area. When the manager detects them, it sends
the relevant slot ids to the client library, which offers applications
a pointer to the same memory are where data has previously been
placed ( 3 ). Once done, the application must return the token to
the runtime to make it available for subsequent operations ( 4 ).

The implementation of this general mechanism for the different
network technologies is responsibility of the datapath plugins. Each
plugin, one per available network acceleration technique, must
define a send and a receive operation. The send operation sends
the scheduled packets to the currently bound network, using the
low-level API of each specific technology. Before that, in the case of
DPDK and XDP, the packet processing engine processes the outgoing
packets through the userspace network protocol stack; this step is
unnecessary for kernel-based networking, which uses the kernel
stack, and for RDMA, which offloads the task to the hardware.

On the reception side, the datapath plugins use the technology-
specific API to check for newly arrived packets. Such new packets
are first processed by the packet processing engine, if necessary,
and are then dispatched to the relevant applications according to
the previously described mechanisms.

The execution of the datapath logic is responsibility of a pool of
polling threads. The number of these threads and their mapping to
the datapath plugins is flexible and configurable depending on the
user needs in terms of performance, scalability, and resource con-
sumption. Depending on performance goals, one or more threads
can be dedicated to a specific datapath, thus leveraging cache lo-
cality and packet processing parallelism. On the opposite, when
resource consumption is paramount, INSANE can be configured to
run more than one plugin on a thread, at the cost of a lower per-
formance. In any case, to avoid scheduling overhead, each polling
thread is pinned to a different processor core; at the same time,
threads are automatically paused when idle.

6 INSANE EVALUATION
Our evaluation of INSANE focuses on two aspects. On the one hand,
we show that our abstraction layer introduces minimal overhead
compared to each native communication technology. We compare
INSANE to Demikernel [58], the most complete and state-of-the-art
alternative option to transparently access kernel-bypassing tech-
nologies, and show that the additional dynamicity provided by IN-
SANE comes with comparable or even better performance. On the
other hand, we prove that the ease of use and flexibility of our API
significantly simplifies the design of very different edge-oriented ap-
plications. In particular, we build a decentralized Message-oriented
Middleware (MoM) and a streaming application, and we compare
them to similar edge applications in terms of both performance and
development complexity.

For this evaluation, we build a C prototype of the INSANE run-
time that supports two network technologies, namely kernel-based
UDP and DPDK. The integration of RDMA and XDP is ongoing
work, but we prioritized the two former options because these are
the most commonly adopted in the edge cloud ecosystem: unlike
RDMA, they do not require special hardware, are easy to use from
cloud environments, and yet are representative of the differences
between kernel-based and kernel-bypassing networking.

Our implementation of INSANE and INSANE-based applications
is publicly available at https://github.com/MMw-Unibo/INSANE.

6.1 Experimental setup
We evaluate INSANE in two different testbeds. The first is a local
setup that matches a typical edge cloud environment. In this setting,
two nodes are directly interconnected in order to minimize the
overhead of network operations and magnify the impact of INSANE
on the measured metrics. The other is a public cloud infrastructure

Testbed OS CPU RAM NIC Switch

Local Ubuntu 22.04 18-core Intel i9-10980XE @ 3.00GHz 64GB Mellanox DX-6 100Gbps —
Public cloud Ubuntu 22.04 32-core AMD 7452 @ 2.35GHz 128GB Mellanox DX-5 100Gbps Dell Z9264F-ON

Table 2: Setup of the local and public testbed for INSANE evaluation.

https://github.com/MMw-Unibo/INSANE
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Figure 5: Round-Trip Time (RTT) for increasing payload sizes.
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(CloudLab [13]), where we reserved two nodes interconnected by a
switch. The hardware and OS specifications of the nodes in both
the testbeds are reported in Table 2. For DPDK, we used v22.11.

To maximize performance, we increase the Linux socket buffers
to allow receivers to keep up with the highest possible send rate.
To reduce OS-induced latency and scheduling variability, we pin
application processes to cores, and map each datapath plugin to
exactly one polling thread (§ 5.3).

6.2 Latency and throughput benchmarks
To demonstrate that INSANE introduces a minimal overhead com-
pared to using each native technology directly, we build a bench-
marking application for latency and throughput. For latency we
used a simple ping-pong application designed to highlight any over-
head in the send and receive pipeline. It measures the round-trip
time (RTT) of a single message sent from one host and immediately
echoed back by a remote receiver. We repeat this test for 1 million
messages. The throughput benchmark is a stress test application
that evaluates how much of the available network bandwidth is
practically achievable when a sender continuously sends 1 million
messages at full speed to a remote receiver. We measure throughput
as the amount of payload data (goodput) received in the time unit.
We run every throughput experiment 10 times. We implement the
benchmarking application in three versions: one that uses UDP
sockets, one that uses native DPDK, and one that uses the INSANE
API. First, even for such a simple benchmarking application, IN-
SANE minimizes the amount of code necessary for networking, as

Interface Lines of Code (LoC) Increase

INSANE 189 —
UDP socket 227 +20%
DPDK 384 +103%

Table 3: LoC to implement the benchmarking application.

Table 3 summarizes, without requiring developers to understand
the details of each technology.

Figure 5a and Figure 5b report the latency of INSANE for increas-
ing payload sizes when using two different datapath acceleration
QoS: slow, which maps network operations to UDP sockets, and fast,
which maps to DPDK. Overall, we note that there is no significant
difference among different payload sizes. In the local testbed, we
observe that INSANE fast keeps very close to raw DPDK, with an
increase of the median RTT values of at most 1 µs. The same gap
separates INSANE slow from the pure kernel-based UDP bench-
mark. Hence, we can conclude that INSANE introduces on average
a 500 ns overhead on each UDP packet both in fast and slow mode.
In the public cloud setup, we note a general increase in RTT values,
as we expect, because of the introduction of a switch between the
two hosts. According to our measurements, the switch adds on av-
erage 1.7 µs and packets must traverse it twice. However, INSANE’s
latency increases more than expected, adding around 1.7 µs to the
raw DPDK median values. We investigate this increase by breaking
the latency value into its main components in Figure 6. In addition
to the expected increase of the network latency, we also observe a
significantly higher time spent by INSANE in the send and receive
operations. The culprit of this behavior is that the processor on
the cloud servers is significantly slower than in our local testbed1.
Although INSANE tries to minimize the processor intervention on
the critical path, the requirement to support multiple applications
running as separate processes makes it hard to further reduce the
amount CPU cycles required for internal operations. This over-
head could be reduced by parallelizing the datapath plugins over

1https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html
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Figure 7: Average RTT of raw network technologies, INSANE, and Demikernel for 64B payload size.

64 256 1024 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Payload size (Bytes)

B
an

d
w
id
th

(G
b
p
s)

Catnap UDP

Catnip UDP

Kernel UDP

Raw DPDK

INSANE slow

INSANE fast

(a) Throughput for increasing payload size.

1 2 4 6 8
0

5

10

15

20

25

30
25.98 25.66

23.8 22.78

15.66

Number of sinks
B
a
n
d
w
id
th

(G
b
p
s)

(b) Throughput for increasing number of sinks (1KB)

Figure 8: Throughput benchmark for INSANE and the other reference systems.

multiple polling threads in order to better leverage the multi-core
capabilities of modern processors. In Section 8 we further elaborate
on this point.

To put our INSANE performance in perspective, in Figure 7 we
expand our latency experiments to include a wider range of sys-
tems, reporting the average RTT for 64B payload size, so to consider
a challenging case where any protocol overhead is magnified. In
particular, we include two versions of the pure UDP socket bench-
mark, one with blocking receive, and one that continuously polls
a non-blocking socket. Without surprise, we note that the former
is much slower than the latter, as process wake-ups are costly in
terms of latency. Furthermore, we implement the same test using
Demikernel [58], binding it to two of the libraries it offers: Catnap,
which maps network operations to kernel-based sockets, and Cat-
nip, which maps to DPDK. Those libraries correspond to INSANE
with slow and fast datapath QoS respectively. We observe that Cat-
nap is slightly slower than the native socket application in both
testbeds. INSANE slow has almost the same performance as Catnap
in our local setup, and 1.9 µs slower on average in the cloud setting.
If we consider DPDK, we observe the same trend discussed in the
previous paragraph. On the local testbed, INSANE fast adds 690 ns
to Catnip’s latency, which in turn adds 820 ns to the raw DPDK
performance. When we consider the performance in the cloud, all
the latencies increase. However, unlike INSANE fast, Catnip pre-
serves almost the same gap to raw DPDK. Indeed, Demikernel has
a much simpler logic to deliver the payload to applications, as it is
a library compiled with the application. INSANE fast suffers more
from the slower processor, but its runtime still shows a competitive

latency performance despite the additional dynamicity it can offer
to multiple concurrent applications.

Although latency is a crucial metric in edge cloud, applications
also expect to fully leverage the available network bandwidth when
they need to quickly transfer big data payloads, e.g., camera images
for remote analysis. In this case, we found no significant perfor-
mance difference between the two testbeds; hence, we only report
data for the local setup. Figure 8a evaluates the throughput of IN-
SANE fast and INSANE slow, comparing it with the corresponding
Demikernel libraries, with kernel-based UDP sockets, and with
raw DPDK for increasing payload size. To avoid the fragmentation
overhead, we enable jumbo frames for payloads bigger than 1.5KB.
We observe that raw DPDK can quickly saturate our NIC, as it does
not perform any data processing. Despite the need for inter-process
communication, INSANE fast shows the second best performance,
reaching peaks of 90Gbps for the biggest payload; whereas Catnip
shows a significantly lower throughput. This difference reflects a
different use of the underlying DPDK library: Catnip is optimized
for latency [58] and sends one packet per time on the network. Con-
versely, INSANE adopts a form of opportunistic batching [23, 26] at
sender side: messages ready for send are sent as a batch, but never
waiting for a fixed-size batch to fill up. This way, we reach the
highest throughput under intense traffic without harming latency
significantly, as shown in the previous paragraphs. Indeed, when
we do not adopt this technique, like in INSANE slow, we observe
that Demikernel and INSANE perform in the same way.

Finally, one of the distinguishing points of INSANE is that it can
support multiple applications on the same host at the same time. In
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Figure 9: Performance benchmark for Lunar MoM and other reference systems.

Figure 8b we repeat the throughput test by increasing the number
of sinks connected to the runtime on the receiver host, listening
on the same channel id, but from separate applications. The plot
reports the average throughput received by all the sinks for 1KB of
payload size. We note that for up to 6 concurrent sinks, the average
received throughput drops only by 8 % compared to the single-sink
solution. A significant degradation starts to emerge with 8 sinks
(−39 %), a number of applications that we consider unusually high
for a typical edge context.

Overall, our experiments demonstrate that INSANE can achieve
µs-scale latencies and tens of Gbps bandwidth utilization, show-
ing competitive or even better performance than other kernel-
bypassing systems, on different environments, despite the added
dynamicity, portability and flexibility it offers to developers. Even
better, we showed that INSANE can serve multiple concurrent ap-
plications with no or minimal performance degradation.

7 EVALUATION OF INSANE-BASED
APPLICATIONS

A key design goal for INSANE is to ease the development of a broad
set of applications with heterogeneous requirements in edge cloud
nodes (§ 5). To demonstrate that our interface effectively answers
to this purpose, we use the INSANE API to build two typical edge
applications, a message-oriented middleware (Lunar MoM) for data
distribution and a data streaming framework (Lunar Streaming). We
demonstrate that INSANE enables the complete portability of these
applications across various network technologies while delivering
better performance than widely adopted similar systems.

7.1 LUNAR MoM
Heterogeneous systems at the network edge usually rely on mes-
sage queuing systems or Message-Oriented Middleware (MoM)
systems for asynchronous, low-overhead communication, ease of
implementation, and scalability. Depending on the deployment sce-
nario and the application needs, MoMs may require a centralized
broker to disseminate messages, or they can be entirely decen-
tralized for increased scalability. In both cases, MoMs implement
a publish-subscribe communication pattern. The main concepts

in this model are topics, which represent abstract named queues,
and publisher and subscribers as producers and consumers of those
queues.

We built a simple decentralized MoM, called LunarMoM, using
the INSANE API. Mapping the MoM abstractions to the INSANE
primitives is straightforward: the resulting application, consisting
of just 135 lines of C code, defines two main primitives to publish or
subscribe on a topic, lunar_publish and lunar_subscribe. The
publish function takes the topic name, which is then hashed to
obtain the topic id, and a callback function as arguments, and opens
a INSANE source if this is the first publication for that topic. Then,
it gets a buffer from INSANE, executes the user callback to fill it,
and sends it. Under the hood, INSANE will forward the messages
to the reachable remote INSANE runtimes and deliver them to the
subscribed sinks. The subscriber function is symmetric.

Our demonstration of LunarMoM, a decentralized messaging
system built using the INSANE API, shows that it offers an effi-
cient option for the edge cloud. To evaluate its performance, we
compared LunarMoM against two widely used decentralized mes-
saging systems in that environment, OMG DDS and ZeroMQ. We
configured these systems to use a UDP transport and conducted
two performance benchmarks: a ping-pong test, to measure the
round-trip time between a publisher and a remote subscriber, and
a throughput test, to evaluate effective bandwidth utilization. The
tests were conducted on the local testbed described in § 6.1.

The results, as shown in Figure 9a, indicate that LunarMoM has
the lowest latency in both fast (using DPDK) and slow (using UDP)
modes. Compared to the raw INSANE performance (Figure 5a),
we observed that LunarMoM adds ns-scale overhead to INSANE,
resulting in stable low latency. The performance of Cyclone (+45 %)
is comparable to that of systems that use blocking sockets in their
receiver thread, although with higher variability. ZeroMQ’s UDP
support, on the other hand, adds additional 20 µs latency compared
to Cyclone. Similar considerations apply to the throughput evalua-
tion (Figure 9b), where DPDK allows LunarMoM to significantly
increase bandwidth utilization, while Cyclone and LunarMoM slow
have similar behaviour. ZeroMQ showed unstable performance and
was excluded from the graph.
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In conclusion, our experimentation demonstrates that INSANE
dramatically simplifies the development of a lightweight messag-
ing system that outperforms currently available alternatives, with
ns-scale latency overhead compared to the INSANE interface. Ad-
ditionally, LunarMoM is portable across all supported networking
technologies, making it a promising solution for data dissemination
at the network edge. LunarMoM is still a prototype, but we believe
it shows how existing messaging systems could leverage INSANE
to significantly improve their performance and portability.

7.2 LUNAR Streaming framework
In edge cloud scenarios, we often have to deal with applications
involving real-time streaming and analysis of huge amounts of data,
such as intelligent applications based on ML or image processing.
Especially in an industrial environment, we can easily be faced with
a type of application where, during the manufacturing process, a
series of cameras take images of the product during different stages
of production. These images are usually transmitted in real-time to a
central computing node. If defects are detected in the semi-finished
product, the control systems might interact with the production
line to reactively handle the failure.

Such real-time streaming applications can be designed in a client-
server manner, where one or more clients ask to receive a stream
of data, and the server sends them adapting the bit-streams ac-
cording to network and QoS requirements [55]. To support QoS
requirements, streaming applications frequently exploit data frag-
mentation and/or compression techniques. For our prototype, called
Lunar Streaming, we use only fragmentation, leaving compression
as future development, as it is outside the scope of our framework.

Lunar Streaming exposes a simple set of APIs, starting with
lnr_s_open_server to open the server-side application and with
lnr_s_connect that allows clients to connect to it. Thus, the server
application must implement a simple interface by exposing two
methods: get_frame and wait_next. The first allows to get a new
frame, while the second pauses the server waiting for the next frame.
To start streaming, the server application must invoke lnr_s_loop
which performs the following steps: (i) requesting a new frame (ii)
fragmenting and sending the frame and (iii) waiting for the next
frame to restart the loop until the end of streaming.

To test Lunar Streaming we implemented a simple application
that streams raw images, i.e., for each image frame we send RGB
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Figure 10: Lunar Streaming framework application.

Resolution HD Full HD 2K 4K 8K

Size (MB) 2.76 6.22 11.6 24.88 99.53

Table 4: Size of the images sent in the streaming benchmark.
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Figure 11: Benchmark for Lunar Stream and sendfile.

values for every single pixel (Figure 10). We use sample images of
different common sizes (Table 4) and compare our INSANE-based
implementation with one that uses the sendfile primitive. Since
sendfile sends data directly from a file descriptor loaded into
the kernel without involving user space, it actually implements a
sender-side zero-copy technique. For this reason, we believe it can
be a good reference for our framework.

To demonstrate the performance of our streaming prototype,
we evaluate: (i) the number of frames per second (FPS) the client
application can handle (Figure 11a), and (ii) the average end-to-end
latency for frame transmission (Figure 11b), i.e., the time between
the server application sending a frame (including fragmentation)
and the client application receiving the reconstructed frame. As we
can see Lunar streaming allows very good results in both latency
and FPS, especially in the fast case. For the latter, the system con-
sistently performs better than the sendifle version. In particular,
for images up to 4K, we can support frame rates above 100 FPS,
and even above 1000 FPS in the case of low-quality images. Latency
never exceeds 10ms for images up to a maximum resolution of
4K, making Lunar streaming an excellent candidate in applications
such as tactile internet [49] or real-time simulations (e.g., cloud
gaming [34]).
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Finally, as briefly anticipated, streaming applications usually
send various media (i.e., video and images) in a compressed format.
For example, HVEC, VP9, or the newer VVC are often used as video
CODECs [32], which are transmitted using protocols such as RTP
or WebRTC [7]. Implementing a full stack of streaming protocols is
beyond the scope of this work, but even just by sending raw images,
we obtained excellent results. Hence, we emphasize that INSANE
can be effective in accelerating existing streaming frameworks [2].

8 FUTURE DIRECTIONS
The design and deployment of INSANE raised several research
questions of broad interest as the system community shifts to con-
sider the network edge as an integral part of the cloud computing
ecosystem. In that setting, the emerging networking technologies
promise to enable data-driven intelligent applications even far from
centralized datacenters, but they also bring additional heterogene-
ity in an ecosystem that already struggles to define standard system
practices. We believe that INSANE is a first step to answer those
questions, but many problems remain unsolved. In the following,
we summarize the most important open challenges.
Cloud integration. Network acceleration technologies are increas-
ingly available in both core and edge cloud infrastructures, despite
scalability and security concerns from major providers [21, 29, 47].
In this context, the design of INSANE decouples the application
code from the specific network acceleration technologies and, as
a consequence, may already enable forms of Network Acceleration
as a Service: by deploying the INSANE runtime in a co-located
container, cloud applications can already attach to it via shared
memory and obtain transparent access to the network acceleration
options available at the specific deployment site. We plan to extend
INSANE toward a complete integration with cloud platforms.
Thread scheduling strategies. Our evaluation of INSANE maps
each datapath plugin to a dedicated polling thread. Although this
choice limits the resource usage of the system, it also puts pressure
on the receive pipeline, which must (i) process incoming packets
through the network stack, and (ii) insert a token into the right appli-
cation queue. In our evaluation, we found that a single sender easily
overflows a single-core sink. Indeed, receive operations are CPU-
bounded, not ideal for high-performance networking. One promis-
ing solution is to map the datapath plugins to multiple polling
threads, as INSANE allows to do (§ 5.3). In this paper, space limita-
tions prevented us to deeper investigate the performance impact of
different threading strategies, but we plan to include that evalua-
tion in future and more extended versions of our work. We believe
that the detailed study in [33] on a similar system would provide
a useful reference to guide our activities. An alternative approach
that we plan to explore is the possibility to offload all or part of
time-consuming receive-side operations to hardware devices (Smart
NICs [15, 37], Data Processing Units - DPUs [38]) which will soon
become commodity hardware even for edge cloud nodes.
End-to-end zero copy transfers. When large amounts of data
must be sent on the network, a form of fragmentation, at some level
of the network stack, is unavoidable. However, although some of the
considered network technologies support zero-copy packet frag-
mentation, only RDMA is currently capable also of zero-copy packet

reconstruction. In all the other cases, the receiver must copy the pay-
loads of the incoming fragments to the final memory destination.
For that reason, to preserve a true zero-copy semantic, the INSANE
prototype currently does not support UDP/IP packet fragmenta-
tion, and we resorted to jumbo frames for tests with the biggest
payload sizes, following the same approach of Demikernel [58],
or to application-level fragmentation. Had we decided to support
fragmentation within the network stack, we would have choked the
receive pipeline with multiple data copies for reconstruction. The
definition of a technique for zero-copy data reconstruction remains
an open research challenge.
Packet scheduling. A careful scheduling of network operations
is crucial for high-performance systems like INSANE [11, 58]. The
INSANE prototype handles all packets with a FIFO strategy. To
further reduce network latency for time-critical applications, we
plan to introduce a form of packets prioritization by adopting a
TSN-compliant scheduling strategy, and we already provide a QoS
to specify this option on our streams. Such a strategy was available
only in the Linux kernel until recent userspace implementation
proposals [16], which may be easily integrated within INSANE.
Security. We leave a study of the security implications of INSANE
to future work. To provide security guarantees with high network
performance is probably our biggest challenge, especially because
the security issues of acceleration technologies are still a hot re-
search topic [47, 50]. Worse, the network edge is a far less controlled
environment than a datacenter. The centralized approach of IN-
SANE makes it easier for infrastructure providers to control the
whole networking activity. Recent work on modern programmable
network hardware suggests ways to further increase the security of
kernel-bypassing network acceleration [57], which we are currently
considering in our ongoing work to further extend INSANE, with
no expectations of strong degradation of the excellent performance
results of our middleware.

9 CONCLUSION
INSANE is a middleware for the edge cloud that integrates het-
erogeneous communication technologies such as kernel UDP/IP,
XDP, DPDK, and RDMA. INSANE offer a minimal yet flexible API
that eases the development of portable edge applications, in partic-
ular of latency-critical, network-intensive code (e.g., ML-powered
applications). The user only needs to specify a set of high-level
communication requirements, so that INSANE can map them at
runtime to the most appropriate network technology available in
the dynamically-determined deployment environment.
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