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Modal and non-modal linear stability analyses are employed to investigate the effect
of internal and external heating on disturbance temporal growth for the Darcy-Bénard
convection with throughflow. A matrix forming approach is employed for both purposes,
where the generalized eigenvalue problem is built using the Generalized Integral Trans-
form Technique. Although the disturbances equations are not self-adjoint, the non-modal
analysis indicates that there is no transient growth. Hence, any disturbance growth in
time must be induced by modal mechanisms. An absolute instability analysis reveals that
viscous dissipation has a destabilizing effect and introduces new modes that are eventually
destabilized by increasing the Péclet number. Beyond critical values of the Péclet number,
where codimension-two absolutely unstable points exist, these modes become more
unstable than the classical mode found in the absence of viscous dissipation, which is
stabilized by an increasing Péclet number. This internal heating mechanism generated by
viscous dissipation is so strong at high enough Péclet numbers that instability becomes
possible through heating from above.

Key words: mixed convection; thermal instability; non-modal stability; transient decay;
modal instability; asymptotic growth

1. Introduction

Transition from stability to instability in fluid flows is a subject widely explored in
the literature. Bénard (1901) was among the first to study it experimentally when he
observed the appearance of convection cells in a thin layer of fluid after heating it from
below beyond a certain critical temperature difference. The first explanation for this
phenomenon was proposed by Rayleigh (1916), who used a linear stability analysis to
introduce buoyancy as the driving mechanism, which is the reason why this became
known as the Rayleigh-Bénard problem. Many decades later, however, Pearson (1958)
also used linear stability analysis to propose a second explanation. He pointed out that
the small film thickness employed by Lord Rayleigh essentially renders buoyancy effects
negligible and, in turn, promotes surface tension gradients as the driving mechanism.

1 Email address for correspondence: Isbalves@id.uff.br
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The natural convection described by the Rayleigh-Bénard problem also occurs in a fluid
saturated porous medium, in which case it is known as the Darcy-Bénard problem. Horton
& Rogers Jr (1945) as well as Lapwood (1948) were the first to investigate its linear
instability. Prats (1966) was the first to extend it to include a horizontal throughflow
and, hence, to consider mixed convection.

The above mentioned studies focus on the asymptotic behavior of individual normal
modes in either time or space. This eigenvalue, or modal, based description is the
traditional way linear stability analyses have been performed (Chandrasekhar 1961;
Drazin & Reid 1981). Some key developments, however, have appeared since then.
When the disturbance is local, i.e. it does not vary in the direction of the longitudinal
flow, at least in an approximate sense, convective and absolute instability concepts
took over the previous temporal/spatial understanding (Huerre & Monkewitz 1990).
When the disturbance is no longer local, parabolized stability (Herbert 1997) and global
stability (Theofilis 2011) concepts can be employed. Adjoint equations (Luchini & Bottaro
2014) also deserve special mention, since they have been connected to absolute instability
in both discrete (Lesshafft & Marquet 2010) and continuous (Alves et al. 2019) senses.
Many of these techniques have been applied to both natural and mixed convection in
porous media. Most case focus on convective instabilities (Nield & Bejan 2006), but there
have been some recent attempts to investigate absolute instabilities as well (Barletta 2019;
Barletta et al. 2020; Schuabb et al. 2020).

On the other hand, the short time/space behavior of superposed normal modes can
also be relevant. This non-modal description is key in explaining transition in modally
stable flows under subcritical conditions (Schmid 2007). In general, Rayleigh-Bénard type
problems are self-adjoint and non-modal growth is not possible. This can change, however,
in the presence of throughflow. Biau & Bottaro (2004) studied the effect of stable thermal
stratification in shear flows whereas Sameen & Govindarajan (2007) studied the effect of
wall heating in channel flows from the perspective of both modal and non-modal linear
growth. Finally, Jerome et al. (2012) studied non-modal growth in both Rayleigh-Bénard-
Poiseuille and Rayleigh-Bénard-Couette problems. In the context of porous media flows,
only a few studies have dealt with the non-modal linear growth of disturbances, but they
focused on density-driven instability (Rapaka et al. 2008, 2009).

One of main goals of the present paper is to fill this gap, investigating modal as well
as non-modal mechanisms for linear disturbance temporal growth that might exist for
flows in porous media. Another goal is to do so while also considering the influence of
viscous dissipation effects, often neglected due to their small magnitude. Gebhart (1962)
has identified, however, the parametric conditions under which viscous dissipation can
be relevant for natural convection in pure fluids. Furthermore, mixed convection renders
viscous dissipation effects even more important due to the added forced component. In
the context of porous media, the former was shown to be true by Nakayama & Pop
(1989), where Murthy (1998) extended this study to show that this is also true for
the latter. According to Gebhart (1962), viscous dissipation effects can be dominant
in many scenarios. He mentioned processes under a strong gravitational field (e.g. on
larger planets), devices operating at high rotative speeds (e.g. internal cooling of turbine
blades) as well as processes with large characteristic lengths (e.g. geophysical flows). Nield
(2000) included particle bed nuclear reactors among possible interesting applications.
Furthermore, Magyari et al. (2005) pointed out that many natural convection processes
could be qualitatively altered by viscous dissipation effects even when they appear
negligible. The characteristic dimensionless parameter quantifying the strength of the
viscous dissipation effect for buoyant flows is today known as Gebhart number, Ge,
which can be interpreted as the ratio between the kinetic energy of the flow and the heat
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transferred to the fluid (Gebhart 1962). Gebhart (1962) and, after him, Turcotte et al.
(1974) were the first to propose it, although they did so using a different name, i.e., the
dissipation number. Nevertheless, they showed that such a parameter is usually small,
but can achieve order unity under the aforementioned scenarios.

The effect of viscous dissipation on the onset of instability for several mixed convection
problems in porous media was investigated in a series of studies. Barletta et al. (2009a)
and Storesletten & Barletta (2009) were the first to study the particular case where the
internal heating generated by viscous dissipation is the sole cause of destabilization. In
their studies, no additional thermal forcing was imposed either internally or externally,
namely through the walls or otherwise. The combined effect of internal heating through
viscous dissipation and external heating through different thermal boundary conditions
was studied by Barletta & Storesletten (2010) as well as Barletta et al. (2010) and
Nield et al. (2011). Nield & Barletta (2010) also explored two different models for
the viscous dissipation effect. Viscous dissipation effects on non-Darcy models for flows
in porous media were explored by Barletta et al. (2009b) and Barletta et al. (2011b)
whereas on thermal non-equilibrium, heterogeneity and visco-elastic fluid models were
explored by Barletta & Celli (2011), Barletta et al. (2011a) and Alves et al. (2014),
respectively. Roy & Murthy (2015) investigated the Soret effect on the double diffusive
convection, where the convection is occurring just by means of viscous dissipation
effects. Roy & Murthy (2017) studied the influence of viscous heating on the transition to
instability induced by an inclined temperature gradient. More recent, Barletta & Mulone
(2021) have showed that the classical problem studied by Horton & Rogers Jr (1945)
and Lapwood (1948), in the presence of viscous dissipation, is conditionally stable from
a nonlinear point of view.

These studies show that the presence of viscous dissipation has a significant impact on
the onset of instability for flows in porous media when compared to the classical scenario
where this effect is absent (Prats 1966). For instance, throughflow destabilizes the onset
of instability in the presence of viscous dissipation but it has no effect on this onset in the
absence of viscous dissipation. This destabilizing role of the viscous dissipation effects
on the transition to convective instability appears also in the case of buoyant flows in
clear fluids, as it was demonstrated by Requilé et al. (2020) in their study. The transition
from convective to absolute instability, on the other hand, is stabilized by throughflow in
the absence of viscous dissipation (Hirata & Ouarzazi 2010). This is due to the fact that
disturbances require more thermal energy from the base flow to be able to propagate
upstream as the throughflow becomes stronger. The same is not true in the presence of
viscous dissipation, although this is not yet entirely clear in this case (Brandao et al.
2014).

This literature review shows that linear disturbance temporal growth for convective
porous media flows is not yet fully understood from an asymptotic (modal) perspective
in the presence of viscous dissipation. Furthermore, this is not understood at all from
a transient (non-modal) perspective, with or without viscous dissipation. Hence, the
present paper explores both issues in detail in an attempt to fill these gaps. This is done
here by investigating the possibility of transient disturbance growth, first by looking at
eigenvector orthogonality, and then by performing a non-modal stability analysis based on
optimal initial conditions. Then, an absolute instability analysis is performed in order to
understand the time asymptotic disturbance behavior. Section 2 shows the mathematical
formulation of the physical problem, as well as the derivation of the linear disturbance
equations. Section 3 shows the methodologies considered here to solve the eigenvalue
problem, and also the particular issues of the non-modal and modal analyses. Section 4
discusses the results while in Section 5 addresses the most relevant conclusions. Finally,
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the reader can find a convergence analysis in Appendix A and more details about the
eigenvector matrix analysis in Appendix B.

2. Mathematical formulation

Fluid flow through a horizontal porous channel with a vertical temperature gradient
induced by external heating from below and an internal heating induced by viscous
dissipation is considered. The channel walls, located at z = 0, 1, are assumed impermeable
with prescribed temperatures, where the lower boundary is hotter than the upper one.
Momentum transfer is modeled by Darcy’s law, where thermal equilibrium is assumed
between solid and fluid phases for the local energy balance equation. Furthermore, viscous
dissipation is taken into account and the Oberbeck-Boussinesq approximation is assumed
valid. Therefore, the governing equations of the present problem can be written as

V-u=0 , (2.1)
u=RaTk—-VP and (2.2)
oT Ge

il VT =V?T4+ —1u- 2.

5 +u-V VT + i (2.3)
which is subject to the boundary conditions

w=0 and T=1 at z=0 and (2.4)
w=0 and T=0 at z=1 |, (2.5)

where the following dimensionless quantities are employed

u b'e t*

u = 5 X=-— , t= ’ 2.6
X" /h b oh*? /X 20
p* T - 1T
P = —— and T = *7(1 5 (27)
Xk Ty — T3
leading to the following definitions for the Rayleigh, Gebhart and Péclet numbers,
Ra= L90IG — TR o 9N g pe = Ml (2.8)
/J’*X* ’ c* X* ?

where the superscript asterisk denotes a dimensional quantity. In particular, h* is the
distance between channel walls, u* = {u*, v*, w*} is the velocity vector, x* = {z*,y*, 2*}
is the coordinate vector, p* is the dynamic viscosity, k* is the permeability, t* is the time
coordinate, T is the temperature, p* is the fluid density at the reference temperature
Ty, ¢* is the specific heat of the fluid, x* is the effective thermal diffusivity, P* is the
gauge pressure with respect to the hydrostatic pressure, g* is the gravity acceleration and
B* is the fluid thermal expansion coefficient. Furthermore, o is the dimensionless ratio
between the volumetric heat capacity of the saturated porous medium and pjc*. Finally,
the lower wall temperature is 7}, the upper wall temperature is 73 and the uniform
streamwise velocity is ug.
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2.1. Asymptotic expansion

The first step employed here to study the aforementioned problem is to assume an
asymptotic expansion can be used to decompose its dependent variables as

u(xvyv th) = llb(Z) + Eud(xa y,z,t) + 0(62) ) (29)
T(557y727t) :Tb('z) +€Td($7y727t)+0(€2) and (210)
P(m7yazvt) :Pb(Z)—i-ePd(aj,y’Z,t)—FO(GQ) ) (211)

where the subscripts b and d stand for base flow and disturbances, respectively, while e
represents a dimensionless disturbance amplitude parameter. Two key assumptions are
implicit to this expansion. First, z is the only inhomogeneous coordinate. This implies
that the base flow can be written as a steady-state that depends on z alone. Second,
disturbance amplitudes are small, i.e. ¢ < 1. This implies that all nonlinear terms,
represented by the O(e?) terms, are negligible.

2.2. Base flow
Equations (2.1)-(2.5) have such a steady-state and it is given by
u(Z)={Pe,0,0} , (2.12)
GePeé?
Ty(z)=1—2+ 5 Ta (1-2)z and (2.13)

GePe?
12

where P, is a reference pressure. Two things are worth noting about the effect of viscous
dissipation on this steady-state. First, it can only act in the presence of throughflow
(Pe # 0), because the steady-state is a rest state otherwise. Second, it can create a
stable temperature stratification near the hot wall, but only when the throughflow is
strong enough (Pe > 1). Finally, the steady pressure field is nonlocal, i.e. it has a linear
dependence on the x coordinate. However, only the pressure gradient appears in the
governing equations. Hence, this steady pressure gradient depends on z alone, where its
component in the x direction is constant and responsible for the generation of a steady
streamwise throughflow.

(3—22)2% (2.14)

R
Py(x,2) = Py — Pex + %(2 —2)z+

2.3. Linear disturbances

Substituting Eqs. (2.9)—(2.11) into Egs. (2.1)—(2.5), cancelling out the O(e®) steady
terms and neglecting the O(e?) nonlinear terms, leaves the O(e) linear terms that form
the linear and homogeneous disturbance equations

V-ouy=0 | (2.15)
u; = RaTyk — VP; and (2.16)
T,
%+llb'VTd+ud'VTb:V2Td+2%ub'ud ) (2.17)
which is subject to the linear and homogeneous boundary conditions
wg=Ty=0 at z=0 and (2.18)

wg=Ty;=0 at z=1 |, (2.19)
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where viscous dissipation has a direct effect on the linear disturbances through the last
term in Eq. (2.17) when Ge > 0, besides the indirect one through the base flow.

Disturbances are further assumed to behave as normal modes in the homogeneous
directions, namely x, y and with respect to time ¢. In other words,

{ug, Ty, Py} = {(2),T(2), P(2)} expli(az + By — wt)] + cc. (2.20)

where c.c. stands for complex conjugate. Furthermore, o and 8 are the streamwise and
spanwise complex wave numbers, respectively. Their real parts can be used to calculate
the real wave lengths whereas their imaginary parts are the spatial damping rates. Finally,
w is the complex angular frequency. Its real part is the real angular frequency whereas
its imaginary part is the temporal growth rate.

Substituting Eq. (2.20) for the normal modes into Egs. (2.15)—(2.19) for the linear
disturbances leads to the differential eigenvalue problem

iat(z)+ifo(z)+a'(2) =0 (2.21)

iaP()+a(z)=0 , ifP()+d(z)=0 , P(2)+w(z)=RaT(z) , (2.22)

i(Pea —w)T(2) + Ti(=) () = T7(2) — (® + B T(2) + 2 S8 a) | (2.23)
which is subject to the following normal mode boundary conditions

w=T=0 at z=0 |, (2.24)

w=T=0 at z=1 . (2.25)

It is convenient to rearrange this system into a single ordinary differential equation,
which can be written in terms of the normal disturbance velocity as follows

" (2) — i (Pea —2i (@ + %) —w) 0" (2) — 2i a Ge Pe ' (2) + (o + 5%)(i Pe o +
(@® 4+ B?) —iw+ RaTi(z) — Ge RaTy(z) + Ge Pi(2))w(z) =0, (2.26)
which is a fourth-order ordinary differential equation. Hence, it requires two additional

boundary conditions. They can be obtained from the relation between temperature and
normal velocity disturbances, derived from Egs. (2.21) and (2.22) and given by

; (0 + B2)ib(2) — 0" (2)

T(2) = 2.27
(Z) RG(O[2 + 52) ) ( )
and, hence, Eq. (2.26) is subject to the following boundary conditions
w=0 and @' =0 at z=0 |, (2.28)
w=0 and @"=0 at z=1 . (2.29)

3. Analysis methodology

Equation (2.26) and its boundary conditions (2.28) and (2.29) is solved here using a
matrix forming approach. It transforms the ordinary differential equation into a system of
algebraic equations that is recast as a generalized eigenvalue problem. The main difference
between modal and non-modal analyses lies on which information they extract from this
eigensystem to model linear disturbance growth. On one hand, a modal analysis evaluates
the eigenvalues of the generalized eigenvalue problem. On the other hand, a non-modal
analysis evaluates their respective eigenvectors. When doing so, the former models the
behavior of a single disturbance, in the case of convective instability, and of a disturbance
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wavepacket, in the case of absolute instability. On the same token, the latter models the
behavior of superposed disturbances.

One consequence of this process is that a modal analysis provides the time asymptotic
behavior of linear disturbances. In the case of a convectively unstable flow, an excitation
source is capable of promoting the spatial growth of the targeted disturbance downstream
of its location. In the case of an absolutely unstable flow, a disturbance present in
the initial condition grows spatially both downstream and upstream of its original
location. In other words, the former displays the extrinsic dynamics typical of a noise
amplifier whereas the latter displays the intrinsic dynamics typical of an oscillator.
Another consequence of this process is that a non-modal analysis provides initial transient
behavior induced by weighted disturbance superposition. Commonly known as transient
growth, it can predict a temporary disturbance superposition energy growth even when
each individual disturbance being superposed is time asymptotically stable. All the steps
employed by each approach to the eigenvalue problem are described next.

3.1. Integral transform pair

A truncated series solution for the vertical velocity disturbance is first proposed in the
form of the inverse function

W(z) =D W () (3.1)
where the number of terms N; in this summation series must be chosen high enough to

guarantee a user prescribed tolerance.
The orthogonal basis function is obtained from

() = Nb(2) (3.2)

which is a Sturm-Liouville type problem subject to boundary conditions
Ym =19l =0 at 2=0 and (3:3)
Y =Yl =0 at z2=1 . (3.4)

One can then define the orthonormal basis function

~ ~ Um(z)  sinh(A,)sin(Ay,2)
wm(z) - m - m ’ (3'5)

which satisfies the normalized versions of Eqgs. (3.2) and (3.3), as well as eigenvalues

Am =mm (3.6)

which allows Eq. (3.5) to also satisfy the normalized version of Eq. (3.4), where the
normalization function is defined as

o cos(2Am) + cosh(2A,,,) 1 7 (37)
4 2
in order to guarantee Eq. (3.5) is orthonormal, i.e.
1
| )b ds = b (38)
0

where ), ,, is the Kronecker delta.
Finally, multiplying Eq. (3.1) by the orthonormal eigenfunction in Eq. (3.5), integrating
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the result over the domain length and using Eq. (3.8) leads to
1 ~
Wy, = / Ym(2)W(2)dz (3.9)
0
which defines the integral transformed vertical velocity disturbance.

3.2. Matriz forming

The procedure that transformed Eq. (3.1) into Eq. (3.9) can be applied to Eq. (2.26)
as well. In other words, multiplying it by the orthonormal eigenfunction, integrating the
result over the domain length and using the orthonormality condition leads to

/zﬁm(z)u?””(z)dz—i(Peoz—?z'(aQ—i—BQ)—w)/ O (2)0" (2)dz —
0 0
iaGe Pe Nmzuﬁ'z 2 — (a? 2) Ge Pe? szzuAJzz .
2iaGePe [ D (s = (0 + ) Ge Pe [ 2 (it + (3.10)
%(az+B2)<G6Pe2+2i(Peosz—i(OzZJrBZfRa))>/O Y (2)0(2)dz =0

where the first term can be further simplified to yield

/ d}m Am/ dZ - / 1/}//” UA) dZ B )\4 / d}m dZ - )‘nzwm ’ (311)

after using the boundary conditions in Egs. (2.28), (2.29), (3.3) and (3.4) when integrating
by parts, Eq. (3.2) to eliminate the eigenfunction derivative and Eq. (3.9). Equation (3.10)
now can be simplified using Eq. (3.11) above, as well as the inverse / transform pair given
by Egs. (3.1) and (3.9), respectively, to yield

> Apntin=0 or A-W=0 |, (3.12)
n=1

where the coefficients A, ,, of the matrix A formed are defined as

1
A = (x\fn + 5(042 + %) <G€P€2 + 23 (Pea —w—i(a? 4 5% - Ra)))) Omn (3.13)

—i(Pea—2i(a®+ %) —w)AB)

m,n

—(a® + B8°) Ge Pe? ASEL —2iaGe Pe A®

m,n

which depends one the integral transformed coefficient matrices

1 ~ ~
Al = [ bn@in)as (3.14)
0
AP = / D z)dz and (3.15)
gg)n ¢m 1; ) (3.16)

whose integrals can be obtained analytically.
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3.3. Non-modal analysis

Extending the inner product between two functions u(z) and v(z) used earlier to define
the real orthogonal eigenfunctions in Eq. (3.8) towards complex functions, i.e.

1
<u,v>=/ wv*dz (3.17)
0
where * denotes complex conjugate, enables one to write

which defines £, the adjoint of w. In the above integral relation, L is the linear operator
associated with Eq. (2.26) and, hence, £ is the respective adjoint linear operator. It is
obtained using integration by parts to derive the r.h.s. of Eq. (3.18) from its Lh.s. while
imposing appropriate boundary conditions to maintain homogeneity. Doing so, yields

E"(2) —i{Pea—2i(a®+ %) —wr () + 2iaGe Pe £'(2)
+(a? + )i Pea+ (a + §%) —iw+ RaTy(2)} () = 0, (3.19)

which means operators L and £ are identical, except for their third term having opposite
signs. In other words, Eq. (2.26) is no longer self-adjoint when both viscous dissipation
(Ge > 0) and throughflow (Pe > 0) are present. This implies that transient growth is
indeed possible.

In order to quantify transient growth, an energy metric must be defined. The most
common choice for incompressible isothermal flows is the kinetic energy. Otherwise, when
temperature gradients become relevant, one can use instead

E(t):/o (oiaf? + Jof? + |af?) + A7) d= (3.20)

where o and v are arbitrary positive scalars. Nevertheless, it is always possible to
prescribe one of the constants, e.g. ¢ = 1, since only relative growth measures are
important. Furthermore, even though ~ has a quantitative impact on the energy metric,
such an impact is usually not significant (Hanifi et al. 1996; Biau & Bottaro 2004; Sameen
& Govindarajan 2007). The same lack of sensitivity with respect to v was noticed in the
present problem, so the results shown here use v = 1 as well. Finally, the inner product
defined in Eq. (3.17) can be associated with an energy norm as follows

B(t)=(a,a)=lla=|E . (3.21)

where q(z,t) = {@,0,%, T} and superscript tr represents the transpose.
It is now possible to define the gain as

N :(OR pa——C (C]]7:}
0= Q7#0 <E<0)) " a0 [|a(z,0)]|% (3.22)

which represents the maximum possible growth at a given time t over all possible initial
conditions qo = q(0). The state vector q defined as a linear combination of infinite
eigenvectors. However, this infinite summation has to be truncated for numerical reasons.
Hence, the state vector q must be approximated by

a(z,t) ~ qi(z) k() (3.23)

using Einstein summation notation for a repeated index, where i = 1,2,3,..., N, with N
characterizing the truncation of the infinite summation. Furthermore, k;(t) = k;(0)e it
represents the weight of each eigenvector q; on the final composition of the state vector
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q, as well as the time evolution of each eigenvector q; given by its associated eigenvalue
w;. Substituting Eq. (3.23) into Eq. (3.21) yields

lla(z, 8)|[% z/q*(z’t) q(z,t)dz Z/(ﬁ}f(Z) k5 (1)) (ak(2) k(1)) dz

= kj(t) My ki (t) = k™ (t) MKk(t) (3.24)

where the matrix M coefficients are given by
M= [ @) s (3.25)
and k = {ky,ko,...,kn}. Since M is a positive definite Hermitian matrix, it can be

decomposed as M = F'F, where F' is the adjoint (conjugate transpose) of F. It is
possible to transform the energy norm in Eq. (3.21) into

lla(z, )15 = k" ()Mk(t) = k*()F'Fk(t) = [[Fk(t)[[3 . (3.26)
namely an Euclidean norm, leads to the new expression for the gain
Fk(t)|3 FAk 2 FAF—'Fk 2
00 = s s ~ B TrROTE ~ES o O
where kg = k(0) and A = diag(e™ ™1t e~2t  e~n!) Hence, the gain can be
optimized over all initial conditions at each time ¢ by solving the matrix norm
G(t) = [|[FAF 3 (3.28)

where the superscript —1 means inverse. In other words, Eq. (3.28) provides the maximum
energy growth at a given time t for any given pair o and 8. An important feature of the
formula given by (3.28), is that it can be easily determined by means of a singular value
decomposition (SVD), as it is always true for the Euclidean norm of a matrix. If this gain
is large enough for a given initial disturbance amplitude, it will likely trigger a subcritical
transition towards a more complex flow pattern.

Since the eigenvectors become orthogonal in the absence of viscous dissipation and
throughflow, it is interesting to note that Eq. (3.28) reduces to

G(t) = [|A]]5 = Mhmat (3.29)

because M and F become diagonal matrices, where Im [w]
the least stable (or most unstable) eigenvalue.

is the imaginary part of

max

3.4. Absolute instability analysis

In order to identify the transition to absolute instability, one must investigate the
behaviour of a disturbance wavepacket in the limit of very large times (¢ — oo). If the
analysis is restricted to a two-dimensional wavepacket, one must evaluate an integral
on « over a path v, which coincides with the infinite real domain o € (—o0,00). Its
temporal behaviour for ¢ — oo can be given by the largest growth rate on the saddle
point of w on ap (Ow/da = 0 at @« = «p). This conclusion cames from the steepest-
descent approximation, which requires the wavepacket to be holomorphic and the paths
v, coincident to the real axis of a;, and v*, crossing the saddle point ag, to be homotopic.
In other words, it must be possible to continuously deform -y into «* in order to apply this
approximation. As already pointed out by Barletta (2019), if there are multiple saddle
points g, the steepest-descent approximation just keeps those with largest Im|w]. In the
case such saddle points share the same value of Im[w], their contributions have to be
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FIGURE 1. Critical Rayleigh number for the onset of convective (left) and absolute (right)
instability as a function of the Péclet number when Ge = 0.1 and 0.0, respectively. Lines
represent current results whereas points represent results from the literature for the former (Nield
et al. 2011) and latter (Hirata & Ouarzazi 2010) cases, respectively.

summed up in order to apply the steepest-descent approximation. The aforementioned
considerations are based on a two-dimensional wavepacket. However, as pointed out by
Brevdo (1991), the same should be true for three-dimensional wavepackets, namely the
asymptotic behaviour of the wavepacket can be given by looking at Im[w] on the saddle
points of w on g (Ow/da =0 at a = ) and By (Ow/0B =0 at B = fy).

Identifying the transition to absolute instability can be computationally quite intensive
when employing classical techniques, e.g. finding the steepest descent curve or verifying
the collision criterion, unless saddle points can be cheaply calculated a priori (Alves
et al. 2019). In the present case, this can be done by applying the zero group velocity
conditions to the dispersion relation, coupling it with auxiliary dispersion relations that
can identify saddle points. They are, however, a necessary but not sufficient condition
for absolute instability. Once these points have been found, one must either obtain a
steepest descent curve or verify the collision criterion in order to make sure they are in
fact pinching points (Barletta 2019).

In order to find the aforementioned saddle points, one must first note that Eq. (3.12)
only has nontrivial solutions when

det (A)=0 (3.30)

for a fixed value of N;. This equation is in fact the dispersion relation for this problem.
It must then be coupled with the additional equations

ddet (A) ddet (A)
— d —77 _ 31
D0, 0 an a3 0o , (3.31)
respectively restricted by the zero group velocity conditions
ow Ow
— d = = .32
D0 0 an 5 0 , (3.32)

to provide the auxiliary dispersion relations for this problem. Together, they form a set of
three complex equations that yields the saddle points in the complex « and S planes and
their complex frequency w for a set of prescribed control parameter values. The reader
is referred to recent in depth reviews for more information about absolute instability
calculations (Alves et al. 2019; Barletta 2019).
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4. Results and discussion
4.1. Code verification

Before modal and non-modal linear stability analyses are employed to investigate the
effects of viscous dissipation on the asymptotic and transient disturbance growth in
time, respectively, the codes developed for these analyses are verified under four different
scenarios. The first two involve the modal onset of (convective) instability. In the absence
of viscous dissipation, which is the first scenario, the present model reduces to the classical
problem originally solved by Prats (1966). Furthermore, the classical critical Rayleigh
number for the onset of instability when Pe = 0, i.e. Ra = 4m?, is recovered even
when truncating Eq. (3.12) with N; = 1. This simplified dispersion relation is given by
43(2im® —iRa—aPe+2i(a®+3?)+w) = 0 when Pe # 0, which suggests that (convective)
instability first appears with 8 = 0 unless w = « Pe, since a; = f; = w; = 0. Numerical
evaluations of the converged (N; >> 1) dispersion relation indicate that this is indeed
the case. It turns out this is also true in the presence of viscous dissipation, which is
the second scenario. Figure 1 (left) shows the critical Rayleigh number for the onset of
(convective) instability as a function of the Péclet number obtained from the present
code (line) when Ge = 0.1 and from Nield et al. (2011) (points). There is a very good
agreement between both sets of results. The third scenario considered for verification
purposes is the modal onset of absolute instability in the absence of viscous dissipation.
Figure 1 (right) shows the critical Rayleigh number for the onset of absolute instability
as a function of the Péclet number obtained from the present code (line) when Ge = 0.0
and from Hirata & Ouarzazi (2010) (points). Once again, a very good agreement is
observed between both sets of results. Furthermore, this onset also occurs for g = 0.
The fourth and final verification scenario considers non-modal growth. Since direct and
adjoint linear disturbance governing Eqgs. (2.26) and (3.19) are identical in the absence of
viscous dissipation, i.e. when Ge = 0, transient growth cannot occur. Figure 2 compares
the gain temporal behavior calculated from both modal (red dashed) and non-modal
(black dotted) analyses for Pe = 100, Ra = 39, a = 7t and = 0 when Ge = 0. It shows
that both are essentially identical as well as monotonic, indicating that transient growth
indeed does not occur. Finally, summation series convergence studies are presented in
the appendix.

4.2. Transient disturbance growth

Non-modal growth in the presence of viscous dissipation is considered next. Since
direct and adjoint linear disturbance governing Egs. (2.26) and (3.19) are not identical
when Ge > 0 and Pe > 0, transient growth is possible. Gain calculations under several
different parametric conditions, however, do not reveal any significant transient growth.
Figure 3 provides evidence in favor of this claim by showing the modal (red dashed) and
non-modal (black dotted) gains for the particular cases where Pe = 200, Ra = —800 and
Ge = 0.1 with a = 1, 2, 3 and 4. It is worth to note that o = 1, 2, 3 represent modally
stable cases, while o = 4 represents a modally unstable one. Differences between modal
and non-modal results are barely noticeable. The condition number of the eigenvector
matrix can quantify this trend, since this number is equal to one (infinity) when the
eigenvectors are orthogonal (parallel). Present calculations show that its value is indeed
one when Ge = 0 and remains at O(1) when Ge > 0. Table 1 provides similar evidence
through the condition number of the eigenvector matrix for different Rayleigh, Péclet
and streamwise wave numbers when Ge = 0.1. Even though the aforementioned results
were obtained for 8 = 0, the same trends were observed for nonzero § as well. Hence,
one can conclude that transient growth is not relevant in this problem.
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FIGURE 2. Gain as a function of time for Pe = 100, Ra = 39, a =7, 8 = 0 and Ge = 0,
obtained from both modal (red dashed) and non-modal (black dotted) analyses.
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FIGURE 3. Gain vs time for Pe = 200, Ra = —800 and Ge = 0.1 for different o with 8 = 0,
obtained from both modal (red dashed) and non-modal (black dotted) analyses.

Pe =10 | Pe = 200

Ra a=1 a=2 a=3 oa=4| a=1 a=2 a=3 a=4

-800 1.04904 1.02566 1.01611 1.01520 |2.69633 2.19485 2.42773 2.55025
-200 1.02394 1.06748 1.03055 1.02861 |2.24688 2.80835 2.48812 2.45103
0 1.01321 1.02227 1.02632 1.02685|2.08672 3.02338 2.96000 2.77367
10 1.01293 1.02095 1.02410 1.02438|2.07947 3.00730 3.01136 2.85965
30 1.01240 1.01875 1.02070 1.02068 |2.06514 2.97036 3.11125 3.05687
500 1.00651 1.00616 1.00588 1.00570|1.78297 2.28230 2.53791 2.68726

TABLE 1. Condition number of the eigenvector matrix for § =0 and Ge = 0.1
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4.3. Asymptotic disturbance growth
4.3.1. Without internal heating

Since transient growth cannot induce a disturbance amplitude increase in time that is
strong enough to cause a transition from stability to instability, the only other known
linear mechanism that can do so is asymptotic growth. Hence, this section presents
results regarding the influence of viscous dissipation on the transition from convective to
absolute instability. The onset of the former has been investigated for mixed convection
within a porous medium in the presence of viscous dissipation (Nield et al. 2011) but the
onset of the latter has only been investigated for this problem in the absence of viscous
dissipation (Hirata & Ouarzazi 2010). Nevertheless, before doing so, it is important to
review some key aspects of this asymptotic growth when Ge = 0. Figure 4 (left) shows
the critical Rayleigh numbers for the onset of convective (dashed line) and absolute (solid
line) instability as a function of the Péclet number obtained using the present code. The
former is Péclet independent, as expected. The latter, on the other hand, shows that an
increasing Péclet number has a stabilizing effect. This is a typical result (Barletta 2019).
More energy must be provided to the wave packet for it to overcome a convectively
stronger base flow and propagate upstream, which is obtained from the external heat
source by increasing the Rayleigh number. Figure 4 (right) shows the collision criterion for
the particular case with Pe = 50, showing that the saddle point found using Eqs. (3.30)
to (3.32) is indeed a pinching point. Although not shown here, the same trends were
observed at several other Péclet numbers. Hence, there is enough evidence supporting
the claim that all saddle points shown in Fig. 4 (left) are indeed pinching points. Two
final remarks deserve special mention for their relevance to subsequent results. First,
extensive numerical simulations found no additional saddle points competing for the role
of a pinching point. Second, all pinching points found have g = 0.

4.3.2. With internal heating: small Péclet numbers

The influence of viscous dissipation on the asymptotic disturbance behavior is now
discussed, focussing first on small Péclet numbers, namely Pe < 50. Table 2 presents
critical Rayleigh number, real frequency and complex wave number for a few given Péclet
and Gebhart numbers at the onset of absolute instability. On one hand, throughflow
still has a stabilizing effect on the transition to absolute instability in the presence of
viscous dissipation. On the other hand, viscous dissipation has a destabilizing effect
on this transition in the presence of throughflow. This is due to the fact that it acts
as an internal heating mechanism and, hence, less external heating is required. Further
insight can be gained using Eq. (3.13). According to this equation, throughflow effects are
approximately O(Pe) whereas viscous dissipation effects are approximately O(Ge Pe?),
which explains why viscous dissipation effects only become relevant at large Ge for these
moderate Pe. Such a dimensional analysis also indicates that throughflow will eventually
have a destabilizing effect when it is large enough.

Before proceeding any further, it is important to remind the reader about the Gebhart
number magnitude. In most engineering applications, Ge < 1. However, it is possible
to reach Ge ~ O(1) in some geophysical flows. This is the reason why such a range was
used in Tab. 2. Nevertheless, for the purposes of the present study, Ge = 0.1 is assumed
to be a reasonable upper bound in the following discussion.

4.3.3. With internal heating: large Péclet numbers

Focus is now switched to a larger Péclet number range, i.e. 50 < Pe < 450. It is
important to remind the reader that the Péclet number is the product of the Prandtl and
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FIGURE 4. (left) Critical Rayleigh numbers for the onset of convective (dashed line) and absolute
(solid line) instability as a function of the Péclet number for 8 = 0 and Ge = 0. (right) Collision
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convective instability.

TABLE 2. Throughflow (Pe) and viscous dissipation (Ge) influence on the transition to

wr

(674

&%)

36.29466889
36.29466889
36.29466952
36.30100884
36.92610796

3.392971033
3.392971033
3.392971068
3.393320799
3.429577153

-1.892998861
-1.892998861
-1.892998943
-1.893823540
-1.975442770

80.58388204
80.58388204
80.58389979
80.76161896
101.9319733

3.244755359
3.244755359
3.244755329
3.244443972
2.475389669

-2.683080910
-2.683080910
-2.683081935
-2.693351530
-4.286565488

126.7509511
126.7509511
126.7510369
127.6096349
221.1465073

3.066056433
3.066056433
3.066055558
3.057207133
1.462549752

-2.955662038
-2.955662038
-2.955664635
-2.981686401
-4.088359361

173.2616599
173.2616599
173.2618972
175.6356171
384.3249026

2.955699944
2.955699944
2.955697625
2.932236053
1.093322115

-3.066023330
-3.066023330
-3.066027740
-3.110094807
-4.080419332

Ge Ra
0 57.80357033
0.00001 57.80357033
Pe=10| 0.001 57.80356821
0.1 57.78233868
1 55.67720847
0 91.95276822
0.00001 91.95276822
Pe =20 0.001 91.95276001
0.1 91.87048609
1 81.76338060
0 129.9473274
0.00001 129.9473274
Pe =30| 0.001 129.9473189
0.1 129.8603359
1 122.5620252
0 169.0025765
0.00001 169.0025765
Pe =40| 0.001 169.0025829
0.1 169.0531819
1 164.5281883
0 208.4410434
0.00001 208.4410434
Pe =50| 0.001 208.4410878
0.1 208.8296192
1 206.1932311

219.8576838
219.8576838
219.8581883
224.8917744
591.8241623

2.886746703
2.886746703
2.886742459
2.843900004

-3.121762192
-3.121762192
-3.121768676
-3.186302224

0.8791537033 -4.084421801

absolute instability (w; = 0).
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Reynolds numbers. Since the former can have quite high values even for moderate values
of the latter, such a large Péclet number range is indeed not uncommon. Furthermore,
the influence of viscous dissipation on the time asymptotic disturbance behavior will be
discussed in detail from this point for Ge = 0.1, which has already been established as
a reasonable upper bound for this parameter. Nevertheless, the disturbance behavior at
smaller Ge values will be summarized at the end of this subsection.

Figure 5 shows the onsets of convective (small dashed line) and absolute (solid line)
instabilities over the aforementioned (Ge, Pe) parametric region, where three different
saddle points (long dashed lines) compete of the role of pinching point. Their respective
collision criterions (solid lines) are provided in Fig. 6 for the six (Pe, Ra) critical points
(red dots) shown in Fig. 5. The paths taken by all three saddle points in the complex
streamwise wave number plane as the Péclet number varies between 0 < Pe < 450 are
also shown (non-solid lines) in Fig. 6. As already illustrated in Fig. 1, it is important
to note that the onset of convective instability is always destabilized by throughflow,
so much so that the flow becomes convectively unstable even when heated from above
for Pe > 68.6575 (Nield et al. 2011). The effect of throughflow on the onset of absolute
instability, on the other hand, is significantly less straightforward. A single downstream
propagating branch o™ is involved in the collision that forms the pinching point for
all Péclet numbers within 0 < Pe < 450. This collision, however, occurs against one
of three different upstream propagating branches, namely o7, a, and aj, within the
same Péclet number range. Consider first scenario (a) from Figs. 5 and 6. This particular
pinching point is formed by a collision between branches at and o] and called here mode
1. The other two saddle points are formed by collisions between upstream propagating
branches and, hence, do not have any physical meaning. Mode 1 is the same transition
mechanism observed in the absence of viscous dissipation, as shown in Fig. 4, where
the latter two saddle points do not exist. A similar transition mechanism is observed in
scenario (b) from Figs. 5 and 6. A further increase in the throughflow magnitude to Pe =
206.2, however, leads to the emergence of a new transition mechanism. Scenario (¢) from
Figs. 5 and 6 show a co-dimension two point where the traditional (convection dominated)
and novel (viscous dissipation dominated) saddle points are equally unstable. In other
words, branch a collides simultaneously with branches o and «; . The latter collision,
however, is called here mode 2 and is the one that leads to the pinching point at higher
throughflow, as shown in scenario (d) from Figs. 5 and 6. Increasing the throughflow
even further to Pe ~ 373.2, on the other hand, leads to a new co-dimension two point,
but now between both novel viscous dissipation dominated saddle points, as shown in
scenario (e) from Figs. 5 and 6. In other words, branch a™ collides simultaneously with
branches a;, and o . This second viscous dissipation related collision is called here mode
3 and leads to the pinching point at higher throughflow, as shown in scenario (f) from
Figs. 5 and 6. There are more viscous dissipation related saddle points, but they only
become relevant at higher Gebhart numbers, which are non-physical. Hence, they are not
discussed. Finally, it is important to note that a linear stability analysis cannot provide
additional information about either co-dimension two points. Under either parametric
condition, a nonlinear analysis is required to clarify the dynamical system behavior.

Figures 7 and 8 show the disturbance streamlines and isotherms at the co-dimension
two points Pe ~ 206.2 and ~ 373.2, respectively. Dashed (solid) lines stand for negative
(positive) values in the streamline plots. Modes 1, 2 and 3 are clearly distinct from one
another. Similarly to the typical cell pattern behavior observed in convectively unstable
conditions, higher order modes have a larger number of cells. They are concentrated in
the downstream end of both figures because all three modes grow in space at the onset
of absolute instability. Finally, it is also interesting to note that the cell pattern is closer
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(10,57.7822), (100,413.001), (206.2,857.197), (300, 728.532), (373.2,402.244) and

Ge
10~
107°
1074
1073
1072
1071

Pe

4.34466 x 107
4.34466 x 10°
4.34463 x 10°
4.34431 x 10*
4.34116 x 10°
4.30897 x 102

Wr

4.81994 x 108
4.81993 x 107
4.81982 x 10°
4.81873 x 10°
4.80784 x 10*
4.69781 x 10°

Qo

1.65043
1.65043
1.65042
1.65026
1.64871
1.63212

%)
-7.12735
-7.12735
-7.12738
-7.12759
-7.12967
-7.14877

TABLE 3. Saddle point data at the onset of absolute instability when Ra = 0 as a function of
the Gebhart number for mode 2.

Pe

4.20583 x 107
4.20583 x 10°
4.20577 x 10°
4.20524 x 10*
4.19987 x 103
4.14651 x 102

Wr

4.6462 x 108
4.64618 x 107
4.64600 x 10°
4.64422 x 10°
4.62646 x 10*
4.44953 x 10°

Qr

2.60535
2.60536
2.60548
2.60674
2.61944
2.75945

Q;
-8.96112
-8.96112
-8.96109
-8.96078
-8.95770
-8.92633

TABLE 4. Same as Tab. 3 but for mode 3

to horizontal for mode 1 but closer to vertical for mode 3. This is related to the fact that
the spatial growth rates are different for each mode, as it can be seen in Fig. 6. While

for mode 1, in Fig. 7, it is ay

a; = —7.06621 for mode 2 and «; = —8.93637 for mode 3.
When Ge = 0.1, as shown in Fig. 5, the transition from convective to absolute
instability for Pec =~ 414.651 occurs when Ra = 0. This means that transition is

—3.81869, for mode 2 it is a; = —6.65050. In Fig. 8, it is
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FIGURE 6. Collision checks for the parametric conditions shown in Fig. 5 at (a) Pe = 10,
where (o, ;) = (3.39332,—-1.89382) and (b) Pe = 100, between branches ot and aj,
where (o, ;) = (2.54770,—3.41712), (c) Pe ~ 206.2 between branches o™ and o, where
(ar, i) = (1.92771, —3.81869) and branches o™ and a; , where (., a;) = (3.14560, —6.65050),
(d) Pe = 300, between branches at and «;, where (o, ;) = (2.68895, —6.76400), (e)
Pe ~ 373.2, between branches a® and a5, where (ay, ;) = (2.15204, —7.06621), and branches
at and aj, where (a,, ;) = (2.70854, —8.96509), and (f) Pe = 420, between branches o™ and
oz, where (ar, ;) = (2.76478, —8.93637). The non-solid curves represent the paths taken by
each saddle point (i.e. modes 1, 2 and 3) as the Péclet number varies.

induced by internal heating alone, i.e. without external heating. In other words, viscous
dissipation alone, without the influence of buoyancy effects, is responsible for the onset
of absolute instability. Furthermore, when Pe > Pe¢, absolute instability occurs even in
the presence of negative Rayleigh numbers. Under these conditions, a stable temperature
stratification would be induced with Ge = 0. Hence, the internal heating mechanism
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FIGURE 7. Stream function (left) and temperature (right) isolines for modes 1 (top) and 2
(bottom) at Pe ~ 206.2, i.e. at the first co-dimension two point.

Stream Function Temperature

LA
et K

FIGURE 8. Stream function (left) and temperature (right) isolines for modes 2 (top) and 3
(bottom) at Pe ~ 373.2, i.e. at the second co-dimension two point.

created by viscous dissipation is capable of inducing transition even in the presence of
the stabilizing external heating mechanism created by buoyancy. It turns out this critical
Péclet number is induced by mode 3 and depends on the Gebhart number according
to Pec =~ 41.9479/Ge, since the mode 2 dependence is given by Pec ~ 43.3805/Ge.
Both correlations were obtained using nonlinear regression based on the data provided in
Tabs. 3 and 4, which also provides eigenvalues. The standard errors of both parameters
are 2.32605 x 1073 and 1.35113 x 1073, respectively. These correlations imply that
Pec — 00 (0) when Ge — 0(o00), which is expected since more (less) throughflow is
required to make viscous dissipation important when the Gebhart number decreases
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(increases). Finally, this correlation also implies that the qualitative trends shown in
Figs. 5 to 8 would be the same for different Gebhart numbers, although occurring at
different Rayleigh and Péclet numbers, which has been confirmed but is not shown.

5. Conclusions

The present paper investigates the appearance of natural convection, as induced by
temporal disturbance growth, in the otherwise forced convection in porous media. At any
given throughflow (Péclet number), instability could be induced by internal (Gebhart
number) and/or external (Rayleigh number) heating. Both modal (asymptotic) and non-
modal (transient) linear mechanisms are considered. A matrix forming approach based
on a continuous spectral method is employed to solve the differential eigenvalue problem.
On one hand, the modal analysis was performed using the dispersion relation obtained
from the determinant of the resulting matrix. Auxiliary dispersion relations were then
obtained by applying the zero group velocity conditions to verify the possibility of modal
growth in time through absolute instability. On the other hand, the non-modal analysis
was performed using both the SVD of this matrix as well as the condition number of
the respective eigenvector matrix. They allowed us to verify the possibility of transient
growth. The major findings of our study are summarized below:

e In the absence of viscous dissipation, i.e. when the Gebhart number is zero, the
differential eigenvalue problem is self-adjoint. However, this is no longer true for positive
Gebhart numbers. Hence, non-modal growth is possible.

e Non-modal growth was found negligible for a wide range of Péclet, Gebhart and
Rayleigh numbers. Hence, it is possible to infer that there is no transient growth. This
is true for two and three-dimensional disturbances.

e In the absence of internal heating, modal growth does occur for strong enough
external heating, although throughflow has a stabilizing effect. In the presence of internal
heat, however, this is only true for a weak enough thoughflow.

e For a strong enough throughflow, internal heating drives modal growth, where
throughflow has a destabilizing effect. Absolute instability is possible even in the absence
of external heating, i.e. zero Rayleigh numbers.

e For even stronger throughflows, internal heating is capable of inducing modal growth
even without external heating. In other words, absolute instability occurs for negative
Rayleigh numbers.

e In both cases mentioned above, two different internal heating modes can control the
modal growth, where one depends on the throughflow strength.

e Different modes experiment the transition to absolute instability in the range of
throughflow studied here. For small values of Pe mode 1 dominates the transition. For
Pe ~ 206.2 the dominant mode switches from mode 1 to mode 2. For Pe ~ 373.2 the
dominant mode switches from mode 2 to mode 3.

e Viscous dissipation effects are responsible for the appearance of modes 2 and 3. It
seems that for Pe > 206.2 such effects become dominant over external heating for the
onset of absolute instability.

e Transverse modes are responsible for all modal growths discussed here. This is true
when either internal or external heating acts as the dominant mechanism.

Current research is simulating the fully nonlinear system of governing equations to
investigate both co-dimension two points, which mark the switch between external and
internal heating dominated absolute instabilities, as well as the switch between both
internal heating dominated absolute instabilities, as throughflow increases. Furthermore,
the possibility of a spatial non-modal growth is also being investigated.
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Appendix A

This appendix contains GITT summation series convergence results for the modal
analysis. Table 5 shows the saddle point at Pe = 300 and Ge = 0 converging as the
number of terms in the series increases. A single term is enough to converge these results
essentially because the matrix formed by (3.13) becomes diagonal, i.e. the coefficients
given by (3.13) become decoupled.

Tables 6, 7 and 8 are equivalent to Tab. 5 but for Ge = 0.1 and three different
values of Pe, namely Pe = 200, 300 and 400, respectively. Comparing Tabs. 5 and 6
shows that a larger number of terms is required for convergence, which is caused by
the stability problem no longer being diagonal due to the use of a positive Gebhart
number. In addition, comparing Tabs. 6, 7 and 8 shows that a larger Péclet number
slows down convergence, which is caused by the orthogonal basis function used in the
integral transformation being diffusive in nature.

Appendix B

This appendix contains a description of the eigenvector matrix construction as well as
the condition number convergence. The eigenvectors are constructed based on integral
transformation (3.1), where @, comes from the solution of the integral transformed
eigenvalue problem. To construct a matrix in which the columns are the eigenvectors it
is necessary to transform the continuous dependence on z into a discrete one. In that
way one can have a matrix in which the columns are the eigenvectors, and the rows
represent the z dependence of each one. The number of columns and rows are related
with the number of terms used in the summation series truncation and the points used in
the discretization, respectively. Here, the discretization of the z component is based on
a uniform grid spacing, which is given by 1/N,, where N, is the number of points used
by the discretization. The condition number calculations are then based on the condition
number definition for a generic matrix A, namely

cond(A) = || Al ||AT]], (B1)

where A% is the pseudo-inverse of A. Tables 9 and 10 show the condition number
convergence in terms of Ny and N,.

The convergence of the non-modal results is assumed, based on both modal and
eigenvector matrix condition number convergence. In other words, it is considered here
that the transient growth analysis is convergent because both eigenvector and eigenvalue
calculations are convergent.
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