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Abstract

We provide novel constraints on the parameters defining the universal pressure profile (UPP) within clusters of
galaxies, and explore their dependencies on cluster mass and redshift, from measurements of Sunyaev–Zel’dovich
(SZ) Compton y-profiles. We employ both Planck 2015 MILCA and Atacama Cosmology Telescope (ACT) Data
Release 4 y-maps over a common ∼2100 deg2 footprint. We combine existing cluster catalogs, based on Kilo
Degree Survey, Sloan Digital Sky Survey, and Dark Energy Spectroscopic Instrument Legacy Imaging Surveys
observations, for a total of 23,820 clusters, spanning the mass range 1014.0Me<M500< 1015.1Me and the redshift
range 0.02< z< 0.98. We split the clusters into three independent bins in mass and redshift; for each combination,
we detect the stacked SZ cluster signal and extract the mean y angular profile. The latter is predicted theoretically
by adopting a halo model framework, and a Markov Chain Monte Carlo approach is employed to estimate the UPP
parameters, the hydrostatic mass bias bh, and possible cluster miscentering effects. We constrain [P0, c500, α, β] to
[5.9, 2.0, 1.8, 4.9] with Planck and to [3.8, 1.3, 1.0, 4.4] with ACT, using the full cluster sample, in agreement with
previous findings. We do not find any compelling evidence for residual mass or redshift dependencies, thus
expanding the validity of the cluster pressure profile over much larger M500 and z ranges; this is the first time that
the model has been tested on such a large (complete and representative) cluster sample. Finally, we obtain loose
constraints on the hydrostatic mass bias in the range 0.2–0.3, again in broad agreement with previous works.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Intracluster medium (858); Large-scale structure of
the universe (902)

1. Introduction

Galaxy clusters are invaluable cosmological probes, provid-
ing information about the geometry of the universe, about the
growths of cosmic structures, and, at lower scales, about the
processes of galaxy formation and evolution (Voit 2005; Allen
et al. 2011). The majority of cluster baryonic matter (up to
90%) is found as a diffuse component referred to as the
intracluster medium (ICM), which is shock heated and ionized
in the strong cluster gravitational field, up to temperatures of
5–10 keV. A proper characterization of the physical properties
of the ICM is of great interest, not only for allowing indirect
calibrations of the mass proxies based on ICM observations,
but also for providing useful insights into the processes of
galaxy evolution and feedback.

The high temperature of the ICM plasma has made it a
traditional target for X-ray observations (Sarazin 1988), a
property that has been exploited by different generations of
satellite missions to build X-ray cluster catalogs (Voges et al.
1999; Hicks et al. 2008; Mehrtens et al. 2012; Klein et al.
2022). A complementary probe is the observation of the
thermal Sunyaev–Zel’dovich (tSZ) effect (Sunyaev & Zeldo-
vich 1972), a secondary anisotropy of the cosmic microwave
background (CMB) radiation that is produced when CMB
photons interact with a population of high-energy electrons via
inverse Compton scattering. The resulting temperature fluctua-
tions with respect to the CMB temperature TCMB can be
expressed as

x
D

= ( ) ( )T

T
f y, 1

CMB

where the dependence on the scaled frequency ξ≡ hν/
(kB TCMB), with h and kB being the Planck and Boltzmann
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constants, is encoded in the function x x x= -( ) ( )f coth 2 4;
the result is a decrease (increase) in the CMB temperature at
frequencies below (above) 217 GHz. The magnitude of the
effect is quantified by the Compton parameter y, which is
proportional to the electron pressure integrated along the line of
sight (LoS):

ò
s

= ( ) ( )y
m c

dl P l , 2T

e
2 LoS

e

where σT is the Thomson cross section, me c
2 is the electron

rest energy, and Pe(l) is the electron pressure at a physical LoS
separation l.

The high-energy electrons found in the ICM make the tSZ
effect an ideal probe for detecting and studying galaxy
clusters (Birkinshaw 1999; Carlstrom et al. 2002). Unlike the
X-ray brightness, which is proportional to the squared electron
density ne

2, the Compton parameter is proportional to ne, which
implies that it has a higher sensitivity to low-mass densities and
can be used to trace the ICM out to larger separations from the
cluster core. In addition, it is independent of the cluster
redshift,15 and tSZ observations can conveniently be carried out
at radio and microwave frequencies from ground-based
observatories. The advances in tSZ observational techniques
over the past two decades have yielded dedicated tSZ-detected
cluster catalogs as well as the reconstruction of the Compton
parameter signal over extended areas of the sky, using both
satellite missions, like Planck (Planck Collaboration et al.
2016a), and ground-based facilities, like the Atacama Cosmol-
ogy Telescope (ACT; Hilton et al. 2021) and the South Pole
Telescope (Bleem et al. 2020).
In the case of both X-ray and tSZ data, the proper

characterization of the ICM eventually translates into the
modeling of the local electron pressure. The analysis presented
in Nagai et al. (2007) first proposed a generalized Navarro–
Frenk–White (NFW; Navarro et al. 1997) parameterization as a

universal model for the electron pressure profile, in the form

º

=
+g a b g a-
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where Pe(r) is the electron pressure at a physical separation r
from the cluster center and P500 is the characteristic pressure
expected in a self-similar model (Section 5.1), carrying the
dependence on the cluster mass and redshift, with the profile
being expressed as a function of the scaled radial separation16

x≡ r/R500. This universal pressure profile (UPP) is parameter-
ized in terms of the concentration17 c500, an overall normal-
ization factor P0, and the parameters γ, α, and β, which are,
respectively, the profile slopes at small (x= 1/c500), inter-
mediate (x∼ 1/c500), and large (x? 1/c500) separations from
the cluster center. Nagai et al. (2007) provided best-fit
estimates for the parameters based on profiles that were
reconstructed from Chandra data and results from hydrodyna-
mical simulations.
Over the past decade, several other works have contributed

to constraining the UPP parameters, using different observables
and techniques. A summary of the results for the fitted UPP
parameters from these works is presented in Table 1, while for
a more comprehensive summary, we redirect the reader to
Appendix A. Most of these studies have employed a limited set
of well-characterized and high-significance clusters in order to
measure the cluster pressure profile (Arnaud et al. 2010; Planck
Collaboration et al. 2013; Sayers et al. 2016; He et al. 2021;
Pointecouteau et al. 2021). A substantially different approach
was adopted in Gong et al. (2019; hereafter, G19), with the
UPP parameters being fitted over a stack of a large number
(∼105) of regions surrounding luminous red galaxies (LRGs) at
z 0.5, assuming the latter to be good tracers of massive dark
matter halos. This type of work forgoes the profile reconstruc-
tion for individual objects, focusing instead on the mean ICM
properties of an extended sample. The results were in

Table 1
Summary of Previous Estimates of the Parameters Entering the UPP Expression in Equation (3)

Reference Data Set UPP Parameters

Objects Observables P 0 c 500 α β γ

Nagai et al. (2007) 16 clusters X-ray, simulations 3.3 1.8 1.3 4.3 0.7
Arnaud et al. (2010) 33 clusters X-ray, simulations -h8.403 70

3 2 1.177 1.0510 5.4905 0.3081

Planck Collaboration et al. (2013) 62 clusters SZ, X-ray 6.41 1.81 1.33 4.13 0.31
Sayers et al. (2016) 47 clusters SZ, X-ray 9.13 ± 2.98 1.18 1.0510 6.13 ± 0.76 0.3081
Gong et al. (2019) ∼105 LRGs SZ -

+2.18 1.98
9.02

-
+1.05 0.47

1.27
-
+1.52 0.58

1.47
-
+3.91 0.44

0.87 0.31
Ma et al. (2021) K SZ, WL (convergence) -

+9.68 7.11
10.02

-
+2.71 0.93

0.92
-
+5.97 4.73

1.81
-
+3.47 0.60

1.39 0.31
Ma et al. (2021) K SZ, WL (shear) -

+6.62 1.65
2.06

-
+1.91 0.65

1.07
-
+1.65 0.50

0.74
-
+4.88 2.46

1.18 0.31
Pointecouteau et al. (2021) 31 clusters SZ -

+3.36 0.71
0.90 1.18 -

+1.08 0.11
0.13 4.30 ± 0.12 0.31

He et al. (2021) 33 clusters X-ray, simulations 5.048 1.217 1.192 5.490 0.433

Note. For each work, we report the reference in the literature, the number of clusters used in the study (when applicable), the physical observables used, and the best-fit
values for the UPP parameters. The boldface values remained fixed in the corresponding fits. For more details, we redirect the reader to Appendix A.

15 Strictly speaking, tSZ observations detect the cluster signal integrated over
the beam solid angle YSZ, which is proportional to the temperature-weighted
mass of the cluster M 〈Te〉 and to the inverse square of the angular diameter
distance at the cluster redshift, YSZ ∝ M 〈Te〉 DA(z)

−2 (Carlstrom et al. 2002).
This introduces a marginal redshift dependence. In fact, tSZ detections of
clusters at z > 1 are not common, possibly due to lower ICM temperatures or
contamination from radio-loud active galactic nuclei.

16 Unless explicitly stated, it is understood that overdensity masses and radii
refer to the universe’s critical density ρc(z) at the considered redshift; in
formulae, p r= DD D( )M z R4 3c

3 , with Δ being the overdensity value.
17 In some work, the UPP is expressed as a function of ¢ =x r rs, where the
scale radius rs is related to the overdensity radius R500, via the concentration
parameter, c500 = R500/rs.
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agreement with those from previous studies, thus proving the
feasibility of this approach for characterizing the UPP. Besides,
the large number statistics provided by the sample in G19
allowed the authors to split the LRG sample into three redshift
bins, finding hints of a redshift evolution of the UPP
parameters; the inclusion of an explicit redshift dependence
in the normalization pressure P500 proved effective in
improving the reduced χ2 when fitting the combination of the
three redshift bins. Finally, other more indirect estimates of the
UPP parameters were obtained from the cross-correlation
between tSZ and weak-lensing (WL) data (Hojjati et al.
2015, 2017; Ma et al. 2021).

The present study aims to extend this line of work by
providing novel estimates of the UPP parameters. Our analysis
is based on cluster stacks on y-maps; the UPP parameters are
then fitted on the reconstructed mean y-profiles. The main
difference from G19 is that we use a real cluster catalog,
instead of reverting to LRGs as positional tracers. Besides, we
also use a complete cluster sample; this is a major difference
compared to the cluster-based studies listed in Table 1, whose
high-significance cluster samples were incomplete and even, in
some cases, nonrepresentative (see Appendix A for a more
extensive discussion). Our sample is obtained by merging
existing cluster catalogs, yielding a total of ∼2.3× 104 clusters
spanning the M500 mass range [1014, 1015.1]Me and the
photometric redshift range [0.1, 0.8]. This is another important
difference compared to the analysis in G19, which mostly
targeted the mass range of rich groups (M500 1014Me).
Furthermore, our large sample allows us to split the data set not
only into different redshift bins, but also into different mass
bins, thus exploring in greater detail possible deviations from
the universality of the pressure profile. Finally, we obtain
independent results from both the Planck and ACT Compton
maps for the same cluster sample.

This paper is organized as follows. We begin by describing
the two data sets employed in our analysis, namely the
Compton y-maps (Section 2) and the cluster catalogs
(Section 3). Section 4 presents the methodology that we adopt
for generating our reference sample, stacking the clusters, and
extracting the associated angular y-profiles with their uncer-
tainties. The formalism that we employ to model the cluster y-
signal is detailed in Section 5, while the parameter estimation
analysis is presented in Section 6. Finally, Section 7 reports the
conclusions. Throughout this paper, we adopt a spatially flat
ΛCDM cosmological model, with parameter values h = 0.674,

Ωm= 0.315, Ωb= 0.0493, σ8= 0.811, and ns= 0.965 (Planck
Collaboration et al. 2020).

2. Compton Parameter Maps

In this work, we conduct the stacking analysis on two
different Compton parameter maps, obtained by Planck and
ACT, respectively. We describe each in detail in the following
subsections.

2.1. Planck Data

We employ the all-sky Compton parameter map delivered by
the Planck Collaboration and described in Planck Collaboration
et al. (2016b). The map is publicly available at the Planck
Legacy Archive,18 and it can be downloaded in HEALPix
format (Górski et al. 2005), with the pixelization being set by
the resolution parameter Nside= 2048 (corresponding to a pixel
size of ~ ¢1. 8). The map was generated via a tailored linear
combination of Planck individual frequency maps. Two
versions of the map are available, obtained from two different
implementations of the Internal Linear Combination (ILC)
algorithm, namely the Modified Internal Linear Combination
Algorithm (MILCA; Hurier et al. 2013) and the Needlet
Independent Linear Combination (NILC; Remazeilles et al.
2011) methods. In the following, we adopt the MILCA map
only, as we have verified that the use of the NILC map yields
results for the Compton parameter profiles that are compatible
within the final error bars. Prior to their linear combination, the
Planck channel maps were first degraded to a common
resolution of 10′, which is the reference FWHM value for the
final Compton map.
We adopt a suitable mask to avoid contamination from

residual Galactic foregrounds and strong extragalactic radio
sources. The Planck Legacy Archive provides a point-source
mask and different Galactic masks that are tailored to the tSZ
analysis. We combine the 40% Galactic plane mask and the
point-source mask, excluding a total of 50.6% of the sky. The
Planck MILCA Compton map, combined with our adopted
mask, is shown in the first panel of Figure 1.

Figure 1. Left: the all-sky Planck 2015 MILCA Compton y-map, plotted in equatorial coordinates, with the Galactic plane 40% mask and the point-source mask being
overlaid; the positions of the two ACT patches are also marked by blue boxes. Right: the two patches of the ACT Data Release 4 y-map, combined with the local
projection of the mask adopted for Planck. The color scale units are different in Planck and ACT, to better show the features in the corresponding maps; in both cases,
the masked regions are shown in gray color.

18 https://pla.esac.esa.int/#maps
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2.2. ACT Data

We employ the ACT Compton y-map described in
Madhavacheril et al. (2020), which is publicly accessible from
the LAMBDA website.19 This map was also built with an ILC
approach, using Planck individual frequency maps20 up to
545 GHz and ACT maps at 98 and 150 GHz. The two
experiments are complementary in terms of their angular
sensitivity: although ACT has higher resolution than Planck
and provides superior-quality data at small scales, the Planck
large-scale data are free from the atmospheric noise affecting
the ACT maps. The limited available sky area, of ∼2100 deg2,
allowed the authors to apply an ILC implementation that was
tailored to a projected 2D analysis, which is a novel approach
compared to previous spherical harmonics-based approaches to
analyzing all-sky data. The final map covers two disjoint
patches in the sky, labeled as BOSS North (BN; covering
1633 deg2) and Deep 56 (D56; covering 456 deg2), for which
deep observational ACT data from 2014 and 2015 were
available. Unlike the Planck maps, the ACT maps for these
patches are provided as 2D arrays in a plate carrée
(equirectangular) projection, with a pixel size of ~ ¢0. 5. The
resolution of these ACT maps is = ¢FWHM 1. 6.

Although the individual frequency maps underwent a
process of source subtraction prior to their combination,
possible residuals are still present in the final product. As no
specific point-source mask is available for the ACT tSZ maps,
we revert to using the same combined Galactic and point-
source Planck mask for these maps as well, by projecting it
onto the plane areas covered by ACT.21 The resulting masked
maps are plotted in the two right panels of Figure 1.

3. Cluster Catalogs

We consider a composite cluster sample that was obtained
by merging three independent catalogs, which are individually
described in the following sections. The methodology that we
adopt for their combination is addressed in Sections 3.4 and
3.5. Note that, in the end, we only consider clusters with mass
M500> 1014Me, as lower masses would not yield significant
detections in the stacks, as described in Section 4.2.

3.1. AMICO–KiDS-DR3 Catalog

We employ the cluster catalog described in Maturi et al. (2019),
which was obtained by running the Adaptive Matched Identifier
of Clustered Objects (AMICO) algorithm (Bellagamba et al.
2018) on the third data release of the Kilo Degree Survey (KiDS-
DR3; de Jong et al. 2017). The KiDS-DR3 data provide
photometric redshifts for ∼48.7 million sources over 447 deg2.
AMICO is based on a linear optimal matched filter, which (in this
particular application) exploits information about galaxy positions,
r-band magnitudes, and redshift distributions, to build a 3D map
of the amplitude A over the volume spanned by the galaxy
catalog. The quantity A, which is evaluated with its associated
variance σ A, is related to the likelihood of finding a galaxy
cluster; the location with the highest likelihood is then identified
as the first cluster candidate. The signal associated with the latter
is subsequently removed from the A map, before the likelihood is
reevaluated and the second cluster candidate is searched for. The
process is repeated until a low-limit signal-to-noise ratio (S/N)
A/σ A= 3 is reached; the final output catalog contains 12,939
clusters that are identified with S/N> 3, over the redshift range
0.078< z< 0.754. We restrict our analysis to the 7957 clusters
with S/N> 3.5; the resulting sample has a typical 95% purity
over the whole redshift range and a completeness 90% for
M500> 1014Me at z< 0.6 (Maturi et al. 2019).

The measured amplitude A served as the primary mass proxy
for each detection; cluster masses were assigned on the basis of
an A−M200 scaling relation, where the baseline mean values
for the overdensity mass M200 were computed from KiDS
lensing data (Bellagamba et al. 2019). As it is customary to
employ M500 as the mass definition in tSZ studies, we convert
the AMICO masses into M500, assuming an NFW profile and
using the concentration model from Ishiyama et al. (2021). For
each cluster, we also generate a population of 200 random
values of masses, normally distributed around the M200 value
and with a dispersion set by the available uncertainty sM200; we
convert each of these values to M500 and adopt their rms as our
estimate for the uncertainty sM500. The resulting mean
uncertainty on ( )M Mlog10 500 for the KiDS clusters is
0.194 dex. When queried to match the ACT footprint, the
KiDS catalog contributes 3318 clusters (806 clusters with
M500> 1014Me), all located in the ACT–BN patch (Figure 2,
left panel).

3.2. SDSS-DR12 WHL Catalog

The catalog described in Wen et al. (2012) identified
132,684 galaxy clusters based on photometric data from the
eighth data release of the Sloan Digital Sky Survey (SDSS-
DR8; Aihara et al. 2011) in the redshift range 0.05� z< 0.80.
The catalog has a 94% purity over the whole sample and a
95% completeness for clusters with M200> 1014 Me at

Figure 2. Footprint of the two ACT patches (lighter blue), adopting the same equatorial frame as in the first panel of Figure 1, compared with the angular distributions
of our chosen cluster catalogs (white), namely KiDS (left), WHL (middle), and DESI (right).

19 https://lambda.gsfc.nasa.gov/product/act/act_dr4_derived_maps_get.cfm
20 Hence, the Planck and ACT tSZ maps are not completely independent. This
is not an issue in our study, however, as the choice to use both data sets was
made to better exploit all the available tSZ data. In the end, the higher
resolution of ACT is still the main factor that makes a difference to the
resulting angular Compton profiles.
21 Although this mask may potentially miss some point sources entering the
ACT footprint, it can be considered conservative, as the larger Planck beam
size would result in larger masked areas around each compact source. We also
explicitly tested the use of no mask at all, confirming that negligible variations
in the ACT profiles presented in Figure 10 are produced, thus proving that the
specific masking strategy is not a critical issue in a stacking analysis like the
one presented in this paper.
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z< 0.42; the cluster masses were estimated based on their
richness and optical luminosity. A more recent update of the
catalog, based on the 12th data release of SDSS (DR12; Alam
et al. 2015), is presented in Wen & Han (2015); hereafter, we
shall label this catalog the WHL catalog.22 The update not only
takes advantage of the improved SDSS data quality, providing
additional spectroscopic redshift information for a total of ∼2.3
million galaxies, as well as allowing the cluster detection at
high redshifts to be improved, but it also exploits a better-
defined mass proxy. The new catalog includes 25,419
additional clusters detected around bright galaxies at high
redshift, and it provides updated redshift and richness estimates
for the previously identified objects. Each cluster’s position is
defined by the coordinates of its brightest cluster galaxy, and its
redshift is estimated as the mean of the spectroscopic redshifts
of the member galaxies (when available). As for the mass
estimation, the analysis first defined a calibration sample, by
merging the existing cluster samples with mass proxies based
on X-ray data (Vikhlinin et al. 2009; Mantz et al. 2010;
Piffaretti et al. 2011; Takey et al. 2014) or tSZ data (Hasselfield
et al. 2013; Planck Collaboration et al. 2016a). The common
clusters across the different catalogs were used to yield a
homogeneous mass definition throughout the composite
sample, by scaling it to the definition adopted in Vikhlinin
et al. (2009). The final calibration sample consisted of 1191
clusters overlapping with the available SDSS data, with mass23

M500> 0.3× 1014Me and redshift 0.05< z< 0.75. For these
clusters, the total r-band luminosity within R500, corrected by a
redshift-dependent factor, was found to be well correlated with
the cluster mass M500, with a scatter of 0.17 dex. The
associated scaling relation can be applied to estimate the
masses of all the clusters in the updated WHL catalog.

For our analysis, we employ the updated WHL catalog, with
a total of 158,103 clusters spanning the mass range
M500 ä [1012.3, 1015.5]Me and the redshift range [0.03, 0.80],
about 77% of which have spectroscopic redshift information.
As no mass error estimates are available for the individual
clusters, we evaluate a mean uncertainty on M500 as follows.
We consider the clusters in the calibration sample and convert
their measured richness into mass ( )M500

scal , adopting the same
scaling relation that is employed in Wen & Han (2015) to
compute the mass estimates for the updated cluster catalog. For
the calibration sample clusters, the independent mass estimate

( )M500
lit from the literature is also available;24 we then consider

the scatter values -( ) ( )M M500
scal

500
lit for the calibration clusters and

take their rms as the common mass uncertainty for the WHL
catalog that we use in our analysis. The result is an uncertainty
of 0.187 dex in ( )M Mlog10 500 , which is slightly more
conservative than the value quoted for the scatter of the scaling
relation in Wen & Han (2015). The query for matching the
ACT footprints yields 27,367 clusters, with 20,967 in the BN
patch and 6400 in the D56 patch (Figure 2, central panel); after
applying the mass cut M500> 1014Me, the numbers are
18,597, 14,186, and 4411, respectively.

3.3. DESI-DR8 Catalog

This cluster catalog was obtained directly from the galaxy
samples in the DESI Legacy Imaging Surveys (Dey et al. 2019)
Data Release 8 (DESI-DR8). The catalog’s production is
described in Yang et al. (2021), and it is based on the updated
version of the halo-based group/cluster finder that was presented
in Yang et al. (2005) and later employed in Yang et al. (2007). In
this case, the cluster mass is computed based on the measured
cluster luminosity. The group finder follows an iterative
approach: at each stage, the cumulative group luminosity
distribution is computed from the known luminosities of the
member galaxies; abundance matching with the cumulative halo
mass function then allows a tentative mass to be assigned to each
group, which, in turn, allows the membership information to be
updated. The process starts by assuming that each galaxy is a
group candidate, continuing until convergence in the galaxy
membership information and the derived mass-to-luminosity
ratios. In this case, the estimated mass is defined for an
overdensity Δ= 180, with respect to the mean matter density of
the universe at the cluster redshift (M180,m), while the cluster
position is assigned to its geometrical luminosity-weighted
center. The authors first tested this halo finder on a mock galaxy
catalog generated from the ELUCID simulation (Wang et al.
2016), comparing the results with the output of a traditional
Friend-of-Friends algorithm (Davis et al. 1985): in ∼90% of
groups with mass M180,m 1012.5 h−1 Me, the halo finder
correctly identified more than 60% of the member galaxies, with
a quoted mean mass uncertainty of 0.2 dex for masses
M180,m 1013.5 h−1 Me; the resulting purity was >90% for
groups with mass M180,m 1012 h−1 Me, reaching ∼100% for
M180,m 1014.5 h−1 Me.
The authors subsequently applied the group finder to DESI-

DR8, to yield the positions, redshifts, and masses for ∼92
million objects, the majority of which were low-mass groups
with less than three member galaxies. For the purpose of the
present analysis, we clearly restrict the sample to the most
massive objects; after converting the mass to the M500

definition with the concentration model from Ishiyama et al.
(2021), we apply the mass cut M500> 1014Me, resulting in a
total of 110,908 objects spanning the redshift range zä [0.02,
0.97]. Given our low mass cut, and the lack of error estimates
on individual cluster masses, we can adopt the quoted value
0.2 dex as the common uncertainty on ( )M Mlog10 500 . We find
13,018 clusters overlapping with the ACT maps, with 10,253 in
the BN patch and 2765 in the D56 patch (Figure 2, right panel).

3.4. Mass Calibration

With the aim of employing the largest possible statistics in
our study of the cluster pressure profile, we merge the three
catalogs described above together. In order to avoid potential
biases in the subsequent analysis, care needs to be taken in this
operation to ensure that the cluster mass definition is consistent
across all the catalogs that we combine. Although we adopt the
M500 definition in every case, the masses from the different
catalogs are based on different observables, scaling relations,
and methodologies.
We then search for cluster matches between pairs of catalogs

and compare the associated mass values. Our matching
criterion is purely positional: two clusters in different catalogs
are considered to be the same object if their projected linear
separation on the sky Δr and their redshift separation Δz

22 This acronym refers to the initials of the authors of the original
publication (Wen et al. 2012). The catalog is publicly available at https://
vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/ApJ/807/178.
23 In contrast to Wen et al. (2012), where masses are quoted as M200, the work
presented in Wen & Han (2015) adopts the M500 definition.
24 These mass estimates ( )M500

lit are the ones obtained from the aforementioned
list of X-ray and tSZ studies, following the rescaling that was performed by
Wen & Han (2015) to homogenize the mass definition in the calibration
sample.
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satisfy the conditions Δr< 0.5 Mpc and D < +( ¯)z z0.05 1 ,
where z̄ is the mean redshift of the two clusters (this expression
for the limit on Δz takes into account the potentially higher
errors on z measurements at higher redshifts). This query is
applied to the full catalogs (and not restricted to the ACT
footprint), maintaining the constraint M500> 1014Me. Besides,
the search for matches is conducted in four disjoint redshift
intervals, namely [0.00, 0.35], [0.35, 0.45], [0.45, 0.55], and
[0.55, 0.80]; the different interval sizes take into account the
nonuniform redshift distributions of our cluster catalogs,
allowing us to yield a comparable number of matches in each
bin. The reason why we perform this analysis in different
redshift bins is to allow for a possible z evolution in the
agreement between the mass estimates from the different
catalogs. The number of chosen redshift bins is rather arbitrary;
in our case, four bins are enough to show any redshift trends,
while retaining a number of matches per bin that is large
enough for the subsequent analysis.

The results of the query for the cluster matches are shown in
the left panels of Figures 3, 4, and 5 for the KiDS–WHL,
KiDS–DESI, and WHL–DESI combinations, respectively.
Each plot refers to one redshift interval, showing the
comparison between the masses of the matched clusters, as
obtained from the corresponding catalogs, together with the
bisector y= x, which represents the ideal case of equality. In
order to avoid excessive clutter in these plots, the mean error
bars that are associated with the mass estimates are shown in
separate boxes in the top left corners. We typically find around
100 cluster matches per redshift bin when considering the
KiDS catalog, and we typically find more than 7000 matches
for the combination of the larger WHL and DESI catalogs. In
all plots, the masses are quoted in logarithmic units of 1014Me,

which is a convenient choice, as it sets our low-mass threshold
at the origin.
As expected, the intrinsic scatters of the scaling relations that

are adopted to estimate each cluster mass, together with the
uncertainties in the measurements of the associated mass
proxies, determine the visible scatter of the points around the
bisector. However, if the distribution of the points also shows
any clear trends deviating from the bisector, the mass estimates
that we adopt could be systematically biased. This effect is
better visualized by splitting the points into different mass bins
and only considering the associated mean masses that are
computed for each catalog. In principle, the bins could be
defined along each of the two coordinate axes, by choosing the
corresponding catalog as a reference. In this case, however, the
mass estimates from all the catalogs have significant error bars,
meaning that this strategy for splitting the points is unreliable.
In order not to make a preferential choice of any one catalog,
we instead group the points in bins of equal separation from the
line y=− x; or, in other words, we bin the points along the
bisector, with the boundaries for each bin being the lines
y=− x+Δ (with Δ; 0.2). In Figures 3 to 5, the mean
masses of the points in each bin are shown as the red squares,
while their standard deviations are quantified by the associated
error bars.
In general, considering the mass uncertainties that are shown

in the top left corners of the plots, the individual matches are
compatible with the bisector within 1σ; the mean points,
however, in some cases reveal a trend or an offset that deviates
from the bisector. It is then meaningful to correct for this effect
by following the procedure that is adopted in Wen & Han
(2015), where the same issue was encountered when building a
calibration cluster sample by merging preexisting independent
catalogs. We choose a reference catalog for the mass definition

Figure 3. Summary of the mass calibration analysis described in Section 3.4, for the KiDS–WHL comparison. Left panels: for each redshift bin, we plot a comparison
between the masses for the retrieved cluster matches from the two catalogs using dots; the bisector y = x is shown for comparison, as a solid black line. The mean error
bars for the mass estimates for each match are shown in separate boxes in the top left corners. The red squares and their error bars represent the means and standard
deviations of the masses of the matches binned along the bisector, and serve to better visualize the trend of the points compared to the bisector. The dashed purple line
represents the linear regression adopted to scale the WHL masses to the KiDS masses, according to Equation (4), with the scaling parameters quoted in the bottom
right corners of each plot; the matches that are plotted in black were considered outliers and were not included in the linear fit. Right panels: the same as the left panels,
but after applying the rescaling to the WHL masses; overall, the scaling improves the agreement between the masses of the matched clusters.
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and rescale the masses of the other two catalogs to match the
values from the reference one. The masses for the KiDS clusters
are obtained via a richness–mass scaling relation that is
calibrated on WL measurements, which directly probe the
cluster masses, without any assumption of their physical states;
hence, they can be considered more reliable than the masses
quoted in WHL, which rely on the tSZ and X-ray masses that are
defined in the calibration sample, or those quoted in DESI,
which rely on abundance matching between the halo luminosity

and mass function. We shall therefore take KiDS as the reference
catalog, and scale the masses from the other catalogs accord-
ingly. For each redshift bin, the scaling has the form

= +˜ ˜ ( )M m M qlog log , 4i i10 KiDS X, 10 X X,

where º˜ ( )M M M1014 , X is either WHL or DESI, i selects
the redshift bin, and the parameters m and q are obtained via
linear regression on the masses of the associated matches.

Figure 4. The same as Figure 3, but for the comparison between KiDS and DESI.

Figure 5. Similar to Figures 3 and 4, but for the comparison between DESI and WHL. In this case, no direct linear regression was employed to scale the WHL masses
to match the DESI values, or vice versa; hence, the left panels do not include any fitting results. The right panels show the comparison between DESI and WHL, after
the masses of both have been independently scaled to match the mass values from KiDS. Even in this case, the scaling yields a better agreement between the masses of
the matched clusters from the two catalogs.
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In this context, the results from the linear regression can
easily be biased by outliers. The latter could result from
spurious matches or from the combinations of the intrinsic
scatters in the scaling relations that are adopted to derive the
cluster masses in the two catalogs (combined with the
uncertainties in the measurements of the mass proxies
themselves). In order for our fits not to be biased by these
outliers, we identify and remove them according to the
following procedure. In each of the mass bins that are bounded
by the y=− x+Δ edge lines, we compute the orthogonal
distance d of each point to the bisector and evaluate the
associated standard deviation σ d; for each bin, we then discard
all points for which d> 2 σ d from the linear regression
analysis. These outliers are shown in black in the left panels of
Figures 3, 4, and 5. For the remaining points, due to the large
error bars on both axes, an ordinary least squares fit would not
be suitable; we instead adopt an orthogonal distance regression
method, using the SciPy ODR package.25 The resulting linear
scalings are plotted as the dashed purple lines in Figures 3 and
4, where the boxes in the bottom right corners report the best-fit
parameters. We notice that in all cases, the intercept satisfies
|q|< 0.1; this result already suggests a broad consistency
between the mass estimates from the different catalogs, as in
the ideal case of m= 1, the intercept quantifies the mean offset
between the two mass definitions. In the case of the KiDS–
WHL comparison, the slope is always compatible with 1, while
we find larger deviations for the KiDS–DESI case. However,
we stress that the mean shift in mass that results from applying
the scaling to the cluster samples that we use in the subsequent
analysis (not only the subsamples of matched clusters) is equal
to 0.06 dex for WHL and 0.02 dex for DESI, with maximum
shifts of 0.09 dex and 0.16 dex, respectively. Hence, our mass
correction is always below the initial mass uncertainty for
individual clusters, and on average much smaller.

We can now use Equation (4) with the associated best-fit
parameters to rescale the masses of WHL and DESI in each
redshift bin. As DESI is the only catalog that extends at z> 0.8,
its highest-redshift clusters have no matches with KiDS; hence,
these cluster masses are not rescaled. The right panels of
Figures 3 to 5 show once more the comparisons of the masses for
the cluster matches, but this time after the mass rescaling has
been applied; again, we overplot the bisector and mean masses
with standard deviations for the y=− x+Δ bins. As already
mentioned, our mass correction is small overall, so these plots
resemble the ones shown in the left panels. Still, it is possible to
appreciate how the agreements between the mean mass points
and the bisector have marginally improved. It is interesting to
consider the comparison between WHL and DESI in Figure 5;
we notice that, in this case, no fitting function is overplotted in
the left panel, as we did not consider the direct rescaling of the
WHL masses to match the DESI values, or vice versa. Instead,
both catalogs are independently rescaled to match the KiDS mass
values of their associated matches. The comparison between the
rescaled WHL and DESI masses is shown in the right panel of
Figure 5. Again, the mean points over the y=− x+Δ bins show
better agreement with the bisector, thus corroborating the
consistency of our approach for mass recalibration.

In Appendix B, we quantify the impact of this mass rescaling
on the final results of our study. We repeat the stacking analysis
and parameter estimation on a different version of our cluster

sample, obtained by merging the three catalogs without any
explicit mass rescaling. We show that the differences in the
final results are indeed much smaller than the statistical
uncertainties that we quote on our parameter estimates.

3.5. The Joint Cluster Catalog

The mass rescaling described in the previous section is applied
to the WHL and DESI catalogs, also including clusters with
masses lower than 1014Me; the cut M500> 1014Me is then
subsequently applied to the mass-rescaled catalogs. This allows
clusters with initial masses below our threshold to be included in
the chosen sample, if the rescaling increases their M500 above
1014Me. All catalogs are then queried to match the footprint of
the two ACT patches, resulting in 806, 15,330, and 14,477
clusters in KiDS, WHL, and DESI, respectively. We then remove
the cluster repetitions; the latter are identified by adopting the
same positional matching criteria detailed in Section 3.4. From
WHL and DESI, we remove all the clusters that match the KiDS
positions, maintaining the corresponding entries in the KiDS
catalog; as the latter have substantially lower statistics compared
to WHL and DESI, this choice ensures that no KiDS cluster is
discarded. For each remaining repetition between WHL and
DESI, we maintain an entry from one of these catalogs, based on
a random choice with equal probability. Overall, we remove 3437
clusters from WHL and 3356 clusters from DESI.
These cleared catalogs are then merged together to obtain the

final sample that we employ for our study, which contains 23,820
clusters in total. The sample spans the mass range M500ä [1014.0,
1015.1]Me and the redshift range zä [0.02, 0.97]; a summary of
the numbers of clusters for the different source catalogs and ACT
patches is reported in Table 2. In the end, WHL and DESI
contribute a comparable number of clusters to each ACT patch.
The mass and redshift distributions of the final cluster sample,
combining objects from both ACT patches, are shown in Figure 6.

4. The Mean Cluster Compton Profiles

In this section, we describe the methodology that we adopt to
measure the mean angular y-profiles from our cluster samples,
and discuss the results.

4.1. Cluster Binning

The main goal of this study is to explore the dependence of the
cluster pressure profile on mass and redshift. To this end, we define
a set of three bins in ( )Mlog10 500 , bounded by the values [14.0,
14.3, 14.6, 15.1], and three bins in z, bounded by the values [0.00,

Table 2
Summary of the Contributions from the KiDS, WHL, and DESI Catalogs to the

Final Cluster Sample Employed in This Analysis

Catalog N NBN ND56 ( )z z,min max

KiDS 806 806 0 [0.08,0.74]
WHL 11,893 8937 2956 [0.04,0.78]
DESI 11,121 8735 2386 [0.02,0.97]

Total 23,820 18,478 5342 [0.02,0.97]

Note. For each catalog, we report the number N of clusters overlapping with
the ACT footprint, the numbers NBN and ND56 of clusters located in the BN and
D56 patches, respectively, and their redshift spans. These values refer to the
WHL and DESI samples that are obtained after mass recalibration (Section 3.4)
and the removal of overlapping objects (Section 3.5).

25 https://docs.scipy.org/doc/scipy/reference/odr.html
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0.35, 0.70, 1.00]. We then split our cluster catalog into a set of nine
subsamples, with each belonging to a combination of a mass bin
and a redshift bin. The last panel in Figure 6 is a scatter plot,
showing the distribution of the clusters in the ( ( ) )M zlog ,10 500
plane; this plot shows that there is no strong correlation between the
two variables, most likely as a result of the catalogs being nearly
complete above the chosen mass cut, so the choice of redshift bin is
independent of the choice of mass bin and it is meaningful to adopt
the same set of M500 boundaries across the whole z range. We also
consider the marginalized samples obtained by joining all
the redshift values for each mass bin, and vice versa.
Finally, we include the full cluster sample as the margin-
alized case over both variables. We obtain in this way a total
of 16 different cluster samples (the full sample, nine disjoint
subsamples, and six marginalized cases), which we employ
separately to measure the mean Compton parameter profile.
Hereafter, we shall refer to them as M–z bins.

Our choice for the number of bins in M500 and z ensures that
we have enough statistics for the stacking analysis in each M–z
bin, while at the same time allowing us to investigate the
possible dependencies in mass and redshift. We follow the
same choice as adopted by G19 and consider three bins in
redshift, which are almost equally spaced over the range

spanned by the cluster sample. We also adopt three bins for the
masses; however, given the steep decrease in the numbers of
objects for increasing masses, the top M500 bin is in this case
chosen to be wider, in order to retain sufficient statistics for the
stacking analysis described in Section 4.2. Clearly, in the end,
we will have a different number of clusters in each M–z bin;
this, however, is not an issue for our analysis. The formalism
that we adopt to model our measurements, which is described
in Section 5.3, naturally accounts for the number of objects and
the mass span for each case. The final numbers of clusters
included in each of the M–z bins are reported in Table 3.

4.2. Cluster Stacks and Angular Profiles

For each of our 16 cluster samples, we obtain an independent
stacked map. Let Ncl be the number of clusters in one M–z bin;
for the generic ith cluster, we trim a local submap, centered on
its nominal coordinates, with size ¢ ´ ¢30 30 in the case of
Planck and ¢ ´ ¢15 15 in the case of ACT.26 We label such a
map Si, which carries information about the y-signal around the

Figure 6. Statistics of the full cluster sample employed in this study. The left and middle panels show the cluster number distributions in mass and redshift,
respectively, while the right panel shows the joint distribution of the two variables. In each panel, the dashed lines mark the boundaries of the chosen mass and/or
redshift bins, as detailed in Section 4.1.

Table 3
Significances per Bin cb

2 of the Mean y-profile Measurements for All the Considered M–z Bins, for Both Planck and ACT, Computed as in Equation (10)

M500 [1014.0, 1014.3] Me [1014.3, 1014.6] Me [1014.6, 1015.1] Me All M500

z

Ncl [0.00, 0.35] 3652 673 96 4421
cb

2 (Planck) 62.4 107.0 91.4 157.7

cb
2 (ACT) 5.8 6.2 5.1 7.8

Ncl [0.35, 0.70] 13,518 2125 243 15,886
cb

2 (Planck) 33.0 76.3 125.5 82.0

cb
2 (ACT) 7.6 9.4 6.0 10.0

Ncl [0.70, 1.00] 2840 620 53 3513
cb

2 (Planck) 13.3 19.0 23.5 30.1

cb
2 (ACT) 4.1 4.3 3.0 6.4

Ncl All z 20,010 3418 392 23,820
cb

2 (Planck) 94.2 160.5 179.6 229.0

cb
2 (ACT) 9.7 11.4 7.7 12.4

Note. The table also reports the number of clusters stacked in each case. For clarity, the number of clusters in each bin is reported in bold.

26 These different values are a result of the different beam sizes for the two
maps, and they are chosen to enable a reconstruction of the whole cluster signal
and part of the neighboring background—see Figures 7 and 8.
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cluster; we also obtain an equivalent weight map W i, which is
extracted in the same way from the corresponding survey mask.
The y-stack map S for the considered sample is then obtained as

å=
=

( )S
W

S W
1

, 5
i

N

i i
1

cl

where the total weight is given by

å=
=

( )W W. 6
i

N

i
1

cl

The resulting 16 stacks for each M–z bin are shown in Figure 7
for the Planck map and Figure 8 for the ACT map. For each

Figure 7. Stacking results for the Planck y-map. Each row (column) represents a selected redshift (mass) bin, with the last one showing the marginalized case over the
full redshift (mass) range. Notice that the color scales reported above each panel are not the same and are chosen to saturate each stack. In each panel, the nominal
center of the stack is marked by the dashed white lines, while the dotted–dashed lines mark the inner and outer boundaries of the annulus employed to estimate the
mean background level.
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stack, the axes show the angular separation from the center,
which is also marked with a pair of white dashed lines.

From each of these stacks, we can derive the associated
Compton parameter profile, y(θ), as a function of the angular
separation θ from the cluster center. The profile is built by
splitting the pixels over a set of Nb bins in the angular
separation from the map center, then taking the mean value in
each bin. As we are interested in the contrast of the local cluster

signal, we first quantify a mean background value to be
subtracted from each map.27 The latter is estimated by
repeating, for each M–z bin, the Compton y-stack, using 500
different replicas of the associated cluster sample, where in
each case the cluster coordinates are randomly shuffled within
the allowed ACT footprint. This results in 500 radial profiles

Figure 8. The same as Figure 7, but for the ACT y-map.

27 The stacks plotted in Figures 7 and 8 are not background-subtracted.
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per M–z bin; the resulting mean is used to evaluate the
background contribution as a function of θ, and is subtracted
from the corresponding M–z stack obtained using the real
cluster sample. The results are shown in Figure 9 for both ACT
and Planck. We notice that in all cases, the mean profile does
not show any strong dependence on the angular separation
from the center; we then quote in each panel the mean value ȳ
of the average profile over the considered θ range (i.e., up to
30′ for Planck and 10′ for ACT). We stress that the clusters
from the different M–z bins actually span the same area, which
is set by the ACT patch boundaries. Hence, we would expect to
obtain the same estimate for the mean background level from
the different cluster samples. Figure 9 shows that this is in
general verified, with the exception of the top-mass bin, which
displays larger deviations. This is due to the much lower
number of clusters in this mass range, which produces a
considerably larger spread of the individual shuffled profiles
around the mean (the effect is more relevant for ACT).
However, for all these M–z bins, the stack amplitudes from
Figures 7 and 8 are high enough that this zero-level correction
is negligible (1% at the profile peak). For the lower-mass
bins, instead, the estimates of the mean background level
converge to the values of = ´ -ȳ 6.3 10 8 for Planck and
= ´ -ȳ 9.6 10 8 for ACT.
Even after the removal of the background contribution, as

described above, the y-profiles do not always reach a null
amplitude for large θ values. We then subtract from each profile
an additional zero-level contribution, measured as the average
of the y-values from the pixels bounded by a circular annulus
outside the cluster outskirts. The inner and outer annulus radii
are [22, 28] arcminutes for Planck and [10, 15] arcminutes for
ACT, chosen in such a way as to exclude any cluster signal
contribution (see again Figures 7 and 8, for reference). Notice
that this operation will be also applied to our theoretical
predictions for the cluster profile—see Equation (31). The final
background-subtracted profiles are shown in Figure 10, for
both Planck and ACT (the left and right panels, respectively).
These figures focus on the comparisons between the profiles for
the different redshift samples, for each cluster mass bin.

To complete the statistical characterization of our measure-
ments, we compute the covariance matrices associated with the
profiles. Again, for each M–z bin, we perform stacks of

Nrand= 500 replicas of the associated cluster sample, obtained
via bootstrap resampling (each randomized catalog is obtained
by randomly selecting clusters from the original sample, up to
the same number Ncl, with the possibility of repetition). The
covariance between the two angular separations θ i and θ j can
then be computed as

åq q q q q q= - -
=

( ) [ ( ) ¯ ( )][ ( ) ¯ ( )] ( )C
N

y y y y,
1

, 7i j
k

N

k i i k j j
rand 1

rand

where y k denotes the kth random profile and ȳ is the average
profile of the random realizations:

åq q=
=

¯ ( ) ( ) ( )y
N

y
1

. 8i
k

N

k i
rand 1

rand

By construction, the diagonal of each covariance matrix
quantifies the profile variance at the corresponding angular
separation, σ2(θ i)=C(θ i, θ i); these σ(θ i) values are the
effective uncertainties in our profile measurements, and are
shown as the shaded regions in Figure 10. In Figure 11, we
show, for both Planck and ACT, the 16 associated correlation
matrices, which are obtained from the covariance matrices as:

q q
q q

s q s q
=( )

( )
( ) ( )

( )
C

Corr ,
,

. 9i j
i j

i j

The covariance matrices also allow us to compute the
significance of the measured y-profile for each M–z bin, defined
as the chi-squared value:

ååc q q q q=
= =

( ) ( ) ( ) ( )y I y, , 10
i

N

j

N

i i j j
2

1 1

b b

where I is the inverse of the covariance matrix, corrected by an
overall scaling factor, to yield an unbiased estimator (Hartlap
et al. 2007):

q q q q=
- -

-
-( ) ( ) ( )I

N N

N
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2
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, . 11i j i j

rand b
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1

The significance for all the stacks is reported in Table 3,
together with the number of clusters in each sample. As the

Figure 9. Estimation of the mean background values for each M–z bin, for both the Planck (left) and ACT (right) maps. For each panel, we show the profiles obtained
by stacking 500 replicas of the corresponding cluster sample, each obtained by randomly shuffling the cluster positions. The thick solid line shows the average profile;
the mean amplitude ȳ of the latter over the considered angular range is explicitly quoted in each panel. The zero level is marked by the dashed line.
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quantity from Equation (10) depends on the number of bins
considered, we quote the significance per bin, defined as
c c= Nb

2 2
b, where Nb is the number of angular bins until the

inner radius of the annulus employed to estimate the
background value (33 for ACT and 24 for Planck). Since we
are not using the χ2 estimate to fit for a model, the number of
degrees of freedom is equal to the number of bins. Hence, our
cb

2 measurement is in fact a reduced-χ2 measurement for the
null model y(θ)= 0, which can be used to evaluate the
significance of the detection.

4.3. Discussion of Profile Measurements

Figures 7 and 8 show that the cluster signal is clearly
detected in all cases; in order to better show its contrast with

respect to the background, the color scale for each stack is
chosen to saturate the signal. The main difference between the
Planck and ACT results is the resolution of the reconstructed
signal, as expected. The much larger Planck beam implies not
only that the cluster signal is artificially broadened to larger
angular separations from the stack center, but also that most of
the features on scales below a few arcminutes are smoothed
out. The ACT stacks, instead, allow for a more accurate
reconstruction of the same signal, at smaller scales. A larger
beam also implies a more severe dilution of the cluster signal,
as becomes evident by comparing the amplitudes of any stacks
between the two y-maps.
As expected, for each survey, we see that the significances of

the stacks tend to be lower for decreasing mass and increasing
redshift. This is much clearer for the ACT stacks, which are
less affected by the smoothing effect of the beam convolution.

Figure 10. Radial profiles obtained from the stacks that are shown in Figures 7 and 8. The left column shows the results for Planck, while the right column shows the
results for ACT. Each row corresponds to a chosen M500 bin, with the bottom row showing the marginalized case over all masses. Each panel shows the results from
the three redshift bins and for the marginalized case over all redshifts; the shaded area around each profile quantifies the associated 1σ uncertainty.
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The reduction in mass determines the highest variations of the
signal amplitude and in general yields more irregular stacks.
The much higher statistics that are available for the lowest-
mass bin (the first panel of Figure 6) ensure that the cluster
signal is still detected, despite the significant drop in the S/N
that is expected for individual objects in this M500 range. The
increase in redshift also produces a decrease in the signal
amplitude (although to a lesser extent compared to the mass
change), with the highest-redshift bin showing stronger back-
ground fluctuations. The small ACT beam also allows us to
appreciate the shrinking of the cluster signal for increasing
redshift, as the angular diameter distance monotonically
increases with z in the redshift range that we explore. The
decrease in the profile amplitude with z could be a result of the
higher-redshift clusters being in earlier stages of evolution, and,
as such, possibly not yet being fully virialized, which would
lower the associated SZ signal (we remind the reader that our
cluster sample is selected on the basis of optical observations,
which cannot probe the ICM directly). Besides, higher-z
clusters subtend smaller angular scales and are therefore more
severely affected by the beam smoothing effect; this could
account for the higher z dependence of the profile amplitudes
observed in the Planck stacks compared to the ACT stacks. The
marginalized cases over M500 typically show features in
between those of the two lowest-mass bins, as those encompass
the vast majority of the clusters in our samples. The margin-
alized cases over z are instead quite similar to the mid-redshift
bin, as the cluster numbers in the different z bins are
comparable. Finally, the marginalized case over both M500

and z shows the highest S/N and the most regular, rounded
cluster emission, as is expected from the exploitation of the full
cluster statistics.

Most of these considerations can also be inferred from the
angular profiles in Figure 10. Notice that, because each panel
compares profiles from different redshift bins, they do not

include the associated instrumental beam profile, to avoid
excessive clutter. A direct comparison between each measured
y-profile and the beam profile (scaled to the measured peak
amplitude) will be shown later, in Figures 13 and 14. Those
figures prove that the measured profiles extend to higher
angular separations than the instrumental beam, i.e., the profiles
are resolved in all cases; it is then meaningful to employ them
to fit for the underlying pressure profile parameters (Section 6),
even for the case of Planck. Going back to Figure 10, we see
that the profiles for Planck always show a regular trend, also
thanks to the smoothing effect from the large instrumental
beam: for a chosen M500 bin, the profiles have similar shapes,
with the amplitude steadily decreasing for increasing z, and
with the marginalized case over all redshifts being generally
close to the mid-z sample. The higher resolution of ACT
instead allows more irregularities to be revealed in the profiles.
The case of the bin with the lowest mass and redshift shows a
decrease in the profile amplitude toward the stack center; this
results from the peak of the stacked signal being located off-
center, as is clear to see from the corresponding stack panel in
Figure 8. This could be due to possible contamination from the
neighboring high-mass clusters, or to a mismatch between the
sample cluster nominal and real central positions; the latter
possibility will be taken into account in our modeling in
Section 5.4. We also notice that for the top-mass bin, the top-
and mid-redshift bins have comparable peak amplitudes; once
again, this is probably due to a miscentering effect, which
artificially dilutes the signal amplitude and becomes more
relevant for lower redshifts. We conclude this section by
commenting on the correlation matrices plotted in Figure 11.
The angular y-profile is expected to introduce correlations
between neighboring θ bins. This is indeed reflected in the
plots, especially for the lowest angular separations. Once again,
the situation is remarkably different depending on the survey
considered, with the correlation extending up to a scale of

Figure 11. Correlation matrices computed from the randomized stacks, as described in Section 4.2. Results are shown for Planck on the left and ACT on the right,
using the same M500, z binning scheme as adopted in Figures 7 and 8.
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∼1′–2′ in the case of ACT and up to~ ¢10 in the case of Planck,
as expected from the different FWHMs. For each survey, the
correlation matrices do not show appreciable dependencies on
the chosen mass and redshift bins. The diagonal values of the
covariance matrices are the squares of the uncertainties
overplotted to the radial profiles, as shown by the shaded areas
in Figure 10. We see that the number of clusters stacked in each
case partially affects the magnitude of the uncertainties, with
the marginalized cases generally showing smaller error bars.
This is also reflected in the significance values that are quoted
in Table 3. As expected, the detection significance increases for
high masses and low redshifts, for both Planck and ACT, but it
is also partially affected by the number of clusters in the
associated sample. We can quote the square root of the cb

2

values as the detection significance per bin in σ units. The
significance per bin is typically above ∼3.6 σ for Planck and
∼1.7 σ for ACT, and reaches the top values of 15.1 σ and 3.5 σ,
respectively, for the stack of the full cluster sample. The higher
significances that are associated with the Planck measurements
are a result of the lower uncertainties in the reconstructed
profiles, which, in turn, are due to the smoothing effect of the
larger beam.

5. Theoretical Modeling

The following details the formalism that we adopt to
theoretically predict the Compton profiles that are presented
in the previous section.

5.1. The Pressure Profile for Individual Clusters

The electron pressure profile Pe for a galaxy cluster of mass
M500 at redshift z can be written as

=
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Here, ( ) x is the UPP that has already been defined in
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is expected in the self-similar model:
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where º = W + + WL( ) ( ) ( )E z H z H z10 m
3 , with ΩΛ=

1−Ωm for flatness, h70= h/0.7, and bh being the hydrostatic
mass bias. A similar expression, but without the inclusion of the
(1− bh) factor, was also employed in Arnaud et al. (2010); in that
work, cluster masses were derived from scaling relations based on
the quantity YX, defined as the product between the gas mass
within R500 and the spectral temperature TX (see also Nagai et al.
2007). Such mass estimates rely on the assumption of local
hydrostatic equilibrium in the ICM, and can therefore be biased
with respect to the true cluster masses. As we employ mass
definitions based on lensing observations in this paper, which
probe the true cluster mass content, we account for this bias by
explicitly introducing the (1− bh) factor to scale our M500 values
in Equation (13). The bias bh will be left free in our analysis and
estimated together with the other UPP parameters. We remind the
reader that the introduction of the hydrostatic bias also affects the

definition of the scale radius in the computation of the pressure
profile, i.e., º ˜x r R500, with = -˜ ( )R R b1500 500 h

1 3.
We notice that Equation (12) differs from the expression in

Equation (3), which was the initial ansatz proposed by Nagai et al.
(2007), by an additional factor f (M500, z). The latter determines a
break in the self-similarity and was introduced by Arnaud et al.
(2010), to accommodate a residual mass dependence found in the
scaled X-ray pressure profiles. When parameterized around the
same pivot mass = ´ -
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with αp = 0.12 and where we again explicitly introduce the
bias correction factor (1− bh).

5.2. The Mean Compton Profile for a Population of Clusters

The profiles obtained from our stacks contain contributions
from a large number of clusters with different mass and redshift
values. Formally, such a merged profile can be evaluated as the
two-point correlation between the Compton y-map and the
cluster sample, which, in turn, can be obtained by inverse
Fourier transform of the associated cross-correlation power
spectrum Cℓ

yc:

òq
p

q=( ) ( ) ( )y ℓ
ℓ

J ℓ C Bd
2

, 15ℓ
y

ℓ0
c

with ℓ being the multipole and J0 the zeroth-order Bessel
function. In order to account for the instrumental smoothing of
the reconstructed Compton map, the expression also includes
the beam window function B ℓ:

s= - +⎡
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2
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where s q= 8 ln 2b FWHM . The cross-correlation power
spectrum Cℓ

yc can be computed using a halo model framework,
which considers the contribution of both a one-halo and a two-
halo term, as (Komatsu & Kitayama 1999)
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The one-halo termCℓ
yc,1 quantifies the integrated contribution

of the individual clusters, and is computed as
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where the integrals are weighted by the comoving volume
element d2V/dΩdz= c χ2/H(z) (χ is the comoving distance to
redshift z) and the halo mass function dn/dM (e.g., Tinker et al.
2008). The selection function S(M, z) depends on the particular
cluster sample that we consider; it encodes any deviations from
the theoretical mass function, due to observational selection
effects and other constraints applied to our catalogs. The entire
expression is normalized by the mean angular number density
of the halos n̄c, given by (see also, e.g., Fang et al. 2012)
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The quantity ỹℓ in Equation (18) is the Fourier transform of the
Compton parameter profile, which can be computed as

ò
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where ℓs= dA/R500 and dA is the angular diameter distance; the
expression contains the cluster electron pressure profile Pe,
defined in Equation (12), and the radius R̃500, corrected for
hydrostatic bias.

The two-halo term Cℓ
yc,2 quantifies the correlation between

the different clusters, and is computed as
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where Pm(k, z) is the linear matter power spectrum, b(M, z) is
the linear halo bias, and
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We compute the linear halo bias by adopting the parameteriza-
tion from Tinker et al. (2010).

5.3. Application to Our Sample

In our case, the selection function S(M, z) cannot simply be
expressed as a combined cut in mass and redshift, depending
on the chosen M–z bin. Due to the extended processing of the
cluster catalogs prior to the stacking analysis, as described in
Sections 3.4 and 3.5, the selection function cannot be modeled
analytically. A solution proposed in G19 consists of splitting
the mass and redshift ranges into a set of smaller N M and N z

intervals,28 respectively. We call M̄i and z̄j the mean values
within the generic ith mass and jth redshift intervals. Within
each interval, the integral evaluation can be reasonably
approximated as the product of the interval width and the
integrand function evaluated at the interval mean value. For the
generic ith mass and jth redshift interval, the one-halo term then
reads
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i.e., it is simply equal to the Compton Fourier transform as
evaluated at the mean redshift and mass. For the two-halo term,
we have

c

=

´ =
+

⎜ ⎟
⎛

⎝

⎞

⎠

( ¯ ¯ ) ( ¯ ¯ )

( ¯ )
¯ ( ¯ ) ( )

 M z b M z

P k
ℓ

z
z W z

, ,

0.5
, . 24

ℓ
y

i j i j

j
j ℓ

y
j

c,2

m

In this case, the quantity ( ¯ )W zℓ
y

j still needs to be evaluated via a
full mass integral, as in Equation (22). In summary, when

working with intervals, Equations (23) and (24) replace
Equations (18) and (21), respectively.
For both the one-halo and two-halo terms, the full quantity

over the chosen cluster sample can be recovered as
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where X is either 1 or 2, or even the sum of both halo terms.
The factor n ij is the number of clusters with mass and redshift
within the ith mass and jth redshift interval, such that the total
number of clusters Ncl in the chosen M–z bin is recovered as
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The expression in Equation (25) ensures that all selections that
are applied to build the considered cluster sample will also be
accounted for in the theoretical modeling of the associated
mean Compton profile.
We stress that a direct approach, based on computing the

individual y(θ;M500, z) profile for each stacked cluster and
considering the resulting mean value, would not be adequate
for our analysis. First, such an approach would not take into
account the intercluster correlations and would only consider
the contribution from the one-halo term; and second, the
computation of ∼104 profiles would be unpractical for the
parameter estimation methodology described in Section 6. The
use of Equations (23) to (25) allows us to solve both these
issues. In our implementation, we adopt N M= 5 and N z= 5
when dealing with individual M-z cross bins, and N M= 15 and
N z= 15 when dealing with mass- or redshift-marginalized
cases, respectively. We checked that this choice yields
deviations <1% from the theoretical profile that is obtained
by adopting the full formalism from Equations (18) and (21)
(with the n ij factors being computed by integrating the halo
mass function over the chosen mass and redshift intervals),
which is within the error bars of our measurements (Figure 10).

5.4. Miscentering and Zero Level

In our modeling, we consider possible offsets of the real
cluster centers with respect to their quoted coordinates (Yan
et al. 2020). For the stacking analysis, this would imply that the
reconstructed profile is artificially diluted, meaning that we
actually measure a mean “offset” profile q¯ ( )yoff instead of the
true intrinsic profile y(θ). We follow the approach presented in
Bellagamba et al. (2018) and Giocoli et al. (2021) by dividing
the cluster population into a fraction foff, which is affected by
miscentering, and a fraction 1− foff, whose true cluster
positions coincide with the nominal ones. The observed
resulting miscentered profile ymsc is then

q q q= + -( ) ¯ ( ) ( ) ( ) ( )y f y f y1 . 27msc off off off

The problem therefore reduces to the computation of the
mean offset profile q¯ ( )yoff . For a known angular offset θoff, the
miscentered profile yoff(θ|θoff) can be computed starting from
the centered profile y(θ), as (Yang et al. 2006)
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28 To avoid confusion, we continue to use the word “bin” to denote each of the
redshift and mass choices that generate the 16M-z cluster samples that we stack
on the y-map, while the word “interval” designates the further splitting of each
bin into smaller separations in mass and redshift.
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i.e., by integrating a set of profiles whose center is located θoff
away from the nominal position, over all possible directions.

The value of the miscentering offset θoff is generally not
known a priori. Previous work has found that it reasonably
follows a Rayleigh distribution with parameter σoff (Johnston
et al. 2007):

q s
q
s
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so that the expected value for the offset is29 θoff; 1.25 σoff.
The mean miscentered profile q¯ ( )yoff can then be evaluated by
averaging over all possible values of the miscentering,
weighted by its probability distribution:

òq s q q s q q=
¥
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In our analysis, both the miscentering offset σoff and the
fraction of miscentered profiles foff are taken as free parameters.

As a very last step in our theoretical prediction, we subtract
from the profile its zero level:

q q= -( ) ( ) ¯ ( )y y y . 31theo msc bkg

The background value ȳbkg is computed as the mean of the
profile amplitude over the same θ range that was considered in
Section 4.2, when computing the zero level for the profiles
measured from the y-stacks.

6. Parameter Estimation

In this section, we present the results for the estimates of the
pressure profile parameters.

6.1. Methodology

The ultimate goal of this study is to provide novel estimates of
the parameters entering the expression of the UPP in
Equation (3). As our analysis is based on tSZ measurements
alone, without the inclusion of numerical simulations or X-ray
data, we do not fit for the central slope of the profile, which we
fix to the fiducial value γ= 0.31, as has been done in similar
tSZ-based works (Table 1). In addition, we fit for the hydrostatic
mass bias bh and the values of the miscentering offset σoff and
fraction foff. Our parameter space is then seven-dimensional,
with a generic parameter state Θ defined as the list of values

a b sQ = { } ( )P c b f, , , , , , . 320 500 h off off

For a given set of the aforementioned parameters, the
formalism described in Section 5 allows us to compute the
associated profile y(Θ).
For each of the 16 cluster samples, we fit the theoretical

prediction y(Θ) against the profile yobs extracted from the stack.
The best-fit parameters are defined as the set Θbf that
maximizes the likelihood
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where C is the covariance matrix measured for the chosen
sample, as described in Section 4.2. In fact, due to the relatively
high number of parameters, a direct maximization of the
likelihood is not feasible; we adopt instead a Markov Chain
Monte Carlo (MCMC) approach to explore the parameter
space. Specifically, we employ the Python emcee package,
which is an implementation of the affine invariant ensemble
sampler from Goodman & Weare (2010). We adopt flat
uninformative priors on all parameters; the associated ranges

Table 4
Summary of the M1D Parameter Estimates for All the Considered Mass and Redshift Subsamples, Fitted on Planck Compton Profiles

Planck Parameter Estimates

Priors [2.0, 10.0] [0.0, 3.0] [0.0, 3.0] [2.0, 6.5] [0.1, 0.5] [0.0, 12.0] [0.0, 1.0]
z M500(Me) P0 c500 α β bh σoff (arcminutes) foff

0.175 1014.15 -
+6.4 2.7

2.2
-
+2.2 0.6

0.5
-
+2.1 0.7

0.6
-
+5.1 1.0

1.0
-
+0.3 0.1

0.2
-
+2.9 0.7

0.9
-
+0.7 0.2

0.2

0.175 1014.45 -
+5.2 2.4

3.3
-
+1.7 0.5

0.7
-
+1.7 0.6

0.8
-
+4.8 0.9

1.2
-
+0.2 0.1

0.2
-
+3.2 0.7

0.9
-
+0.8 0.2

0.1

0.175 1014.80 -
+5.1 2.1

3.0
-
+1.9 0.6

0.7
-
+1.9 0.7

0.7
-
+4.7 1.1

1.2
-
+0.3 0.2

0.2
-
+3.4 0.7

0.8
-
+0.8 0.1

0.1

0.175 All M500 -
+6.2 2.6

2.6
-
+2.1 0.5

0.5
-
+2.2 0.7

0.5
-
+5.3 0.9

0.8
-
+0.3 0.1

0.1
-
+3.1 0.5

0.5
-
+0.9 0.1

0.1

0.525 1014.15 -
+6.1 2.7

3.0
-
+2.2 0.6

0.5
-
+1.9 0.9

0.8
-
+4.2 0.9

1.2
-
+0.3 0.1

0.1
-
+4.4 1.0

1.0
-
+0.9 0.1

0.1

0.525 1014.45 -
+4.7 2.0

3.2
-
+1.9 0.7

0.7
-
+1.1 0.5

1.5
-
+3.6 0.4

0.7
-
+0.2 0.1

0.2
-
+7.2 2.8

2.9
-
+0.5 0.4

0.2

0.525 1014.80 -
+6.4 2.8

2.0
-
+1.8 0.7

0.7
-
+1.4 0.6

0.9
-
+4.9 0.8

0.9
-
+0.2 0.1

0.2
-
+2.1 1.4

2.1
-
+0.3 0.2

0.3

0.525 All M500 -
+5.5 2.3

2.8
-
+1.9 0.8

0.7
-
+1.6 0.7

0.8
-
+4.1 0.7

1.6
-
+0.3 0.2

0.1
-
+4.3 1.2

0.8
-
+0.8 0.1

0.1

0.850 1014.15 -
+5.9 2.4

2.8
-
+2.0 0.7

0.6
-
+1.8 0.7

0.9
-
+4.8 1.0

1.2
-
+0.3 0.2

0.2
-
+2.9 1.4

3.5
-
+0.5 0.3

0.3

0.850 1014.45 -
+6.0 2.8

2.9
-
+2.1 0.7

0.6
-
+1.5 0.7

1.1
-
+4.2 0.9

1.3
-
+0.3 0.1

0.1
-
+4.6 2.0

2.4
-
+0.6 0.3

0.2

0.850 1014.80 -
+5.6 2.5

3.1
-
+2.2 0.7

0.5
-
+1.6 0.7

0.9
-
+5.0 0.9

1.1
-
+0.3 0.2

0.1
-
+4.1 2.7

5.9
-
+0.3 0.2

0.3

0.850 All M500 -
+6.0 2.3

2.6
-
+2.0 0.8

0.6
-
+1.6 0.7

0.9
-
+5.0 1.1

0.9
-
+0.3 0.2

0.2
-
+2.6 0.8

1.5
-
+0.7 0.3

0.2

All z 1014.15 -
+5.7 2.3

2.6
-
+2.0 0.6

0.6
-
+1.9 0.6

0.8
-
+5.0 0.9

0.9
-
+0.3 0.1

0.2
-
+3.3 0.4

0.5
-
+0.9 0.1

0.1

All z 1014.45 -
+6.0 2.2

2.5
-
+1.8 1.0

1.0
-
+1.4 0.7

0.9
-
+4.1 0.9

1.4
-
+0.3 0.1

0.1
-
+5.0 1.7

1.9
-
+0.6 0.2

0.1

All z 1014.80 -
+6.8 3.6

2.8
-
+1.9 0.8

0.6
-
+1.6 0.8

1.0
-
+5.2 1.0

0.7
-
+0.2 0.1

0.2
-
+2.3 0.8

0.6
-
+0.7 0.3

0.2

All z All M500 -
+5.9 2.0

2.3
-
+2.0 0.7

0.7
-
+1.8 0.7

0.7
-
+4.9 1.0

1.2
-
+0.3 0.2

0.1
-
+3.2 0.6

0.5
-
+0.8 0.1

0.1

Note. The values are computed as the marginalized distribution medians; the error bars quantify the 68% confidence level.

29 Hereafter, we shall refer to the parameter σoff as the miscentering offset,
although the real angular displacement is quantified by θoff.
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are quoted in Tables 4 and 5. After burn-in removal and chain
thinning, for each mass and redshift bin we are left with ∼5000
samples of the posterior distribution on each parameter. The
resulting joint probability contours for all parameter pairs, and
the one-dimensional distributions for the individual parameters,
are shown in Figure 12, for both Planck and ACT. The figure
shows the results for the parameter estimation on the full

catalog; the posteriors for all the other M–z bins are
qualitatively similar, and are shown in Appendix B.

We consider two different approaches to determining the
associated parameter estimates. First, we retrieve the septuple
of parameters yielding the maximum value for the posterior
probability distribution; we shall refer to these values as the
maximum a posteriori (MAP) estimates. Since we are using flat

Figure 12. Posterior probability distributions for the model parameters, obtained by fitting our theoretical model to the profile corresponding to the stack of the full
cluster catalog for Planck (left) and ACT (right). The posteriors are plotted as contours showing the 68% and 95% confidence levels. The solid green lines mark the
highest-probability best-fit (MAP) values, while the dashed black lines mark the M1D estimates computed from marginalized one-dimensional distributions.

Table 5
Summary of the M1D Parameter Estimates for All the Considered Mass and Redshift Subsamples, Fitted on ACT Compton Profiles

ACT Parameter Estimates

Priors [2.0, 10.0] [0.0, 3.0] [0.0, 3.0] [2.0, 6.5] [0.1, 0.5] [0.0, 3.0] [0.0, 1.0]
z M500 (Me) P0 c500 α β bh σoff (arcminutes) foff

0.175 1014.15 -
+5.1 2.2

3.0
-
+2.0 0.7

0.7
-
+1.6 0.5

0.8
-
+4.2 0.6

1.0
-
+0.3 0.2

0.1
-
+1.8 0.2

0.3
-
+1.0 0.0

0.0

0.175 1014.45 -
+4.2 1.7

3.1
-
+1.9 0.6

0.6
-
+1.9 0.6

0.6
-
+4.5 0.8

1.1
-
+0.3 0.1

0.1
-
+1.8 0.4

0.5
-
+0.7 0.1

0.1

0.175 1014.80 -
+5.0 2.2

3.0
-
+2.0 0.7

0.6
-
+1.5 0.4

0.7
-
+4.2 0.7

1.0
-
+0.3 0.2

0.1
-
+1.7 0.5

0.5
-
+0.6 0.2

0.1

0.175 All M500 -
+4.3 1.7

3.1
-
+1.8 0.6

0.7
-
+1.5 0.5

0.8
-
+4.2 0.6

1.0
-
+0.3 0.2

0.1
-
+1.5 0.2

0.3
-
+0.9 0.1

0.1

0.525 1014.15 -
+4.1 1.6

3.0
-
+1.6 0.7

0.8
-
+1.1 0.4

0.8
-
+4.4 0.9

1.2
-
+0.3 0.2

0.1
-
+1.2 0.3

0.4
-
+0.8 0.1

0.1

0.525 1014.45 -
+4.2 1.7

3.5
-
+1.7 0.7

0.8
-
+1.5 0.6

1.0
-
+4.5 0.8

1.1
-
+0.3 0.2

0.1
-
+1.2 0.5

0.4
-
+0.6 0.1

0.1

0.525 1014.80 -
+4.0 1.5

3.0
-
+1.7 0.6

0.8
-
+1.6 0.4

0.6
-
+4.5 0.8

1.1
-
+0.3 0.2

0.1
-
+1.1 0.4

0.5
-
+0.5 0.2

0.2

0.525 All M500 -
+4.2 1.7

3.0
-
+1.3 0.6

0.9
-
+1.0 0.2

0.6
-
+4.6 0.8

1.1
-
+0.3 0.1

0.1
-
+1.0 0.3

0.3
-
+0.7 0.1

0.1

0.850 1014.15 -
+5.0 2.1

3.1
-
+1.8 0.9

0.8
-
+1.3 0.4

0.8
-
+4.3 0.9

1.4
-
+0.3 0.2

0.1
-
+0.9 0.3

0.5
-
+0.8 0.2

0.2

0.850 1014.45 -
+5.4 2.5

2.9
-
+2.0 0.9

0.7
-
+1.2 0.4

0.7
-
+4.2 0.7

1.0
-
+0.3 0.2

0.1
-
+0.7 0.4

0.5
-
+0.5 0.3

0.3

0.850 1014.80 -
+4.6 2.0

3.0
-
+2.3 0.8

0.5
-
+1.4 0.5

0.8
-
+4.6 1.0

1.1
-
+0.3 0.2

0.1
-
+0.8 0.3

1.4
-
+0.6 0.4

0.3

0.850 All M500 -
+5.1 2.5

3.2
-
+1.8 0.7

0.8
-
+1.2 0.3

0.7
-
+4.2 0.7

1.2
-
+0.3 0.2

0.1
-
+0.8 0.2

0.3
-
+0.8 0.2

0.2

All z 1014.15 -
+4.5 2.0

2.9
-
+1.8 1.0

0.8
-
+1.1 0.3

0.6
-
+4.0 0.5

1.4
-
+0.3 0.2

0.1
-
+1.1 0.2

0.2
-
+0.9 0.1

0.1

All z 1014.45 -
+3.7 1.3

3.0
-
+1.7 0.6

0.8
-
+1.3 0.4

0.7
-
+4.1 0.5

0.8
-
+0.3 0.2

0.1
-
+1.2 0.4

0.5
-
+0.5 0.1

0.1

All z 1014.80 -
+3.4 1.1

4.3
-
+1.6 0.6

0.7
-
+1.4 0.3

0.6
-
+4.4 0.7

1.1
-
+0.3 0.2

0.1
-
+0.9 0.4

0.4
-
+0.5 0.2

0.2

All z All M500 -
+3.8 1.4

2.9
-
+1.3 0.6

0.9
-
+1.0 0.2

0.4
-
+4.4 0.8

1.1
-
+0.3 0.2

0.1
-
+0.9 0.2

0.2
-
+0.8 0.1

0.1

Note. The values are computed as the marginalized distribution medians; the error bars quantify the 68% confidence level.
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priors, the maximum of the posterior distribution also
corresponds to the maximum of our likelihood from
Equation (33), or, in other words, the MAPs are by definition
our best-fit values Θbf. Second, we consider the estimates
computed for each of the individual parameters as the 50th
percentiles over their marginalized one-dimensional posterior
distributions (i.e., the distributions plotted along the diagonals
of the triangular plots in Figure 12 and similar); the associated

lower and upper error bars are evaluated as the separations
from the 16th and 84th percentiles of the distribution,
respectively. We shall refer to the resulting values as the
marginalized one-dimensional (M1D) estimates.
In general, the MAP and M1D estimates do not necessarily

agree. In fact, in situations involving a large number of
parameters with nonlinear degeneracies, as is the case with our
model, they are expected to show important differences (for an

Figure 13. Comparisons between the Compton profiles measured on the Planck y-map (data points) and the theoretical profiles (solid lines) computed by adopting the
best-fit (MAP) parameter values, for all the (M500, z) cluster samples considered in this analysis. The plots also show, for reference, the Planck beam profile (dashed
line), and quote the reduced chi-squared values.

Figure 14. The same as Figure 13, but for the ACT profiles.
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extensive discussion, see, e.g., Section 6 in Joachimi et al. 2021).
This is clearly visible in Figure 12, where the MAPs are shown by
the solid green lines and M1Ds by the dashed black lines. The two
sets of parameters carry different information. The MAPs are our
best-fit values, and are employed to compute the associated best-fit
predictions for the Compton parameter profiles. The comparisons
with our measurements are shown for allM–z bins in Figure 13 for
Planck and Figure 14 for ACT. The M1Ds, instead, quantify our
fiducial 68% confidence levels on the individual parameters
according to their final probability distributions, and can be
compared with estimates from other works. The M1Ds with
associated error bars are quoted in Table 4 for Planck and Table 5
for ACT; they are also plotted in Figure 15, where it is possible to
visualize their dependence on the selected mass and redshift bin.

As anticipated in Section 3.4, we also conduct an analogous
parameter estimation analysis on the y-profiles obtained from

the merged catalog without any explicit mass rescaling.
Hereafter, we shall refer to such profiles as “unscaled,” while
we shall refer to the profiles shown in Figure 10 as “fiducial.”
In Figures 16 and 17, we show, for Planck and ACT,
respectively, a comparison between the fiducial and unscaled
profiles, together with the theoretical predictions obtained by
using the parameters fitted on the latter. Figures 18–22 show
the posterior distributions for both the fiducial and unscaled
profiles. As the focus in these figures is on the comparison
between the two different sets of contours, we do not mark the
locations of the associated MAP and M1D estimates, to avoid
excessive cluttering.

6.2. Discussion of the MCMC Results

We begin by commenting on the posterior probability
contours plotted in Figure 12 and in Figures 18–22. The main

Figure 15. Final estimates on our model parameters, computed as the M1D values for the marginalized distributions, obtained from the Planck (left) and ACT (right)
stacks. Each panel shows the results for an individual parameter, grouping the estimates by mass bin, with the different redshift bins being shown by the different
colors and markers, as detailed in the legends. We also include, in each panel, estimates of the considered parameter obtained from previous works, marked by the
solid horizontal lines, color coded as detailed at the bottom of the figure.
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feature in these plots is the asymmetry in the shape of most of
the probability contours. This is a direct result of the
complexity of the model that we are fitting, and of the strong
degeneracy that exists between the UPP parameters. Even
though the chains are converged (in MCMC terms, the thinned
chains are more than 50 times longer than their autocorrelation
length), existing correlations between different parameters
produce strong elongations of the contours and yield rather
asymmetric posteriors for most of them. Notice that, when
fitting this kind of model, this is not an unusual situation, as can
be seen from, e.g., Figures 5 and 7 in G19; especially in the
case of ACT, the shapes of our posterior distributions on P0,
c500, α, and β mimic the ones presented in that work. In the
case of Planck, however, the contours are slightly larger and
their shapes are more regular, which is most likely a result of
the smoothing effect induced by the beam and the resulting
extended correlation between neighboring θ bins. The higher
resolution of ACT instead results in tighter contours and in a
better quality fit overall.

In this context, the difference between the MAP and M1D
estimates becomes evident. We have verified that a choice of
larger priors would yield poorer fitting results for both Planck
and ACT: for very extended priors, the complex nature of the
model leads the chains to encounter local likelihood maxima in
positions of parameter space where the actual values of the
individual parameters are rather unphysical. As a result, not
only would the chains not reach a proper convergence, but the
final posteriors, obtained by the merged contributions of these
local maxima, would also be artificially broadened and lead to
unrealistic M1D estimates. The MAPs, by construction, would
still yield best-fit profiles that match the data, but they would
not necessarily have a real physical meaning; their combined
numerical values would simply be effective in generating
predictions that match our measurement, but due to the
degeneracies in our model, different numerical sets could also
provide good agreements with the data. A physical interpreta-
tion of the results therefore requires our M1D estimates and
their posterior distributions. In principle, in order to improve
the chain convergence, we could impose Gaussian priors on
some of the parameters (e.g., on c500, which typically shows the
strongest correlations), based on previous results. We have
verified that Gaussian priors with typical uncertainties as found
in the literature would override the constraining power of the
chains and yield posteriors that resemble the chosen prior
distributions. In order to keep our analysis independent from
previous works, we maintain flat priors, chosen with a
reasonable width in order to encompass other estimates from
the literature and, at the same time, to ensure the good
convergence of our Markov chains. Clearly, this choice has an
effect on the resulting M1D estimates, but it is still less obvious
than imposing explicit Gaussian priors.

The plots in Figures 13 and 14 show that the models
computed using our MAP parameters are effective in
reproducing the measured profiles across the considered θ
range. The figures also report, for each case, the associated
reduced chi-squared value, defined as c c= Nr

2 2
dof , where

c = - 2 ln2 with  from Equation (33), and the number of
degrees of freedom Ndof is computed as the number of angular
bins employed in the fit minus the number of free parameters.
In the case of ACT, we always have c < 1r

2 , which proves the
good agreement between the predictions and data. In the case
of Planck, we generally have higher values and, for some bins,

c > 1r
2 ; a slight offset of the prediction with respect to the data

is also visible in some of the plots. Once more, this effect has
already been observed in the literature (e.g., Figure 6 in G19).
In our case, the offset could be a result of the larger Planck
beam; the latter, indeed, tends to regularize the bootstrap
profiles and reduce their scatter around the mean, probably
leading to an underestimation of the errors (for the same reason,
the significances quoted for our measurements in Table 3 are
always higher for Planck than for ACT). Besides, a larger beam
implies more important correlations between neighboring
angular bins. These two effects result in a decrease of the
relative importance of the diagonal elements in the covariance
matrix compared to the off-diagonal entries (as can also be
appreciated from the correlation plots in Figure 11). At the
parameter estimation level, this can produce the observed
offsets in the Planck best-fit profiles.
We now turn our attention to the M1D estimates, and to the

effects of mass and redshift on their values. Figure 15 provides
a comprehensive summary, which shows the trend of each
parameter when changing M500 (the different positions in each
panel) and z (the different colors and marker shapes of the
points). The most striking feature in these plots is the fact that,
regardless of the choice of mass or redshift bin, all estimates of
the UPP parameters are compatible within 1 σ. This observa-
tion, combined with the good agreement between the best-fit
predictions and our measurements, suggests that the UPP is
indeed successful in modeling the ICM electron pressure over
the mass and redshift ranges spanned by our cluster sample.
Still, Figure 15 shows that there are indeed mild variations for
the parameters when changing M500 or z. Such variations,
however, generally lack a consistent trend, so they provide no
evidence of an effective mass or redshift residual dependence
on the UPP parameters. Most likely, this is again a result of the
model degeneracy, which also produces the rather large error
bars on our estimates. Another feature corroborating this
hypothesis is the fact that the marginalized cluster samples
have often values that are not in between the ones obtained
from the individual bins. We then conclude that the observed
variations in the estimates for the different M–z bins are just a
result of our parameter estimation, and not evidence of a real
residual dependence of the UPP parameters on mass or redshift.
We also find substantial agreement (within the error bars)
between the Planck-based and ACT-based estimates of the UPP
parameters.

6.3. Discussion of the Best-fit Estimates

We can now compare our findings with the values obtained
from previous studies. Figure 15 overplots on each panel a few
horizontal stripes to mark the locations of the results obtained
from some of the works listed in Table 1. We observe that our
estimates are in general compatible with these previous results.
The only exception is the slope at intermediate radii α, for
which, in the case of Planck, we obtain somewhat larger values.
We stress, however, that in G19 some of the considered
redshift bins yielded even larger values for α, up to 6 in the
most extreme case. This large scatter of the estimates obtained
from different studies is again the result of the existing
degeneracies between the UPP parameters. We conclude that
our estimates confirm the results from previous works; the sizes
of our error bars are also comparable with the uncertainties
quoted in the literature (when available; see again Table 1).
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We comment that studies based on hydrodynamical simula-
tions have also provided insights into the possible mass and
redshift evolutions of the UPP parameters. The work presented
in Battaglia et al. (2012) suggested that P0, c500, and β require
explicit mass and redshift dependencies in order to fit their
simulation results (see Table 1 in that work for details); the
analysis in Le Brun et al. (2015) also confirmed the mass
dependence of P0 and c500, finding that both parameters
increase with M500 (Table 2 in that work). The mass range
explored in these works encompasses the range that we probe
with our cluster sample. We stress, however, that the mass and
redshift dependencies detected in those studies are in all cases
very mild, and can only be measured with the high resolution
provided by numerical simulations. In fact, the works of
Battaglia et al. (2012) and Le Brun et al. (2015) probe the
cluster pressure profile down to radial separations of
r∼ 0.04 R200 (Figures 1 and 2 in the former) and r∼ 0.1 R500

(Figure 3 in the latter), respectively; for our lowest-redshift and
highest-mass clusters, these values translate into angular scales
of the order of~ ¢1 , which, even for ACT, are comparable with
the beam, and where we typically have the largest uncertainties
in our profile measurements. Hence, the mass and redshift
variations in the UPP parameters are definitely subdominant in
the context of reconstructing the pressure profile from real data,
due to a series of factors, such as the instrumental beam,
residuals in the y-map, systematics in the cluster mass
estimates, and miscentering effects. As far as our measurements
are concerned, if an effective dependence of the UPP
parameters on M500 and z does exist, it is well below the
uncertainties in our final estimates.

We move on now to comment on our results for the
hydrostatic mass bias bh. Our estimates are typically in the
range from 0.2 to 0.3, with somewhat larger values obtained
with ACT; the confidence intervals are in any case quite broad,
with typical error bars up to ∼0.2, and no evident strong
degeneracies with the other parameters. A number of different
estimates for bh have been provided in the literature; for a
summary, see, e.g., Table 3 in Ibitoye et al. (2022). Our results
are again in agreement with previous findings. The numerical
simulation results tend to agree that the hydrostatic bias has a
mass dependence, and that it can accommodate values for bh as
large as 0.3, for massive clusters (Pearce et al. 2020; Barnes
et al. 2021). Our findings are also in agreement with cross-
correlation analyses (Makiya et al. 2020; Rotti et al. 2021;
Ibitoye et al. 2022) and studies of variously selected cluster
samples (von der Linden et al. 2014; Hoekstra et al. 2015;
Sereno et al. 2017; Ferragamo et al. 2021; Aguado-Barahona
et al. 2022). We stress, however, that our MCMC analysis does
not provide strong constraints on the hydrostatic bias.

Finally, the miscentering parameters are the ones that show
the largest scatter across different M–z bins. In this case, a
comparison between Planck and ACT is not meaningful, as we
set different priors on σoff to account for the considerably
different beam sizes. We find values for σoff of around 4′ in the
case of Planck and of around 1 5 in the case of ACT; for the
latter, the miscentering offset is then comparable with the
beam’s FWHM, and is therefore a relatively more important
effect, as expected. As for the miscentering fraction foff, we find
in general that more than 50% of the clusters in each sample are
offset from their nominal positions; a mild anticorrelation can
be observed between σoff and foff in Figure 12, which is easily
understandable, as these parameters produce opposite effects in

quantifying the mean miscentering. We also notice from
Figure 15 that, this time, it is possible to recognize a trend in
the M1D values, especially for ACT, with lower redshifts and
lower masses requiring a higher miscentering offset. This could
have been anticipated by looking at the stacks plotted in
Figure 8, where the lowest masses and redshifts tend to have
broader and more irregular profiles. These results confirm that
the miscentering is a necessary inclusion in our theoretical
modeling, without which the final estimates on the other UPP
parameters would most likely be biased. For example, we
found that when we did not include the miscentering in our
theoretical prediction, the resulting estimates on the parameter
P0 were typically very low and unphysical (P0 2); this can be
understood, as P0 is the parameter that most directly controls
the amplitude of the measured signal, and, as such, most readily
absorbs any dilution effect that is produced by the miscentering
on the profiles.
Before closing this section, we comment on the effect that

the mass rescaling that we applied to the WHL and DESI
clusters had on our parameter estimates. Figures 18–22 show
the comparisons between the final contours obtained from our
fiducial profiles and from the unscaled profiles, for all M–z bins
and for both Planck and ACT. The resulting best-fit predictions
for the unscaled profiles (computed based on the associated
MAP estimates) are overplotted on the profiles themselves in
Figures 16 and 17. Regarding the agreement between the
predictions and the measurements for the unscaled profiles,
similar considerations as for the case of the fiducial profiles
apply. As for the final M1D parameter constraints, it is clear
from the contour plots that the posteriors for the unscaled
profiles are almost indistinguishable from the posteriors
obtained for the fiducial profiles. Even for the case of the
lowest-redshift bin, where the two sets of profiles show the
largest tensions, the final parameter estimates are rather
compatible. This shows once more that the final contour sizes
are largely determined by our prior choice and by the
correlation between the parameters entering our model; such
correlations also result in large error bars and cause the
estimates to be in agreement overall. Clearly, the actual final
M1D values are not exactly the same, and one could quote the
difference between them as a systematic error component to be
included in our final parameter uncertainties. In our case,
however, such a systematic contribution will be much smaller
than the statistical uncertainties quoted in Tables 4 and 5. We
then conclude that the mass rescaling presented in Section 3.4
has a negligible impact on the final conclusions of this study.

7. Conclusions

The cluster pressure profile is one of the primary tools for
exploring the physical state of the ICM; as is clear from
Equation (2), the Compton parameter y is a very direct probe of
the ICM electron pressure, and it has been exploited in this way
by several works over the past decade. In this paper, we have
explored the possible mass and redshift dependencies of the
parameters governing the shape of the UPP in galaxy clusters,
by analyzing the y-profiles obtained from cluster stacks on
Compton parameter maps.
We employed the y-maps delivered from both the Planck

satellite and the ACT, the latter limiting the analysis to an
effective sky area of ∼2000 deg2, but at the same time
providing a considerably higher angular resolution for the
reconstructed tSZ signal. We built a large cluster sample, by
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merging existing galaxy cluster catalogs based on observations
from KiDS, SDSS (WHL), and DESI. As the cluster masses
from these catalogs were estimated by following different
methodologies, we first homogenized the mass definition, by
scaling the WHL and DESI cluster masses to the KiDS
definition, which is based on WL measurements and, as such, is
less affected by ad hoc assumptions of the ICM’s physical
state. The scaling parameters were obtained by comparing the
masses from common clusters across pairs of catalogs, for
different redshift intervals. After applying a lower mass cut of
1014Me (below which we found that the stacks would become
too noisy), and removing repeated clusters, we merged the
three catalogs, obtaining a final sample of 23,820 clusters
overlapping with the ACT map footprint.

We split these clusters into three mass and three redshift
bins, also considering the respective marginalized cases, for a
total of 16 different cluster samples. We stacked these samples
on both the Planck and ACT maps, in all cases obtaining a clear
detection of the cluster signal against the background. We
extracted a circularly symmetric radial angular profile from
each stack map, and computed the associated covariance
matrix, by repeating the stacks with a set of 500 replicas of the
catalog obtained via bootstrap resampling. The covariance
matrices allowed us to determine the uncertainties that were to
be assigned to the angular profiles and to compute the
significance per bin for their measurements, which was always
larger than 13 for Planck and 3 for ACT.

We theoretically modeled the mean y-profile with a halo
model approach, taking into account the effective cluster mass
and redshift distributions in each sample. The theoretical
predictions depend not only on the UPP parameters, but also on
the hydrostatic bias on the cluster mass, and on two parameters
quantifying the magnitude and occurrence of the possible
miscentering of the clusters from their nominal positions. We
then employed the MCMC method to reconstruct the posterior
distributions on these parameters with initial flat priors, where
the likelihood compares the theoretical prediction with the
observed profile, using the covariance matrix measured for
each cluster sample. In all cases, we fixed the pressure profile’s
central slope to γ= 0.31, as is customary in other works based
on tSZ data alone. From the MCMC runs, we extracted two sets
of parameters: the MAPs from the full seven-dimensional
likelihood and the M1Ds from the marginalized one-dimen-
sional posteriors.

The profile predictions computed with the MAPs provided a
good fit to our measurements, yielding c < 1r

2 for almost all
cases. The M1D estimates showed good agreement between
Planck and ACT, and with the constraints obtained by previous
works. The results also do not show any compelling evidence
for the residual dependence of the UPP parameters on either
M500 or z. Although marginal differences are visible, there are
no clear trends, and the values are largely compatible within the
recovered error bars. The main conclusion from this work is
that the adopted UPP functional form is effective in describing
the ICM electron pressure profile for clusters in the mass range
(1014.0Me<M500< 1015.1Me) and in the redshift range
(0.02< z< 0.97), as explored with our clusters. This is the
first time that the UPP has been tested over such a large cluster
sample, which is mostly complete within the chosenM500 and z
limits. We also obtain loose constraints on the hydrostatic mass
bias, in agreement with previous works, based on both
numerical simulations and analyses of cluster samples. We

prove that miscentering is an important element in cluster
profile modeling, with more than 50% of the clusters being
offset from their nominal positions by amounts commensurate
with the FWHM values of the corresponding y-maps. Finally,
we have shown that the possible systematic errors induced by
our explicit mass rescaling are well below the statistical
uncertainties obtained for each parameter from the MCMC
analysis.
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Appendix A
Summary of Previous Works

We provide here further information about the previous
results for the UPP parameters, as a continuation of the
discussion presented in Section 1. We focus in particular on the
cluster-based studies that are listed in Table 1.
The work in Arnaud et al. (2010) considered 33 clusters with

M500 ä [1, 10]× 1014Me at z< 0.2, observed by XMM-
Newton, and compared their individual pressure profiles, each
scaled by the characteristic pressure P500; these clusters were
selected from the REFLEX Cluster Survey, by imposing a
lower X-ray luminosity threshold of 0.4× 1044 h−2 erg s−1 in
the 0.1− 2.4 keV band (the REXCESS sample; Böhringer et al.
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2007). REXCESS is by construction a representative sample of
an X-ray flux-limited cluster population, which does not
privilege specific morphologies or dynamical states in its
member clusters. Although deviations between cool-core and
morphologically disturbed systems in the central region were
found, the scaled profiles in Arnaud et al. (2010) showed good
agreement at larger radii, up to R500. The UPP parameters were
fitted to a combination of the mean X-ray data profile and the

mean profile obtained from numerical simulations, with the
latter allowing the profile reconstruction to be extended beyond
R500. This work has traditionally been taken as a point of
reference for all subsequent studies of cluster pressure profiles.
A similar analysis was conducted by the Planck Collabora-

tion et al. (2013) on a set of 62 tSZ-detected clusters with
M500 ä [2, 20]× 1014Me at z< 0.45; this cluster sample had
already been used to calibrate the tSZ–mass scaling relation in

Figure 16. Comparisons between the angular y-profiles measured on the Planck map with the fiducial sample (blue) and the unscaled sample (gray). For both cases,
the shaded areas quantify the associated uncertainties. The green dots show the model predictions for the unscaled profiles, computed using the MAP estimates from
the associated MCMC runs.

Figure 17. The same as Figure 16, but for the profiles measured on the ACT map. The profiles obtained with the fiducial sample are this time plotted in red.
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Planck Collaboration et al. (2011b), where it was selected from
the Planck early SZ source catalog (Planck Collaboration et al.
2011a) on the basis of existing high-quality XMM-Newton
observations. This time, information about the pressure profile
was obtained from the reconstructed cluster Compton profile,
which allowed the authors to explore the ICM gas out to
∼3 R500; the average derived pressure profile was combined
with the average profile obtained from X-ray data. The
inclusion of X-ray data allowed the reconstruction of the
pressure profile down to 0.02 R500, yielding substantial
agreement with the SZ data in the overlap range. Again,
marginal differences were observed between cool-core and
non-cool-core clusters, but within the statistical error bars.
Compared with the results from numerical simulations, the
profile for the cluster outskirts was found to be flatter, while
providing good agreement at low radii with simulations that
implement feedback from active galactic nuclei.

The work in Sayers et al. (2016) considered a set of 47
clusters with M500ä [3, 25]× 1014Me at z< 0.9, chosen from
observations with Chandra and Bolocam (Sayers et al. 2011),
on the basis of their redshifts and high X-ray temperatures; this
sample slightly extended the one that had already been studied
in Czakon et al. (2015), by including two additional clusters.
This work focused on the reconstruction of the pressure profile
for the cluster outskirts, based on measurements of the
integrated y-profile from Bolocam and Planck data. More
precisely, all UPP parameters were fixed to the Arnaud et al.
(2010) estimates, with the exception of the normalization P0

and the profile slope β at large radii. The best-fit values were
found to be in agreement with the results from numerical
simulations over the same mass and redshift span of the
considered cluster sample. The authors also found evidence for
a residual mild dependence of the profile slope on the cluster
mass, with more massive clusters favoring higher values of β.
Finally, the work acknowledged how these results can be
affected by systematics, such as sample selection and the
calibration of cluster masses.

In Pointecouteau et al. (2021), the cluster sample consisted
of 31 clusters with M500 ä [3.4, 13.1]× 1014Me at z< 0.71,
which had been previously listed as SZ sources in both Planck-
and ACT-based catalogs. A major novelty of this work is that
the SZ signal was measured on a joint Planck–ACT Compton
parameter map, built from a linear combination of the
individual frequency maps resulting from the two surveys, as
described in Aghanim et al. (2019). The authors extracted y-
profiles (and derived the associated pressure profiles) for
individual clusters in the sample, then fitted the resulting mean
pressure profile with a UPP model. As the fitting results were
strongly affected by parameter degeneracies, the authors fixed
both γ and c500 to the values from Arnaud et al. (2010).
Estimates for the remaining UPP parameters showed broad
agreement with previous findings, particularly when it came to
the profile amplitude at outer radii, while a somewhat larger
tension was found for intermediate radii; the authors mentioned
the higher relevance of the ACT data (a novelty in this
analysis) in this radial range as a possible explanation, while
stressing again the limitations that were inherent to the use of a
relatively small nonrepresentative sample.

Finally, He et al. (2021) employed the same cluster sample
(REXCESS) as in Arnaud et al. (2010), and focused on
assessing the effects on scaling relations and UPP parameter
estimates deriving from the bias between the true cluster mass

and the hydrostatic cluster mass as sampled by X-ray and SZ
observations (see also Section 5.1), an issue that had already
been acknowledged in Arnaud et al. (2010). The authors fitted
the scaling between the two mass definitions on hydrodynamic
simulations and employed it to correct the cluster masses in the
REXCESS sample, finding that the initial hydrostatic mass
values were underestimated by 7%, on average, the effect being
larger for higher masses. The scaling was then quantified via a
hydrostatic mass bias and incorporated into the formalism by
scaling the UPP normalization pressure P0 and concentration
c500 (this is equivalent to our treatment of the bias, as described
in Section 5.1, with the difference that we kept the UPP
functional form unchanged and scaled the values of M500 and
R500 instead). The authors fitted this modified UPP model to the
new mean pressure profile, finding the resulting prediction to
yield a reduction in the deviation (quantified by the term in
Equation (14)) from the self-similar model, compared to the
original UPP profile.
The list of studies described in this section, together with the

summary reported in Table 1, are by no means exhaustive; as
the present paper is not intended to provide a review of the
subject, we redirect readers to the additional references cited in
those works for further reading. We choose to present and
discuss this particular selection of papers in order to highlight
the novel aspects that are introduced by each of them, namely
the systematic application of the UPP to cluster pressure
profiles derived from X-ray data (Arnaud et al. 2010), the
extension of a similar study to profiles reconstructed from SZ
data (Planck Collaboration et al. 2013), considerations of the
possible mass and redshift dependencies of the UPP parameters
(Sayers et al. 2016), the introduction of ACT data (Pointecou-
teau et al. 2021), and the importance of the hydrostatic mass
bias (He et al. 2021). All of these aspects are also considered in
our data analysis and theoretical modeling; the change in
approach, from considering a reduced number of clusters to
reconstructing the statistical properties of an extended sample,
as in G19, is particularly relevant, however, and is therefore
described in the main text in Section 1.
Looking back at Table 1, the best-fit numerical values

resulting from these studies show a large scatter. Two main
factors contribute to the observed differences. First, the UPP
parameters are intrinsically degenerate, as is clear from the
functional form in Equation (3); this implies that different
combinations of parameter values can provide equally effective
predictions for the observed pressure profiles. A possible way
of circumventing this issue, as adopted by Sayers et al. (2016)
and Pointecouteau et al. (2021), for example, is to keep some of
the parameters fixed in the analysis, which comes at the price of
a slight loss in the generality of the fitted model. In our study,
we choose, in a more bias-free approach, as in G19, to keep all
parameters free, with the exception of the inner slope γ, as is
customary in purely SZ-based analyses. Still, we acknowledge
that parameter degeneracy is an important issue, and as such it
is extensively addressed in our discussion of the fit results in
Sections 6.2 and 6.3.
The second main reason for the scatter that is observed in

Table 1 is because whenever the chosen sample is restricted to
a handful of clusters that are well resolved and characterized by
observations at different wavelengths, the results of the UPP
estimates are inevitably subject to potential selection biases.
This is generally acknowledged in the studies described in this
section. In particular, it is worth stressing that the cluster
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samples that are constructed on the basis of existing high-
quality data in ancillary studies are nonrepresentative, which
prevents the conclusions from the corresponding studies being
extended to a generic cluster with mass and redshift in the
sample span. The only exceptions from the above list are the
works based on REXCESS, which was purposely built as a
representative sample. The cluster sample used in this work is
not only representative (as it includes all clusters with estimated
masses above a common threshold), but also complete
(typically >90%; see Section 3), which is a fundamental
difference compared to the previous studies. The possible
dependencies of the UPP parameters on cluster mass and
redshift actually constitute one of the core topics of our
analysis, and this is explored by binning our cluster sample in
different M500 and z bins, as detailed in Section 4.1.

Appendix B
Systematic Errors from Mass Rescaling

We consider an alternative version of our reference cluster
sample, obtained by merging KiDS, WHL, and DESI only
after imposing the lower mass cut M500> 1014Me, but
without applying any mass rescaling to WHL and DESI. We
remove cluster repetitions by following the same process as
set out in Section 3.5, i.e., we always keep the KiDS clusters,
but for the remaining repetitions between WHL and DESI, we
randomly choose one to discard. In the end, KiDS, WHL, and
DESI contribute 806, 15,114, and 9,684 clusters, respectively,
for a total of 25,604 clusters spanning the redshift range
0.02< z
< 0.97 and the mass range < <( )M M14.0 log 15.2500 . The
cluster redshift and mass distributions are qualitatively similar

to the ones shown in Figure 6. We then split the clusters over
the same set of M–z bins as considered in our fiducial sample,
and proceed with the measurements of the stacked signal, the
angular profiles, and the covariance matrices, following the
same methodology as described in Section 4.2. We do not
include plots of the resulting stacks and correlation matrices,
as they are similar to the ones that we have already shown for
our fiducial sample. Instead, we show comparisons between
the measured profiles and the ones from the fiducial sample
for Planck in Figure 16 and for ACT in Figure 17. We notice
that for the lowest-redshift bin, there is a clear offset in the
profile amplitude; this difference is practically negligible for
the highest-redshift bin, which is mostly dominated by DESI
clusters that (for z> 0.80) did not undergo any explicit mass
rescaling. In general, the difference is also quite mild for the
marginalized cases, with the profiles obtained from the full
samples showing compatibility over the whole θ range.
As noted in Section 6.1, we also perform our MCMC

parameter estimation on this new set of unscaled profiles. The
resulting contours are plotted in Figures 18–22, for all M–z
bins. These plots are also used to show the posterior
distributions that were obtained with our fiducial sample;
given the large number of resulting contours, we include them
here in order to keep the main text of the paper lighter. As
already discussed in Section 6.3, the contours that are obtained
from the unscaled sample generally resemble the ones that are
obtained from the fiducial sample; any systematic errors
deriving from our mass rescaling are then of second order
compared to the final statistical errors that are obtained on the
parameters, which are in turn mostly driven by the degeneracy
of the model.

Figure 18. Comparison between the final posteriors (plotted as contours showing the 68% and 95% confidence levels) obtained using the cluster sample with and
without mass rescaling, for the cases of Planck (left) and ACT (right). The colored contours are obtained from the mass-rescaled catalog, and are the same as the ones
shown in Figure 12. The gray contours are derived from the catalog obtained with no mass rescaling.
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Figure 19. Planck posterior distributions (with the contours showing the 68% and 95% confidence levels) on the fitted parameters for each independent M–z bin,
obtained from the mass-rescaled catalog (blue) and the one with no mass rescaling (gray).
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Figure 20. The same as Figure 19, but this time showing the bins marginalized over M500 or z.
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Figure 21. ACT posterior distributions (with the contours showing the 68% and 95% confidence levels) on the fitted parameters for each independent M–z bin,
obtained from the mass-rescaled catalog (red) and the one with no mass rescaling (gray).
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