
   

 

 

 

This article has been accepted for publication in Monthly Notices of the Royal 

Astronomical Society.  ©: 2023 The Authors. Published by Oxford University Press on 

behalf of the Royal Astronomical Society. All rights reserved. 

 

Link to article on OUP website:  

https://academic.oup.com/mnras/article/522/1/152/7100979 

 

 

 

https://academic.oup.com/mnras/article/522/1/152/7100979


MNRAS 522, 152–164 (2023) https://doi.org/10.1093/mnras/stad956 
Advance Access publication 2023 April 3 

Exploring the cosmological synergy between galaxy cluster and cosmic 

void number counts 

D. Pelliciari , 1 , 2 ‹ S. Contarini , 1 , 3 , 4 F. Marulli , 1 , 3 , 4 L. Moscardini , 1 , 3 , 4 C. Giocoli , 3 , 4 G. F. Lesci 1 , 3 

and K. Dolag 

5 , 6 

1 Dipartimento di Fisica e Astronomia ‘Augusto Righi’ - Alma Mater Studiorum Universit ̀a di Bologna, via Piero Gobetti 93/2, I-40129 Bologna, Italy 
2 Istituto Nazionale di Astrofisica (INAF) – Istituto di Radioastronomia (IRA), via Gobetti 101, I-40129 Bologna, Italy 
3 Istituto Nazionale di Astrofisica (INAF) - Osservatorio di Astrofisica e Scienza dello Spazio (OAS), via Piero Gobetti 93/3, I-40129 Bologna, Italy 
4 Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Bologna, viale Berti Pichat 6/2, I-40127 Bologna, Italy 
5 Univer sitats-Sternwarte , Ludwig-Maximilians-Univer sitat Munc hen, Fakultat fur Physik, Sc heinerstr aße 1, D-81679 Munc hen, Germany 
6 Max-Planck-Institut fur Astrophysik, Karl-Sc harzsc hild str 1, D-85748 Garching, Germany 

Accepted 2023 March 28. Received 2023 March 20; in original form 2022 October 17 

A B S T R A C T 

Galaxy clusters and cosmic voids, the most extreme objects in our Universe in terms of mass and size, trace two opposite sides 
of the large-scale matter density field. By studying their abundance as a function of their mass and radius, respectively, i.e. the 
halo mass function (HMF) and void size function (VSF), it is possible to achieve fundamental constraints on the cosmological 
model. While the HMF has already been e xtensiv ely e xploited, pro viding robust constraints on the main cosmological model 
parameters (e.g. �m 

, σ 8 , and S 8 ), the VSF is still emerging as a viable and ef fecti ve cosmological probe. Gi v en the e xpected 

complementarity of these statistics, in this work, we aim at estimating the costraining power deriving from their combination. 
To this end, we exploit realistic mock samples of galaxy clusters and voids extracted from state-of-the-art large hydrodynamical 
simulations, in the redshift range 0.2 ≤ z ≤ 1. We perform an accurate calibration of the free parameters of the HMF and VSF 

models, needed to take into account the differences between the types of mass tracers used in this work and those considered in 

previous literature analyses. Then, we obtain constraints on �m 

and σ 8 by performing a Bayesian analysis. We find that cluster 
and void counts represent powerful independent and complementary probes to test the cosmological framework. In particular, 
the constraining power of the HMF on �m 

and σ 8 impro v es with the VSF contribution, increasing the S 8 constraint precision by 

a factor of about 60 per cent. 

Key words: methods: numerical – cosmological parameters – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

Thanks to the remarkable achievements obtained by the experiments 
on the cosmological microwave background (CMB; see e.g. Komatsu 
et al. 2011 ; Planck Collaboration VI 2020 ) as well as by spectroscopic 
and photometric galaxy surv e ys (e.g. Alam et al. 2017 ), cosmology 
has recently entered a new precision era, in which cosmological 
parameters are constrained with subpercent accuracy. The � -cold 
dark matter ( � CDM) model, being described by only six param- 
eters, got strong empirical support from the current cosmological 
observations. In this framework, the matter-energy budget of our 
Universe is dominated by two dark components, i.e. dark energy 
(DE), responsible for its present accelerated expansion (Riess et al. 
1998 ; Perlmutter et al. 1999 ), and cold dark matter (CDM), which is 
the dominant matter component in galaxies and galaxy clusters. 

Ho we ver, statistically significant tensions between the cosmolog- 
ical constraints derived by early- and late-time measurements have 
also arisen in the last few years (see e.g. Di Valentino et al. 2020a , b , c ; 
Perivolaropoulos & Skara 2021 , for recent reviews). Among those, 

� E-mail: davide.pelliciari@inaf.it 

the most rele v ant ones are the discrepancies between the derived 
values of the Hubble constant, H 0 , and the tension on the growth 
of cosmic structures, often quantified in terms of the parameter 
S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 , where �m 

is the matter density parameter and 
σ 8 is related to the amplitude of the matter power spectrum. Many 
works have been focused on these tensions (see e.g. Abdalla et al. 
2022 , for a recent re vie w of astrophysical and cosmological tensions). 
In recent years, numerous theoretical solutions have been proposed, 
going from modified gravity theories to alternative DE theories (see 
e.g. Yoo & Watanabe 2012 ; Amendola et al. 2013 ; Joyce, Lombriser 
& Schmidt 2016 , for an e xtensiv e review). 

To shed light on these tensions, it is fundamental to consider 
different and complementary cosmological probes, whose synergy 
can impro v e the precision of the parameter measurements. In fact, the 
highest precision is achieved by considering probe combination, i.e. 
computing the joint constraints from different analyses, such as e.g. 
combining CMB anisotropies and large-scale strucure observations 
(Gawiser & Silk 1998 ; Webster et al. 1998 ; Bridle et al. 1999 ), as 
well as supernovae Type-Ia (SNIa), baryonic acoustic oscillations, 
weak gravitational lensing, and galaxy clustering (see e.g. DES 

Collaboration 2019 ). Moreo v er, Wu et al. ( 2022 ) recently discussed 
the constraining power of the combination of 21 cm intensity map- 
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ping, fast radio b ursts, gra vitational wa ve standard sirens, and strong 
gravitational lensing, which are no v el probes that will be greatly 
developed in the near future (see Moresco et al. 2022 , for a recent 
re vie w about alternative cosmological probes). 

In terms of mass and size, galaxy clusters and cosmic voids are 
the most rare and extreme objects in the Universe. Very massive 
clusters and large voids follow the exponential tail of their mass/size 
distribution functions, which makes their abundance a probe, very 
sensitive to the change of cosmological parameters. It is well known 
that galaxy clusters, associated with massive DM haloes, provide 
a powerful cosmological probe when exploiting their abundances 
(Cunha, Huterer & Frieman 2009 ; Vikhlinin et al. 2009 ; Balaguera- 
Antol ́ınez & Porciani 2013 ; Hasselfield et al. 2013 ; Planck Collab- 
oration XX 2014 ; Planck Collaboration XXIV 2016 ; Bocquet et al. 
2019 ; Costanzi et al. 2019 ; Lesci et al. 2022a ), as well as their 
clustering properties (Hong et al. 2012 ; Veropalumbo et al. 2016 ; 
Marulli et al. 2018 , 2021 ; Lesci et al. 2022b ). Also, cosmological 
constraints become even more stringent when cluster counts are 
combined with clustering measurements (see e.g. Mana et al. 2013 ; 
Salvati, Douspis & Aghanim 2018 ), 

Concerning cosmic voids, their number counts (Platen, van de 
Weygaert & Jones 2008 ; Pisani et al. 2015b ; Contarini et al. 
2019 , 2022a ), density profiles (Hamaus, Sutter & Wandelt 2014 ; 
Ricciardelli, Quilis & Varela 2014 ; Nadathur et al. 2015 ), and 
redshift-space distortions of void-galaxy cross-correlation (Hamaus 
et al. 2020 ; Nadathur et al. 2020 ; Hamaus et al. 2022 ), are rapidly 
becoming competitive and alternative cosmological probes. Indeed, 
their unique low-density interiors and large sizes make these objects 
powerful tools to study the properties of the DE (Bos et al. 2012 ; 
Pisani et al. 2015b ; Verza et al. 2019 ) and the effects of modified 
gravity theories (Spolyar, Sahl ́en & Silk 2013 ; Barreira et al. 2015 ; 
Contarini et al. 2021 ), to which they are highly sensitive. Cosmic 
voids are also well suited to test primordial non-Gaussianity (Chan, 
Hamaus & Biagetti 2019 ) and other physical phenomena beyond the 
Standard Model of particle physics (Reed et al. 2015 ; Yang et al. 
2015 ; Baldi & Villaescusa-Navarro 2016 ), and to investigate elusive 
components such as massive neutrinos (Villaescusa-Navarro et al. 
2013 ; Massara et al. 2015 ; Kreisch et al. 2019 ; Schuster et al. 2019 ; 
Contarini et al. 2021 ), which are predominant in these regions. 

The counts of galaxy clusters and cosmic voids can be considered 
independent and complementary cosmological probes given the 
opposite regimes in sides of the matter density field they map. We then 
e xpect some de grees of orthogonality between the corresponding 
cosmological constraints (Sahl ́en, Zubeld ́ıa & Silk 2016 ; Bayer et al. 
2021 ; Kreisch et al. 2022 ). This important feature represents a desired 
property to extract as much information as possible from the joint 
combination of these two probes, and it has not been exploited in 
great detail so far. 

In this work, we investigate the constraining power of a joint 
analysis of the number counts of galaxy clusters and cosmic voids. 
We consider redshift-space cluster and void catalogues extracted 
from a large hydrodynamic cosmological simulation in four redshift 
bins, spanning the range 0.2 ≤ z ≤ 1. Recent works have already 
studied the constraining power derived from the combination of halo 
and void statistics obtained from cosmological simulations (Bayer 
et al. 2021 ; Kreisch et al. 2022 ). Nevertheless, the analysis we present 
in this work is directly applicable to real data sets, thanks to the 
bias-dependent void size function parametrization (Section 2.2 ), the 
inclusion of the most rele v ant observ ational ef fects (Section 4.1 ), 
the model calibrations on hydrodynamical simulations (Section 5.1 ), 
and the both realistic and conserving mass and radius selections 
considered for clusters and voids. 

The paper is structured as follows: In Section 2 , we introduce 
the theoretical context of the analysis we carry out in this work, 
focusing on the considered halo mass function and void size function 
models. In Section 3 , we describe the simulations used to construct 
cluster and void mock catalogues, along with the prescriptions for 
reliable data set preparation. In Section 4, we introduce the obser- 
v ational ef fects considered in the simulation analysis, and present 
the Bayesian framework used to assess the posterior distributions 
of the model parameters. We also estimate the correlation between 
the two cosmological probes considered, verifying their statistical 
independence. Subsequently, we outline in Section 5 , the adopted 
calibration method considered for the analysis, which is required for 
an accurate comparison between the data and the theoretical models, 
and we show the results of the combined analysis of cluster and void 
number counts. Finally, we draw our conclusions in Section 6 . 

2  C O S M O L O G I C A L  PROBES  

The abundance of both haloes and cosmic voids can be modelled 
with the excursion-set formalism (Bond et al. 1991 ; Zentner 2007 ), 
also known as the extended Press–Schechter formalism (Press & 

Schechter 1974 ), which can be used to describe the evolution 
of spherical o v erdensities and underdensities. In particular, haloes 
form from the growth of positive fluctuations, i.e. overdensities, 
while cosmic voids form from the evolution of ne gativ e ones, i.e. 
underdensities. In what follows, we describe the two theoretical 
models used in this work, i.e. the halo mass function (HMF) and 
the void size function (VSF), which describe the comoving number 
density of haloes and voids as a function of their mass and radius, 
respectively. We then compute number counts from number density 
by taking into account the most rele v ant observ ational ef fects (see 
Section 4.1 ). 

2.1 Cluster counts 

Following the Press–Schechter formalism, the comoving number 
density, n ( M , z), of DM haloes having masses between M and M + 

d M at redshift z can be written as (Press & Schechter 1974 ; Bond 
et al. 1991 ; Cole 1991 ; Mo & White 1996 ; Sheth & Tormen 1999 ; 
Sheth, Mo & Tormen 2001 ): 

d n ( M, z) 

d ln M 

= 

ρ̄

M 

f ln σ ( M, z) 
d ln σ−1 ( M, z) 

d ln M 

, (1) 

when expressed through its logarithmic differential. Here, ρ̄ is the 
mean cosmic background density and f ln σ ( M , z) is the so-called 
multiplicity function , which depends on the mass definition adopted 
to identify simulated haloes (see e.g. Tinker et al. 2008 ). For the 
Press–Schechter mass function, the latter is defined as: 

f ln σ ( M , z) = 

d σ ( M , z) 

d ln M 

= 

√ 

2 

π

δc 

σM 

exp 

(
− δ2 

c 

2 σ 2 ( M , z) 

)
, (2) 

where δc is the critical o v erdensity threshold computed in the 
linear theory. Here, σ M 

is the square root of the variance of the 
linear density field extrapolated to the redshift at which haloes are 
identified, after smoothing with a spherical top-hat filter with a radius 
R enclosing a mass M . This can be expressed in terms of the present- 
day matter power spectrum P ( k ): 

σ 2 ( M, z ) = 

D 

2 ( z ) 

2 π3 

∫ 
d 3 � k P ( � k , z = 0) ˆ W 

2 [ � k ; R( M)] , (3) 

where D ( z) is the growth factor of linear perturbations, normalized 
such that D ( z = 0) = 1 (Carroll, Press & Turner 1992 ), ˆ W [ � k ; R( M)] 
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is the Fourier-transform of the window function and R ( M ) is ob- 
tained by requiring that M/ (4 πR 

3 / 3) = ρ̄. Here, ρ̄ is expressed in 
comoving coordinates, so its value is independent of the redshift. The 
dependence of the HMF on the cosmological parameters �m 

and σ 8 

lies both in the mass variance, σ 2 ( M , z), and in the mean density of 
the Universe, ρ̄. 

It can be shown that for a � CDM cosmology, the HMF assumes 
a universal functional form when the mass variance is parametrized 
by means of the following scaled variable (Sheth & Tormen 1999 ; 
Sheth et al. 2001 ; Courtin et al. 2011 ; Despali et al. 2016 ): 

ν ≡ δ2 
c 

σ 2 
M 

. (4) 

With this parametrization, the HMF can be written as: 

νf ( ν) = 

M 

2 

ρ̄

d n 

d M 

d ln M 

d ln ν
, (5) 

where: 

νf ( ν) = A 

(
1 + 

1 

ν ′ p 

)(
ν ′ 

2 π

)1 / 2 

e −ν′ / 2 , (6) 

with ν ′ = a ν. The parameters of this model are ( a , p , A ) and can 
be calibrated using cosmological simulations (Manera, Sheth & 

Scoccimarro 2010 ; Courtin et al. 2011 ). In particular, a , p , and A 

define the mass function cut-off at high masses, its shape in the low 

mass range, and its normalization, respectively. Despali et al. ( 2016 ) 
found that the HMF parametrization of equation ( 6 ) is universal if 
clusters are defined by means of the virial o v erdensity 	 vir . Ho we ver, 
since both observed and simulated clusters are usually defined via 
other o v erdensity criteria, an e xtended univ ersal fitting formula was 
provided by Despali et al. ( 2016 ) as follows: 

a = 0 . 4332 x 2 + 0 . 2263 x + 0 . 7665 

p = −0 . 1151 x 2 + 0 . 2554 x + 0 . 2488 

A = −0 . 1362 x + 0 . 3292 , (7) 

where the quantity x ≡ log [ 	 ( z )/ 	 vir ( z )] properly rescales the 
spherical o v erdensity used to define the clusters, 	 ( z), with the virial 
o v erdensity, 	 vir ( z). 

The HMF universality highlighted by Despali et al. ( 2016 ) is a 
fundamental feature that can be exploited in cosmological anal- 
yses. Indeed, its universal shape can be used to derive unbiased 
cosmological constraints by modelling data at any redshift and for 
standard cosmological scenarios. In particular, the coefficients in 
equation ( 7 ) have been calibrated considering DM-only cosmological 
simulations, with haloes identified with a spherical o v erdensity halo 
finder (e.g. T ormen 1998 ; T ormen, Moscardini & Yoshida 2004 ; 
Giocoli, Pieri & Tormen 2008 ). A re-calibration of the fitting relation 
parameters is therefore necessary when using different types of 
simulations (e.g. hydrodynamic) and/or other halo finder methods 
(see Section 3 ). 

2.2 Void counts 

As already mentioned, the abundance of cosmic voids as a function of 
their radius can be modelled as well with the excursion-set formalism 

(Sheth & van de Weygaert 2004 ; Jennings, Li & Hu 2013 ). Given 
the analogies between o v erdensity and underdensity, the linear VSF 

can be written as: 

d n 

d ln R 

∣∣∣∣
L 

= 

f ln σ

V ( R L ) 

d ln σ−1 ( R, z) 

d ln R L 
, (8) 

where V ( R L ) = 

4 
3 πR 

3 
L is the volume of a spherical region of radius 

R L and the subscript ‘L’ indicates that the quantities are obtained in 
linear theory. σ 2 ( R , z) is the variance of the matter power spectrum on 
a scale R and, analogously to σ 2 ( M , z) entering in the HMF, embeds 
the cosmological dependence of the model. Here, the multiplicity 
function can be expressed as an infinite series (Sheth & van de 
Weygaert 2004 ): 

f ln σ = 2 
∞ ∑ 

j= 1 

j πx 2 sin ( j πD) exp 

[
− ( j πx) 2 

2 

]
, (9) 

where: 

D ≡ | δv , L | 
δc + | δv , L | , x ≡ D 

| δv , L | σ ( R, z) , (10) 

and δv, L is the linear underdensity threshold. Following the spherical 
ev olution, non-linear v oids ha v e e xpanded by a factor of � 1.7 with 
respect to their linear stage. Consequently, the non-linear (subscript 
‘NL’) void abundance becomes: 

d n 

d ln R 

∣∣∣∣
SvdW 

= 

d n L 
d ln R L 

∣∣∣∣
R L = R/ 1 . 7 

. (11) 

The latter has been proposed by Sheth & van de Weygaert ( 2004 ) 
(SvdW, hereafter) and takes into account the suppression impact of 
the halo formation on the evolving population of voids (the void-in- 
cloud phenomenon), expressing D as a function of the two threshold 
parameters δv and δc . This translates into a shift of the linear model 
of equation ( 8 ) towards larger radii without any change in amplitude, 
which means that in the SvdW model, the comoving number density 
of voids is conserved in the non-linear regime ( SvdW ). 

Jennings et al. ( 2013 ) pointed out that the latter is an incorrect 
assumption, especially for large voids. Following this model, the 
cumulative fraction of volume occupied by voids exceeds the total 
volume of the Univ erse. Indeed, the SvdW model o v erpredicts the 
ab undance of v oids at any radius (Jennings et al. 2013 ; Ronconi 
& Marulli 2017 ), unless the threshold δv, L is considered a free 
parameter, which can be fine-tuned for different redshifts and cosmic 
tracers by means of cosmological simulations. Ho we ver, this af fects 
the possibility of using the VSF as a cosmological probe in several 
ways. 

In order to account for this problem, Jennings et al. ( 2013 ) 
proposed the volume-conserving size function model, or Vdn, in 
which the volume fraction occupied by cosmic voids is conserved 
in the transition from the linear to the non-linear regime. This VSF 

model, which has been tested recently in many works (Jennings et al. 
2013 ; Ronconi & Marulli 2017 ; Contarini et al. 2019 ; Ronconi et al. 
2019 ; Verza et al. 2019 ; Contarini et al. 2021 , 2022a ), is defined as: 

d n 

d ln R 

∣∣∣∣
Vdn 

= 

d n 

d ln R 

∣∣∣∣
L 

V ( r L ) 

V ( R) 

d ln R L 

d ln R 

. (12) 

In the VSF model, voids are defined as non-o v erlapping spheres 
embedding an internal underdensity contrast δDM 

v , NL relative to the 
unbiased tracer distribution (DM particles). 

In this work, we consider voids identified in the distribution of 
simulated galaxies, which are biased tracers of the matter density 
field. In this case, the radii of the spherical voids predicted by the 
Vdn model have to be re-scaled in order to match the radii of voids 
identified in the non-linear biased tracer distribution (Jennings et al. 
2013 ; Contarini et al. 2019 ; Ronconi et al. 2019 ). In our analysis, 
this is achieved by applying the cleaning algorithm developed by 
Ronconi & Marulli ( 2017 ) (see Section 3.1 , for further details). The 
matching of the radii is obtained by re-scaling the model underdensity 
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threshold δDM 

v , NL by means of a bias factor b : 

δtr 
v , NL = bδDM 

v , NL , (13) 

where δtr 
v , NL is the tracer density contrast imposed to be embedded 

by voids in the biased field and selected during the void cleaning 
procedure. This threshold can be chosen from a wide range of 
ne gativ e values (see Contarini et al. 2019 , for further details), as long 
as the corresponding linear density contrast is inserted in the Vdn 
model, as we will describe shortly. Following the studies of Pollina 
et al. ( 2017 , 2019 ), Contarini et al. ( 2019 , 2021 ) showed that the 
bias b does not coincide with the one computed on large scales, b eff , 
measurable, e.g. from the two-point correlation function (2PCF) of 
the tracer density field, demonstrating that the bias measured inside 
cosmic voids is linearly related to b eff : 

F ( b eff ) = B slope b eff + B off , (14) 

with B slope and B off being the slope and the offset of this relation, 
respectively . Consequently , the model non-linear threshold δNL 

v , DM 

can 
be computed as: 

δDM 

v , NL = 

δtr 
v , NL 

F ( b eff ) 
. (15) 

Moreo v er, Contarini et al. ( 2021 ) found a negligible dependence of 
this calibration relation on the considered cosmological model, that 
is a fundamental prerequisite to exploit the VSF as a cosmological 
probe. 

Finally, the theoretical VSF model requires the corresponding 
linear underdensity threshold. Having δDM 

v , NL , one can convert it into 
its linear value via the following relation (Bernardeau 1994 ): 

δDM 

v , L = C 
[ 
1 − (

1 + δDM 

v , NL 

)−1 / C 
] 
, (16) 

with C = 1 . 594, the latter being exact for cosmologies with � = 0, 
and very precise also for other values of � , especially when applied 
to the ne gativ e density contrasts. 

3  T H E  M AG N E T I C U M  SIMULATIONS  

In this work, we make use of simulated galaxy and galaxy clus- 
ter catalogues extracted from the Magneticum Pathfinder 1 (Dolag 
et al., in preparation), a large set of cosmological, hydrodynamical 
simulations, with box volumes ranging from (12 h −1 Mpc) 3 (Box6) 
to (2688 h −1 Mpc) 3 (Box0). These boxes have different resolutions, 
and thus allow us to study the formation and evolution of both 
large-scale structures as well as phenomena that occur on smaller 
scales, from the motion of galaxies to the physics of gas inside 
them. The Magneticum simulations have been run with the parallel 
code P-GADGET3, which is an updated version of the TreeSPH 

GADGET-2 code presented in Springel ( 2005 ). In this code, the 
gravitational forces are computed through a TreePM algorithm, while 
the hydrodynamics is modelled through an updated SPH algorithm 

(Springel & Hernquist 2002 ; Beck et al. 2016 ), from which it is 
possible to properly track the gas turbulence (Dolag et al. 2005 ). 

Furthermore, the main baryonic physics phenomena are imple- 
mented in these hydrodynamic simulations, following the methods 
presented in Springel & Hernquist ( 2003 ), such as the cooling of 
gas, star formation, and supernovae feedback. In addition, black hole 
and active galactic nuclei feedbacks are included (Di Matteo et al. 
2008 ; Fabjan et al. 2010 ; Hirschmann et al. 2014 ), as well as thermal 

1 ht tp://www.magnet icum.org/

conduction (Dolag et al. 2004 ), stellar population, and chemical 
enrichment models (Tornatore et al. 2003 , 2007 ). Following the latter, 
metals are produced by SNII, SNIa, and by low and intermediate 
mass stars in the asymptotic giant branch. The simulation assumes a 
Chabrier initial stellar mass function (Chabrier 2003 ) and takes into 
account the different release amounts of metals and energy depending 
on the stellar mass (P ado vani & Matteucci 1993 ). A more detailed 
description can be found in Hirschmann et al. ( 2014 ) and Teklu et al. 
( 2015 ). 

The Magneticum simulations have been carried out with the seven- 
year Wilkinson Microwave Anistropy Probe (WMAP7) cosmology 
(Komatsu et al. 2011 ), which we will consider fiducial. In this 
scenario, the main cosmological parameters are set to �m 

= 0.272, 
�� 

= 0 . 728, σ 8 = 0.809, H 0 = 70.4 km s −1 Mpc −1 , and n s = 

0.963. For our analysis, we exploit the Box1a (for details, see 
Dolag, Komatsu & Sunyaev 2016 ), which is a large simulation that 
follo ws the e volution of 2 · 1526 3 particles in a comoving volume 
of (896 h −1 Mpc) 3 , with which it is possible to make a detailed 
statistical analysis of galaxy clusters and cosmic voids. This snapshot 
was built considering a mass resolution of DM and gas particles 
of 1.3 × 10 10 and 2.6 × 10 9 h −1 M 	, respectively. The simulation 
outputs, from which redshift-space cluster and void catalogues have 
been constructed, are selected at four redshifts, z = 0.2, 0.52, 0.72, 1. 

3.1 Data preparation 

We construct redshift-space mock catalogues of galaxies and galaxy 
clusters starting from their positions in real space by following the 
same methodology used in Bianchi et al. ( 2012 ) and Marulli et al. 
( 2011, 2012a , b , 2017 ), which we briefly outline in the following. 
We set a virtual observer at redshift z = 0, and place the centre 
of the different simulation snapshots at a comoving distance D c , 
corresponding to their redshift: 

D c ( z) = c 

∫ z 

0 

d z ′ c 
H ( z ′ c ) 

, (17) 

where c is the speed of light, z c is the cosmological redshift due to 
the Hubble recession velocity, and H ( z) is the Hubble parameter. The 
latter, for a � CDM cosmology and considering the contribution of 
radiation as negligible, becomes: 

H ( z) = H 0 

[
�m 

(1 + z) 3 + �� 

]1 / 2 
. (18) 

We then transform the comoving coordinates of real-space mock 
sources into angular positions and observed redshifts. For each 
galaxy in a given catalogue, the latter is computed from z c as: 

z obs = z c + 

v ‖ 
c 

(1 + z c ) , (19) 

with v � being the galaxy’s centre of mass velocity projected along 
the line of sight. As in Marulli et al. ( 2012b , 2017 ), we do not 
take into account any systematic error in the observed redshift, 
neither we consider geometrical distortions during the redshift-space 
mock catalogue generation, i.e. during this procedure, we assume the 
correct, true underlying cosmology of the simulations. 

In the Magneticum simulations, haloes are identified with a Friend- 
of-Friend (FoF) algorithm (Davis et al. 1985 ), with a linking length 
of b = 0.16 applied to the distribution of DM particles (Dolag 
et al. 2009 ) while galaxy clusters are detected, starting from halo 
centres, as spherical o v erdensities. In our case, we consider spheres 
containing a linear o v erdensity 	 = 500 ρc , where ρc ≡ 3 H 

2 /8 πG 

is the critical density of the Universe at the considered redshift. 
We then select only clusters having mass M 500c ≥ 10 14 h 

−1 M 	, 
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Figure 1. The spatial distribution of simulated galaxies (blue dots), galaxy clusters (yellow dots), and voids (white circles) in the snapshots considered in this 
work, extracted from the Magneticum simulations. The points representing galaxy clusters have dimensions proportional to their mass, while more massive 
galaxies have lighter colours. Void circles have a radius corresponding to their size. The different panels refer to redshifts z = 1, 0.72, 0.52, 0.2, from left to 
right. Here, the cosmic objects considered follow the selections adopted in this work, i.e. M ∗ ≥ 10 10 h −1 M 	 for galaxies, M 500 c ≥ 10 14 h −1 M 	 for clusters, 
and R eff ≥ 3.6 λmgs ( z) for voids. The axes are expressed in comoving coordinates, considering a 60 h −1 Mpc thick slice in the third coordinate. 

choosing this mass selection in order to mimic the range of masses for 
galaxy clusters in real current and future surv e ys, like the e xtended 
Roentgen Surv e y with an Imaging Telescope Array (eROSITA; 
Merloni et al. 2012 ). Also, for smaller masses, we verified the 
presence of incompleteness in the cluster counts. We do not focus on 
any observable-mass relation in this work, and we consider cluster 
masses as a direct observable. 

We underline that the adopted halo mass definition is not unique 
and that it is possible to switch to a different one under the 
assumption of a mean halo profile. For example, the mass cut-off 
M 500c ≥ 10 14 h −1 M 	 would approximately translate into M 200c ≥
1.4 × 10 14 h −1 M 	 by considering a Navarro–Frenk–White profile 
with a concentration of c = 4 (for further details, see e.g. Despali 
et al. 2016 ). We therefore do not expect the halo mass definition to 
have a significant impact on the results presented in our analysis. 

Instead, voids are detected in the redshift-space distribution of 
galaxies. In the Magneticum simulations, galaxies are identified using 
a modified version of SUBFIND , an algorithm aimed at extracting 
bound structures from a large N -body simulation characterized by 
the presence of gas and star particles (Springel et al. 2001 ; Dolag et al. 
2009 ). We apply then a galaxy mass selection of M ∗ ≥ 10 10 h 

−1 M 	
following the choice of Marulli et al. ( 2017 ), who analysed the same 
cosmological simulations. We underline that there is not a direct link 
or correspondence between the galaxy cluster and galaxy mass cuts 
examined in this work. 

In each simulated box, redshift-space voids are identified with 
the public Void IDentification and Examination toolkit 2 (VIDE; 
Sutter et al. 2015 ), which is based on the parameter-free void finding 
algorithm ZOnes Bordering On Voidness code (ZOBOV; Neyrinck 
2008 ). The latter finds voids in a 3D distribution of tracer particles, 
without introducing any free parameters or assumptions about the 
void shape. 

The extracted void catalogues were then cleaned with the algo- 
rithm implemented inside the CosmoBolognaLib 3 C ++ / PYTHON 

libraries (Marulli, Veropalumbo & Moresco 2016 ) and exploited 
in recent works (Ronconi & Marulli 2017 ; Contarini et al. 2019 ; 
Ronconi et al. 2019 ; Contarini et al. 2021 , 2022a , b , c ). As already 

2 https:// bitbucket.org/ cosmicvoids/ vide public 
3 https://gitlab.com/feder icomar ulli/CosmoBolognaLib 

mentioned in Section 2.2 , the cleaning procedure is necessary be- 
cause the VSF models described abo v e consider voids as underdense, 
spherical, non-o v erlapping re gions with a specific internal density 
contrast. Hence, the aim of adopting this procedure is to prepare 
catalogues matching the theoretical definition used to develop the 
VSF model. The cleaning algorithm can be briefly described in three 
main steps: it remo v es non-rele v ant objects, i.e. voids with a radius 
outside of a given range and/or with a central contrast that is too 
high; it rescales the ef fecti ve void radii, R eff , in order to make the 
voids embedding a specific density contrast; and finally, it checks 
for o v erlapping voids, ev entually rejecting the ones with the highest 
central density. The impact of the cleaning procedure on the void 
abundances has been e xtensiv ely tested in Ronconi et al. ( 2019 ), 
which applied it to a set of cosmological simulations at different 
redshifts with different spatial resolutions and box side lengths. 

Once the cleaning algorithm is applied, we select only voids having 
ef fecti ve radii R eff ≥ 3.6 λmgs ( z), with λmgs ( z) being the mean galaxy 
separation of the catalogues from which voids are detected. This 
quantity corresponds to λmgs � 6 . 6 h 

−1 Mpc at z = 0.2 and increases 
up to λmgs � 8 . 9 h 

−1 Mpc at z = 1 because of the lower number of 
galaxies at higher redshifts. We consider this an extremely conserva- 
tive radius cut in order to ensure reliable constraints on cosmological 
parameters (see Section 5.2 ). Indeed, with this selection, we a v oid 
considering the spatial scales characterized by incompleteness, i.e. 
those voids affected by the limited resolution of the simulation. 
Indeed, we verified that a less stringent radius selection would lead to 
cosmological test constraints slightly in disagreement with the true 
values of the Magneticum simulation parameters. We refer the reader 
to previous works (i.e. Jennings et al. 2013 ; Contarini et al. 2019 ; 
Ronconi et al. 2019 ) for further details on the impact of the spatial 
resolution on void number counts. 

Fig. 1 shows the evolution of the large-scale distribution of galaxies 
(blue dots), galaxy clusters (yellow dots), and voids (white circles) 
inside slices of thickness 60 h 

−1 Mpc , extracted from the Magneticum 

snapshots. We also report simulated voids following the selection 
procedure described abo v e, i.e. by applying cleaning and selection 
procedures. As one can note from this figure, the large-scale structure 
clustering increases with cosmic time, giving rise to more massive 
collapsed objects (i.e. galaxies and galaxy clusters) and, at the same 
time, to larger cosmic voids. In this representation, ho we ver, some 
voids seem to be located in regions of galaxy crowding. This is just 
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a projection effect given by the finite thickness of the shown slices. 
Moreo v er, some underdensity re gions do not hav e an associated void: 
this can be explained in terms of the applied void selection, for which 
we considered only very large voids (see Section 3.1 ). 

4  M E T H O D S  

4.1 Fr om r eal-space to r edshift-space 

The theoretical framework outlined in Section 2 is only suitable 
for a real-space analysis. Considering redshift-space galaxy and 
galaxy cluster catalogues, it is necessary to correct for geometric and 
dynamic distortions. The former arise when the fiducial cosmology 
assumed in the analysis is different from the true one, while the 
latter are due to the peculiar motion of galaxies with respect to the 
Hubble flow. We will start our discussion by providing a model 
correction for the geometric distortions, which must be taken into 
account during the Bayesian Markov Chain Monte Carlo (MCMC) 
analysis. In fact, as the cosmological parameters change at each step 
of the MCMC, the mapping between redshift and comoving distance 
will be different, as well as the simulated box volume. The former 
is known as the Alcock–Paczynski effect (AP; Alcock & Paczynski 
1979 ) and influences the observed shape of large-scale structures, 
making them appearing elongated along the line of sight. Instead, 
the variation of the simulated volume affects the predicted number 
density of both clusters and voids. 

Regarding clusters, we will include the effect of the varying 
simulated volume only, since the AP effect has a negligible impact 
on their masses. Vice versa, voids must be considered as spatially 
extended objects; hence, the geometrical distortions must be taken 
into account when modelling their observed sizes. 

Voids identified assuming the true cosmological model can be 
modelled as spherical objects having radius a R . Ho we ver, it can be 
shown that assuming a fiducial cosmology different from the true 
one 4 , the void radius R 

′ can be written as (see Contarini et al. 2022a , 
and references therein): 

R = q 
1 / 3 
‖ q 

1 / 3 
⊥ 

R 

′ , (20) 

where q � and q ⊥ 

are defined via the following relations: 

r ′ ‖ = 

H ( z) 

H 

′ ( z) 
r ‖ = q −1 

‖ r ‖ , 

r ′ ⊥ 

= 

D A ( z) 

D 

′ 
A ( z) 

r ⊥ 

= q −1 
⊥ 

r ⊥ 

, (21) 

i.e. as the ratio between the Hubble parameter, H ( z), and the ratio 
between the comoving angular-distances, D A ( z), computed assuming 
the two cosmologies, respectively. In equation ( 21 ), r � and r ⊥ 

are 
the parallel and perpendicular projections, with respect to the line of 
sight, of the distance vector connecting two points at redshift z. In 
applying this correction, we consider the mean redshift of the centres 
of voids included in each redshift interval. This approximation is 
accurate enough since the selected samples of voids co v er small 
redshift ranges. As already mentioned, the other effect concerns the 
variation of the simulated box volume. This can be modelled as: 

V box ( z) = L 

2 
box · 	D C ( z) , (22) 

where 	 D C ( z) = D C ( z max ) − D C ( z min ) is the difference between the 
comoving distance of the furthest object and the nearest object in 

4 Measurements computed in the fiducial cosmology are indicated here with 
primed symbols. 

the simulated box. Here, the redshift value depends on the simulated 
snapshot being considered. 

With these corrections, the number counts of clusters in a given 
mass bin 	 M ≡ M 2 − M 1 can be obtained as: 

N cl ( 	M; V box ) = V box 

∫ M 2 

M 1 

d M 

d n 

d M 

, (23) 

where d n /d M is the HMF given by equation ( 6 ), and V box is computed 
as in equation ( 22 ). Accordingly, the number counts of voids are 
computed from the VSF model of equation ( 12 ) as: 

N v ( 	R; V box ) = V box 

∫ R 2 

R 1 

d R 

R 

d n 

d ln R 

∣∣∣∣
Vdn 

, (24) 

where 	 R ≡ R 2 − R 1 is a given void radius bin, with R computed 
from equation ( 20 ), i.e. taking into account the AP effect. 

The inclusion of the geometric distortions in the HMF and 
VSF models, via the simulated volume change and the AP effect 
(for cosmic voids only), introduces a further dependence on the 
cosmological model. In particular, the total matter density parameter 
�m 

enters into the computation of the Hubble parameter H ( z) and 
the comoving angular-distance D A (see equation ( 21 )), as well as the 
comoving distance D C (see equation ( 22 )). 

Finally, regarding dynamic distortions, we do not consider their 
impact on the HMF since their effect on the observed cluster masses 
can be considered negligible. Instead, it is fundamental to include 
the redshift-space distortions in the VSF model because the observed 
void radii undergo a significant enlargement due to the coherent 
outflow of tracers from the void centres (Pisani, Sutter & Wandelt 
2015a ). This effect can be encapsulated in the nuisance parameters, 
B slope and B off , of the extended Vdn theory (Contarini et al. 2022a ). 
In our analysis, this will be performed in Section 5.1 , during the 
calibration of the VSF with the measured redshift-space void number 
counts. 

4.2 Bayesian analysis 

Having extracted our data sets D, consisting of cluster and void 
counts measured from the simulations, we follow a Bayesian 
approach to sample the posterior distribution of two fundamental 
cosmological parameters, i.e. the total matter density parameter, �m 

, 
and the z = 0 amplitude of the matter power spectrum, σ 8 . Let � 

= ( �m 

, σ 8 , q ) denote the parameter vector, with q being the set of 
the internal HMF and VSF model parameters. Then the posterior 
distribution of � , given a cosmological model, can be computed 
from the Bayes’s theorem: 

P( � | D) ∝ L ( D| � ) p( � ) , (25) 

where L ( D| � ) is the likelihood function and p ( � ) the priors 
considered for the parameters. 

We then make use of MCMC methods for the posterior sampling, 
taking into account the correlation between different data sets where 
needed (see Section 4.3 ). In the general case, i.e. where the data 
set covariance matrix C is non-diagonal, the following Gaussian 
likelihood is considered: 

L ( D| � ) = 

∏ 

i,j 

1 

(2 π) n/ 2 
√ | C| exp 

(
−1 

2 
χ2 

ij 

)
, (26) 

where 

χ2 
ij = ( N ij − μij ) 

T C −1 ( N ij − μij ) . (27) 

Here, n is the number of items in the data set, N ij ≡ N ( ξi , z j | D) is 
the number counts for the given observable ξ in the i -th bin (mass 
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or radius) at redshift z j , and μij ≡ N ( ξ i , z j | � ) is the expectation 
value in the cosmological model considered. Note that the covariance 
matrix of a given probe (i.e. HMF or VSF, in our case), C ≡ C( ξi , z j ), 
depends both on the measured statistic in the given bin, ξ i , and on the 
mean redshift of the bin, z j . In this work, we exploit the combination 
between different posterior distributions, obtained separately from 

our cosmological probes. This can be achieved via the product of 
their likelihood functions, or more generally, their posterior product. 

4.3 Correlations between cluster and void counts 

To check for possible correlations between cluster and void counts, 
we compute the cross-covariance matrix of the two probes consid- 
ered, employing the jackknife sampling technique (Parr & Schucany 
1980 ; Efron 1982 ; Escoffier et al. 2016 ). The latter is used to 
generate new mock samples that are representative of an underlying 
population, i.e. the analysed catalogues in this work, whose statistics 
we want to estimate. This technique works by sequentially removing 
one subsample from the entire data set, computing the desired 
statistics on the remaining samples. 

For each redshift considered, we divide the cluster and void 
catalogues into N sub = 125 equally sized subregions. A value for 
the number counts of galaxy clusters N α and cosmic voids N β can 
be associated with α ∼ ( i M 

, i z ), a generic bin in mass and redshift, 
and β ∼ ( i R , i z ), a generic bin in radius and redshift. The jackknife 
covariance element between two generic bins α and β can then be 
estimated as (see e.g. Efron 1982 ): 

C jk αβ = 

N sub 

N sub − 1 

N sub ∑ 

i= 1 

(
N 

jk 
α ( i) − N̄ 

jk 
α

)(
N 

jk 
β ( i) − N̄ 

jk 
β

)
, (28) 

where: 

N̄ 

jk 
α = 

1 

N sub 

N sub ∑ 

i= 1 

N 

jk 
α ( i) (29) 

is the average of the jackknife counts in a specific bin and N 

jk 
α ( i) = 

N 

tot 
α − N α( i) is a jackknife sample, defined as the difference between 

the number counts in the total volume and the ones in the volume of 
one subsample. In this way, the cross-covariance matrix between the 
number counts of galaxy clusters and cosmic voids is a block matrix, 
and can be written as: 

C jk = 

(C HH C VH 

C HV C VV 

)∣∣∣∣ , (30) 

where C HH , C VH , C HV , and C VV are the covariance matrices between 
cluster mass bins, cluster mass and void radius bins (and vice- 
versa), and void radius bins at all redshifts ( z = 0.2, 0.52, 0.72, 1), 
respectiv ely. Since the co variance matrix has been computed using a 
limited set of mock catalogues, we include the statistical corrections 
suggested by Perci v al et al. ( 2014 ) to impro v e the accurac y of the 
estimation of the model parameters. Additionally, we apply the 
prescriptions by Hartlap, Simon & Schneider ( 2007 ) to correct for 
the numerical uncertainties in the inversion of the covariance matrix, 
needed in equation ( 27 ). We note some level of noise in the computed 
covariance matrix. We discuss the stability of our results against the 
variation of N sub in Appendix A . 

In Fig. 2 , we present the cross-correlation matrix between our two 
probes, computed for each bin as the Pearson correlation coefficients: 

ρij = 

C ij √ 

C ii × C jj 
. (31) 

Figure 2. Jackknife cross-correlation matrix for galaxy cluster and void 
counts, for the mass and radius selections considered in the paper. The 
colourbar on the right represents the Pearson correlation coefficient associated 
with cluster mass and void radius bins. Data sets at different redshifts are 
separated by grey solid lines, while mass bins, and radius bins are divided by 
black solid lines. 

We clearly note that the internal correlation matrix of galaxy cluster 
counts, i.e. the upper left block matrix in Fig. 2 presents non- 
v anishing of f-diagonal elements. These features are due to the fact 
that we are analysing the redshift evolution of the same large-scale 
structure, so we are considering the same objects evolving with 
time. We checked that these correlation features in fact disappear 
when estimating again the covariance matrix for cluster number 
counts, but resampling from different cosmological sub-boxes at each 
redshift. Despite the fact that this approach would be more accurate in 
reproducing the behaviour of real cosmic objects, it severely reduces 
the measured cluster number counts and so would ne gativ ely affect 
the statistical rele v ance of the analysis. For this reason, we applied 
this methodology as a consistency test only. On the contrary, we 
do not get evident correlation features in the void count correlation 
matrix. We attribute this fact to both the noisier data and the effect of 
the cleaning procedure, which reduces the possibility of following 
the evolution of the same void sample with cosmic time. Notably, 
we can appreciate how the level of correlation of the off-diagonal 
block matrices C VH and C HV is consistent with zero, confirming the 
high statistical independence of cluster and void number counts, as 
also found in previous works (Sahl ́en et al. 2016 ; Bayer et al. 2021 ; 
Kreisch et al. 2022 ). 

5  RESULTS  

Before comparing the simulated data sets extracted from the Mag- 
neticum simulations with the theoretical models described in Section 
2 , a self-calibration (i.e. on the same simulation outputs, considering 
the fiducial cosmology) of the latter is necessary, because of the 
differences in the halo definitions between the simulations employed 
here and those assumed by the theoretical HMF model, as already 
explained in Section 2.1 . In this case, the calibration will allow 

us to determine the posterior distribution for the coefficients that 
appear in equation ( 7 ). Consequently, we will marginalize o v er the 
latter in order to find the posterior distributions for the cosmological 
parameters �m 

and σ 8 (see Section 5.2 ). 
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Moreo v er, the VSF model has to be calibrated (Contarini et al. 
2019 , 2021 , 2022a ). We make use of the Vdn model described in 
Section 2.2 , modifying properly the underdensity threshold that 
enters the model, as reported in equation ( 14 ). Specifically, the 
calibration we perform on the VSF model is to assess the posterior 
distribution of the free parameters of the function F ( b eff ), i.e. B slope 

and B off . 
For both the calibrations and constraints on cosmological param- 

eters, we fit the joint data set at all the redshifts considered with 
the model presented in Section 2 . In particular, we compute the 
constraints by concatenating the data sets concerning the two probes 
analysed at different redshifts into a unique vector, constructing 
the likelihood with the correct covariance matrix for the given 
cosmological probe. 

5.1 Model self-calibrations 

The calibration performed by Despali et al. ( 2016 ) considered DM- 
only cosmological simulations, while the Magneticum simulations 
also follow the baryonic component. Moreo v er, Despali et al. ( 2016 ) 
defined the galaxy clusters with a halo finder method different from 

the one used in this work. For these reasons, we have to re-calibrate 
the parameters of the HMF model, by assuming the functional 
relation given by equation ( 7 ). This translates into finding other 
coefficients for the relations a = a ( x ), p = p ( x ), and A = A ( x ). We 
chose to consider p as fixed to the value provided by Despali et al. 
( 2016 ) in the most general fitting case, that is, p = 0.2536. We made 
this choice because p significantly affects only the low mass end 
of the HMF, and we cannot precisely constrain it due to the mass 
selection applied and the simulation mass resolution. 

We expressed the general form of the fitting formula equation ( 7 ) 
as: 

a = a 1 x 
2 + a 2 x + a 3 

A = −A 1 x + A 2 

p = 0 . 2536 , (32) 

and we calibrate the new relations for the model parameters by 
performing a Bayesian MCMC analysis on the simulated HMF, 
considering flat priors for the five free parameters ( a 1 , a 2 , a 3 , A 1 , 
A 2 ) and sampling their posterior distributions. Since the correlation 
matrix associated with the HMF (upper left block matrix in Fig. 
2 ) is non-diagonal, during the calibration procedure we consider a 
Gaussian likelihood as in equation ( 26 ). 

The result of the calibration is presented in Fig. 3 , which shows 
the posterior distribution of the coefficients of equation ( 32 ). We 
find strong correlations between the different calibration parameters. 
Moreo v er, the marginalized 1D posterior distributions present an 
approximately Gaussian shape, with a low degree of skewness, the 
latter being more prominent for the a i parameters. While A 1 and A 2 

result statistically in agreement with the values obtained from the 
calibration performed in Despali et al. ( 2016 ) (see equation ( 7 )), the 
values for the a i coefficients are in > 2 σ disagreement with respect 
to their reco v ered values. This is an e xpected outcome due to the 
different adopted halo definitions (see Despali et al. 2016 , for further 
details), and also due to the effect of the baryonic physics (see e.g. 
Bocquet et al. 2016 ; Ragagnin et al. 2021 ), which is included in the 
simulations analysed in this work. 

Similarly to what we have done for the HMF parameters, here 
the VSF model calibration consists in finding new values for the 
parameters B slope and B off of equation ( 14 ), by sampling their 

Figure 3. Posterior probability distribution of the coefficients of the fitting 
relation parameters ( a , A ) reported in equation ( 7 ), for a cluster mass selection 
of M 500 c ≥ 10 14 h −1 M 	. Dark and light areas show the 68 and 95 per cent 
confidence re gions, respectiv ely. On the top of each column, we report the 
projected 1D marginal posterior distributions, with the associated maximum 

posterior values and relative 1 σ uncertainties. 

posterior distributions via a MCMC analysis, with the cosmological 
parameters fixed to the simulation true values. 

In order to do this, we first compute the ef fecti ve large-scale bias, 
b eff , following the method delineated in Marulli et al.( 2013 ) and 
Marulli et al. ( 2018 ). In particular, we construct a 10-time denser 
random catalogue with the same properties of the Magneticum 

simulation boxes and measure the 2PCF of real-space galaxies 
making use of the Landy–Szalay estimator (Landy & Szalay 1993 ). 
We then sample the posterior distribution of the free parameter of the 
model, b eff , following the same method described in Contarini et al. 
( 2019 , Appendix A). We obtain b eff = 1.321 ± 0.007, 1.549 ± 0.008, 
1.714 ± 0.009, 1.98 ± 0.01 for the four redshifts considered in our 
analysis, modelling the galaxy 2PCF in the range [20 –40] h 

−1 Mpc . 
Then we calibrate the VSF model by fitting the measured void 
number counts. In particular, we consider flat priors for B slope and B off , 
marginalising o v er the values of b eff by assuming 1D Gaussian priors 
centred on the computed mean values and with a standard deviation 
equal to their reported errors. As for cluster counts, we considered 
a Gaussian likelihood (equation ( 26 )) with the covariance matrix 
computed in Section 4.3 . 

We present the result of this calibration in Fig. 4 , where we show 

the posterior distribution of B slope and B off , which have both an 
approximately Gaussian shape. Also in this case, we found a strong 
correlation between the parameters, with a de generac y direction 
consistent with recent works (Contarini et al. 2021 , 2022a ). We find 
a discrepancy with the results found in Contarini et al. ( 2022a ), i.e. 
B slope = 0.96 ± 0.04 and B off = 0.44 ± 0.07. This is due to the different 
mass tracer type and selection used by these authors: in Contarini 
et al. ( 2022a ) voids are traced by H α galaxies, simulated by means 
of a halo occupation distribution algorithm, and selected according 
to a magnitude cut (see Contarini et al. 2022a , for further details). 
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Figure 4. Posterior probability distribution of B slope and B off , coefficients 
of the F ( b eff ) relation, reported in equation ( 14 ). Dark and light areas show 

the 68 and 95 per cent confidence regions, while at the top of each column, 
we report the projected 1D distributions, with the values associated to the 
maximum of the posterior and the relative 1 σ uncertainties. 

In this work, we analyse instead voids identified in hydrodynamical 
mock samples of galaxies, selected with a threshold in stellar mass. 

5.2 Cosmological test constraints 

We can now present the measurements of the number counts of 
both galaxy clusters and cosmic voids extracted from redshift-space 
catalogues and compare these with the theoretical predictions given 
by the calibrated models. We rejected voids that are too close to 
the simulation boundaries, considering an edge of 15 h −1 Mpc, since 
the cleaning algorithm cannot rescale them accurately. We present 
the measured counts of galaxy clusters and cosmic voids in Figs 5 
and 6 , respectively, for the four redshift bins considered. The bars 
represent the Poissonian errors related to the data, while the ±1 σ
uncertainty of theoretical models are shown as shaded regions. From 

the residuals, computed as the difference between the measured data 
points and the theoretical models in units of the data error, one can 
appreciate how the measured number counts are accurately fitted by 
the theoretical models. Indeed, residuals are in all cases within 1 σ . 

Once measured the HMF and VSF models from the simulated 
data sets, we extract test constraints on the cosmological parameters 
�m 

and σ 8 . As already explained, we consider cluster and void 
abundances as a function of the mass and radius, respectively, as 
statistically independent, meaning that we do not take into account 
the cross-covariance matrix between the two probes. We perform a 
Bayesian MCMC analysis, considering flat priors on �m 

and σ 8 with 
ranges [0.1–0.5] and [0.5–1.0], respectively, and marginalising over 
the non-cosmological parameters, i.e. considering them as nuisances. 
Moreo v er, during the variation of �m 

in the MCMC, we imposed the 
flat spatial geometry of the Universe by rescaling the value of the 
CDM component as �cdm 

= �m 

− �b in order to hold true the 
condition �m 

+ �� 

= 1. 
The correlation between nuisance parameters of the models, i.e. 

( a i , A i ) for the HMF and ( B slope , B off ) for the VSF, is taken into 

Figure 5. Measured number counts of galaxy clusters (red dots), from 

the Magneticum (Box1a) at redshifts z = 0.2, 0.52, 0.72, 1, for 
M 500c ≥ 10 14 h −1 M 	. Red solid lines represent the HMF model from 

Despali et al. ( 2016 ) after the parameter re-calibration. Lower subpanels 
report the residuals of the cluster counts, computed as the difference between 
the measured data and the HMF model, in units of the data errors. The light 
grey bands represent the 1 σ intervals for the residuals. 

Figure 6. Measured number counts voids (blue dots), identified in the 
distribution of galaxies, from the Magneticum simulation (Box1a) at redshifts 
z = 0.2, 0.52, 0.72, 1. The blue lines represent the corresponding predictions 
of the Vdn model, extended and calibrated according to the prescriptions 
provided in Section 2.2 . The lower subpanels report the residuals of the void 
counts, computed as the difference between the measured data and the VSF 
model, in units of the data errors. The light blue bands represent the 1 σ
intervals for the residuals. 
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Figure 7. Posterior probability distribution on �m 

and σ 8 from VSF (blue), 
HMF (red), and their combination (grey), for clusters and voids extracted 
from Magneticum simulations, considering their joint analysis up to a given 
maximum redshift, i.e. z = 0.2, 0.52, 0.72, 1. The dashed black lines show the 
truth values of the cosmological parameters of the Magneticum simulations. 

account by considering a multi v ariate normal distribution as corre- 
sponding prior, centred on the parameter average values obtained 
from the calibrations (Sections 5.1 ). As already mentioned, we use 
the jackknife covariance matrix for both cluster and void counts. 
Then, we progressively stack the cluster and v oid ab undance data 
sets relative to different simulation snapshots, sampling the joint 
posterior distribution of �m 

and σ 8 for increasing redshift ranges. 
This procedure is aimed at assessing the constraining power on the 
growth of cosmic structures derived from the synergy of cluster and 
void number counts at different cosmic times. 

Fig. 7 shows the resulting contours for the HMF model considering 
redshift-space clusters with masses M 500c ≥ 10 14 h 

−1 M 	, for the 
VSF model with voids having radius R eff ≥ 3.6 λmgs ( z), and for their 
combination, considering a gradually increasing maximum redshift 
up to z = 1. In all cases, the HMF and VSF contours present different 
orientations in the �m 

–σ 8 parameter space. In particular, they are 
almost perpendicular, which is a powerful feature when we consider 
their combination. As expected, the precision of the constraints in- 
creases by adding the cosmological information of different Universe 
epochs. We underline indeed how the combined confidence contour 
shrinks by going from z ≤ 0.2 to 1, remaining ho we ver perfectly in 
agreement with the true cosmological parameters of the simulations. 
We also notice that the VSF gains more constraining power with 
the extension of the redshift range with respect to the HMF. Thanks 
to the negligible correlation between the void samples at different 
redshifts, the combination of the corresponding VSF constraints 
results indeed very ef fecti ve. For the HMF, instead, adding cosmo- 
logical information from higher redshifts is less advantageous mainly 
because of the correlation between the galaxy clusters belonging to 
the different simulation snapshots: as already explained, this is taken 
into account by including in the modelling of cluster counts the full- 
covariance matrix (see Section 4.3 ) and results in a milder increase 
of the constraining power since it derives from the joint analysis of 
dependent data sets. 

Table 1. Test constraints up to a given redshift (first column) on the 
S 8 parameter. The reported errors represents the 68 per cent confidence 
regions on S 8 . In the last column, I HMF represents the impro v ement on the 
constraining power achieved by the combination of HMF and VSF compared 
to the HMF alone, computed as the ratio between the relative errors on S 8 
from HMF and from HMF + VSF. 

Redshift S 8 (HMF) S 8 (VSF) S 8 (HMF + VSF) 

I HMF 

(per 
cent) 

z ≤ 0.2 0 . 763 + 0 . 019 
−0 . 017 0 . 75 + 0 . 10 

−0 . 09 0.77 ± 0.01 67 

z ≤ 0.52 0 . 760 + 0 . 017 
−0 . 014 0.75 ± 0.07 0.77 ± 0.01 65 

z ≤ 0.72 0 . 760 + 0 . 016 
−0 . 015 0.74 ± 0.06 0 . 767 + 0 . 009 

−0 . 01 63 

z ≤ 1 0 . 765 + 0 . 017 
−0 . 013 0.76 ± 0.06 0.77 ± 0.01 67 

The final combined constraints on �m 

and σ 8 , obtained by 
considering all the data sets up to z = 1, are the following: 

�m 

= 0 . 270 ± 0 . 007 

σ8 = 0 . 809 ± 0 . 005 , (33) 

which, as well as those coming from the single probes, are well 
centred on the truth values of the simulation, �m 

= 0.272 and σ 8 = 

0.809. We notice that, despite the maximum of the posterior distribu- 
tion deriving from the VSF is slightly shifted towards lower values 
in the �m 

–σ 8 space, the true simulation cosmological parameters are 
widely included in the corresponding 68 per cent confidence region. 

To have an easier comparison between the combination constraints 
and the ones from HMF and VSF alone, we also derive 1D constraints 
for S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 , which are reported in Table 1 . First of all, we 
note how the truth value S 8 = 0.77 is well reco v ered within the 68 
per cent confidence region for all the redshift ranges considered in 
the table. Then, in order to e v aluate the contribution of the VSF in 
the performed probe combination, we show how much the precision 
on S 8 increases with respect to that computed from the HMF alone. 
This percentage impro v ement, denoted here as I HMF , is computed 
as the ratio between the relative errors on S 8 from HMF and from 

the combined analysis. We find an impro v ement in the constraining 
power of about 60 per cent compared to that obtained with the HMF 

alone, almost independent of the maximum redshift considered in 
the analysis. 

This result highlights the impressive contribution of the VSF 

in enhancing the constraining power derived with standard probes 
like the HMF, moreo v er, it underlines the fundamental importance 
of exploiting complementary probes in future redshift surv e ys to 
achieve precise and independent cosmological constraints. 

6  C O N C L U S I O N S  

In this work, we e v aluated the constraining power of the combination 
between two large-scale cosmological probes, namely the number 
counts of galaxy clusters and cosmic voids. We studied the potential 
constraints achie v able by sampling the posterior distribution of the 
parameters �m 

and σ 8 through the analysis of the redshift-space 
cluster and void catalogues extracted from the Magneticum Box1a 
simulation, in four redshift snapshots (0.2 ≤ z ≤ 1). Since this 
simulation takes into account baryonic physics, we re-calibrated 
the HMF and VSF parameter models to minimize systematic 
uncertainties. We considered only galaxy clusters having masses 
M 500 c ≥ 10 14 h 

−1 M 	, and voids with an ef fecti ve radii R eff ≥
3.6 λmgs ( z), with λmgs ( z) being the mean galaxy separation from 

which voids are detected. We chose these conserv ati ve selections to 
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make our mock catalogues similar to those expected from large-scale 
surv e ys and, at the same time, not to be influenced by the resolution 
of the simulation. We computed the cross-covariance matrix between 
the two probes, finding no statistically rele v ant correlations between 
cluster mass and void radius bins at different redshifts. By looking at 
the cross-covariance matrix, we found, instead, correlation features 
within cluster mass bins at different redshifts. 

The cross-correlation terms are dominated by noise, so we have 
decided not to include their contribution in the calculation of the final 
constraints. It would be interesting to repeat our analysis with a larger 
set of mock catalogues. This would allow us to better investigate the 
cross-correlation terms, thus possibly impro v e the accurac y of the 
results. Moreo v er, it would be interesting to investigate the impact 
of cross-correlations between different redshift bins. This is beyond 
the scope of the current analysis, and it will be investigated in a 
forthcoming work. 

The most remarkable result of our analysis concerns the high 
constraining power derived from the combination of the HMF and 
VSF on the �m 

–σ 8 space: the confidence contours computed with 
these probes being highly perpendicular and their cross-correlation 
negligible, the cluster and void number count joint analysis is of 
great ef fecti veness. In particular, we found that the constraining 
po wer gi ven by the cluster counts impro v es by about 60 per cent 
when combined with void counts. This highlights the important 
contribution that void counts can provide to reduce the relative errors 
on the cosmological parameters related to the growth of large-scale 
structures, i.e. �m 

, σ 8 , and the derived quantity S 8 . Notably, we found 
that the impro v ement remains approximately constant regardless of 
the maximum redshift considered. 

This work is based on some modelling simplifications. First, we 
did not take into account any uncertainties in the observable-mass 
scaling relation and derived redshifts for the considered simulated 
tracers, as if galaxy cluster masses were perfectly measured. Also, in 
the building of the redshift-space catalogues, we mapped the tracer 
comoving coordinates into the observed ones by assuming the true 
cosmological parameters of the simulation, taking into account only 
the geometrical distortions arising from the cosmology variation 
acting in the MCMC analysis. Moreo v er, we modelled the geometric 
distortions for voids only, since these effects are expected to be 
negligible in the counts of galaxy clusters, the latter being less- 
spatially extended objects than voids. Our study was also limited 
to the constraints on �m 

and σ 8 , and it will be fundamental to 
consider also the remaining cosmological parameters on which 
the analysed probes strongly depend. Finally, we neglected the 
supersample covariance (SSC; Hu & Kravtsov 2003 ; Takada & 

Bridle 2007 ; Takada & Spergel 2014 ; Krause & Eifler 2017 ; Lacasa, 
Lima & Aguena 2018 ), which concerns the fact that simulations 
and observations map a limited portion of the Universe. Indeed, 
due to the missing modes being larger than the simulation box, 
neglecting the SSC might introduce non-negligible effects. Recently, 
Bayer et al. ( 2022 ) estimated the SSC specifically for cluster and void 
statistics. Although the SSC effect can be considered negligible for 
cluster and void counts alone, this is no longer true when considering 
their cross-correlation, potentially causing a change in the relative 
impro v ements of the combination analysis (Takada & Bridle 2007 ; 
Takada & Spergel 2014 ; Lacasa & Rosenfeld 2016 ). We will address 
all these issues in future works. 

In order to obtain well grounded statistical results from the analysis 
of large-scale structures, it would be interesting to search for galaxy 
clusters and cosmic voids in much larger cosmological volumes. 
Upcoming galaxy surv e ys like the Euclid mission (Laureijs et al. 
2011 ; Scaramella et al. 2014 ; Amendola et al. 2018 ), the Dark 

Energy Spectroscopic Instrument (DESI; Besuner et al. 2021 ; Hang 
et al. 2021 ), and Vera C. Rubin Observatory LSST (LSST Dark 
Energy Science Collaboration 2012 ) will map a very large fraction 
of our Universe, with volumes of the order of 10 2 ( h −1 Gpc) 3 , 
gi ving e ven more tight constraints on cosmological parameters and, 
mostly, impro v e our knowledge about the underlying cosmological 
model. The tighter constraints achieved by combining cluster and 
void counts, compared to those obtained by exploiting cluster counts 
alone, will significantly contribute to breaking cosmic degeneracies. 

In this analysis, we pro v ed how the high complementarity of these 
cosmological probes, together with the great error reduction given by 
their combination, will provide a fundamental contribution in shed- 
ding light on tensions possibly affecting cosmological observations. 
We thus conclude that the methods presented in this work, including 
model calibrations on suitable mock catalogues, will moti v ate the 
exploitation of the combined analysis of galaxy cluster and cosmic 
void counts from future wide-field galaxy surv e ys. 
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APPENDIX:  C OVA R I A N C E  MATRIX  

C O N V E R G E N C E  

In this work, we derived cosmological constraints from hydrody- 
namical simulations by estimating the cross-covariance matrix, C, 
between galaxy cluster and void number counts. It is important to 
verify that the noise in the covariance does not have a significant 
impact on the results, as it could potentially affect the estimation 
of the cosmological parameters in the Bayesian analysis. Therefore, 
in this Appendix, we test the stability of our results using different 
sampling techniques. 

In Section 4.3 , we computed C by dividing the tracer catalogues 
(galaxy clusters and voids) into N sub = 125 equally sized subregions. 
To test the co variance conv ergence and stability, we compare now 

both jackknife and bootstrap resampling methods (Efron 1982 ; 
Norberg et al. 2009 ). When adopting the former, we re-compute C 
as in Section 4.3 , but varying this time N sub ∈ [8, 1000]. Then, 
we extract again the combined constraints on �m 

and σ 8 for each 
considered case. When adopting the bootstrap technique, we derive 
instead the cosmological constraints as a function of the number of 

Figure A1. Posterior median values (black solid lines) for �m 

and σ 8 (top 
and bottom panels, respectively) as a function of the number of jackknife 
sub-boxes ( left-hand panels ) or the number of bootstrap resamplings ( right- 
hand panels ) used for the cross-covariance matrix estimation. The presented 
constraints are obtained considering all data sets up to z = 1. The shaded grey 
regions represent the 68 per cent confidence intervals around the posterior 
median of the presented cases. We report with blue-shaded bands, the 68 
per cent confidence intervals of the constraints obtained by applying the 
jackknife sampling technique with N sub = 125 (see Section 5.2 ). The dot–
dashed black lines represent the true cosmological values of the Magneticum 

simulations. 

resamplings N mock , considering a range of N mock ∈ [100, 2400]. For 
these tests, we fixed the nuisance model parameters of HMF and 
VSF (i.e. a 1 , a 2 , a 3 , A 1 , A 2 , B slope , B off ) to those calibrated in Section 
5.1 , considering all data sets up to z = 1. 

In Fig. A1 , we report the median values for �m 

and σ 8 and the 
corresponding 68 per cent uncertainties obtained for the different 
cases analysed. We note that the cosmological constraints are stable 
and consistent with those reported in equation ( 33 ), for all the 
methodologies employed. We conclude that the final constraints 
presented in this work, obtained by adopting the jackknife sampling 
technique with N sub = 125, can be considered unaffected by rele v ant 
numerical issues related to the estimation of the covariance matrix. 
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