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Abstract: Mycosis fungoides (MF) is the most common cutaneous lymphoma characterized by an
indolent course. Prognosis is stage-based but this approach does not reflect the different outcomes
within stages. Considering that tumor microenvironment is known to be involved in MF pathogenesis
and progression, we decided to investigate 99 MF cases by using the PanCancer Immune Profiling
Panel. We identified and validated a signature of 9 genes able to predict MF survival and distinguish
a high-risk group with a worse outcome from a low-risk group of cases with a better outcome. At
the molecular level, low-risk vs. high-risk cases reported a global upregulation of immune genes,
enriched in cytokines, and a higher density of dendritic cells and mast cells, possibly associated with
a more favorable clinical course.

Keywords: cutaneous lymphoma; mycosis fungoides; microenvironment; prognosis; gene expres-
sion profiling

1. Introduction

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma
(CTCL), accounting for around 50% of all cutaneous lymphoma [1]. MF is a rare disease
with a poorly understood pathobiology, multiple clinical presentations, and outcomes [2].

The majority of MF patients present at the early stage disease, characterized by lo-
calized (IA) or diffuse patches and plaques (IB), with no evidence of high tumor burden
in the blood or systemic involvement. The early stage MF has an indolent course with a
good prognosis (median survival > 15 years, 5-year survival > 80%) [1]. However, 25–33%
of these patients can progress to an advanced stage, completely changing the prognosis.
Around one-third of all MF patients present with advanced-stage disease, characterized by
tumor (IIB), or erythroderma (III), or blood involvement (IVA1), nodal involvement (IVA2)
or visceral and/or bone marrow involvement (IVB). During progression to advanced stages,
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the MF course becomes aggressive, reporting 5-year overall survival (OS) rates of 62% to
23–15%, even if a minority can survive for longer than 5 years [3,4]

Today, prognosis and clinical management are still stage-based, in spite of the above-
mentioned wide range of outcomes within stages. These differences in survival have
created the need to identify new markers useful for predicting the progression and clinical
outcome of MF patients already diagnosed, and to eventually help clinicians to adopt the
most suitable therapeutic approach [3,5].

In the last few years, many studies have investigated the molecular steps behind
the development and progression of CTCL, which includes recurrent deletions of tumor
suppressors (e.g., ARID1A, CDKN2A/B, PTPRC, SOCS1, and STK11), gene mutations of
PLCG1 and JAK3, and epigenetic alterations such as histone/chromatin modifications and
hypermethylation of multiple tumor suppressor genes (e.g., BCL7a and CDKN2A/B). Like
in other CTCL, aberrations in JAK-STAT signaling seem to be pivotal in MF, causing a
pro-tumorigenic inflammatory environment. [6]. In particular, studies about CTCL tumor
microenvironment have shown that not only the tumoral cells but also the inflammatory
and resident skin cells (such as keratinocytes and cells of the innate and adaptive immune
system) play a determinant role in MF evolution [7].

In this work, we analyzed 99 MF cases by using the PanCancer Immune Profiling
Panel (NanoString Technologies), specifically designed to interrogate 730 immune-targeting
genes and detect genes, immune cell types, and molecular pathways that possibly involved
in the tumor immune microenvironment (TIME) remodeling.

Thanks to this approach, we identified a nine-gene, TIME-derived signature, capable of
predicting patient outcome at diagnosis, with relevant clinical and therapeutic implications.

2. Materials and Methods
2.1. Patient Selection

In this study, at diagnosis, we collected 99 formalin-fixed, paraffin-embedded (FFPE)
skin biopsies of MF cases, staged according to the 2007 MF and SS staging revision. [8].
Forty-three out of ninety-nine cases were selected from the database of the Dermatology
Unit, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan (Italy) and
were used as discovery set. This set included 18 females and 25 males with a median
age of 62 (15–91); 22 were in the early stage (1 IA, 10 IB, 11 IIA) and 21 in the advanced
stage (13 IIB, 5 III, 2 IVA1, 1 IVA2). The remaining 56 MF cases were collected from three
independent tertiary care centers in Graz (Austria), Bologna (Italy), and Rome (Italy) and
were included in the validation set. The patients in this set were 20 females and 36 males
with a median age of 63 (14–87); 17 of them were in the early stage (4 IA, 9 IB, 4 IIA), 39 in
the advanced stage (29 IIB, 3 III, 5 IVA1, 2 IVA2).

The current study was conducted in accordance with the Declaration of Helsinki.

2.2. Total RNA Extraction and NanoString nCounter Assay

Total RNA was extracted from 3 sections of 10-µm of each FFPE tissue sample us-
ing the RNAstorm FFPE extraction kit (Cell Data Sciences, Fremont, CA, USA). All the
samples passed the quality control step with 260/280 and 260/230 ratios ≥ 1.8 and RNA
concentration ≥ 60 ng/µL.

Gene expression analysis was measured via the NanoString nCounter Analysis System
(NanoString Technologies, Seattle, WA, USA) with nCounter PanCancer Immune Profiling
Panel that performs multiplex gene expression analysis, including 730 immune-related
target genes, 40 housekeeping genes, and additional positive and negative genes. The panel
includes genes from different immune cell types (B-cells, T-cells, T-helper 1, T-helper 2, T
regulatory, cytotoxic cells, dendritic cells, macrophages, mast cells, neutrophils and Natural
Killer cells), common checkpoint inhibitors, cancer testis antigens, and genes covering both
the adaptive and innate immune response. The nCounter CodeSet containing capture and
reporter probes was hybridized to 300 ng of total RNA for 20 hours at 65 ◦C, according
to the manufacturer’s instructions. Hybridized samples were loaded into the nCounter
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Prep Station for post-hybridization processing. Target mRNA was assessed with nCounter
Digital Analyzer, using maximum scan resolution. The NanoString system computes
the relative abundance of each mRNA transcript of interest, through a multiplexed hy-
bridization assay and digital readouts of fluorescent barcoded probes that are hybridized to
each transcript.

2.3. Gene Expression Profiling and Cell Type Profiling of the Discovery Set and the Validation Set

The raw data file from the nCounter Digital Analyzer was analyzed via the NanoString
nCounter nSolver™ 4.0.70 using the NanoString Advanced Analysis Module 2.0 plugin.
The Advanced Analysis Module 2.0 software was used for quality control (QC), normal-
ization, differential expression analysis, and cell-type profiling with default parameters.
The estimated amount of immune cell types in each sample was calculated via NanoString
nSolver cell type abundance score.

Genes were recognized as differentially expressed (DEGs) if reporting a
log2FC ≥ 0.5 and p value ≤ 0.01. The identified differentially expressed genes were next
analyzed via pathway analysis using Enrichr bioinformatic tool and KEGG_2021_Human
gene set library [9].

2.4. Statistical Survival Analysis

All the statistical analyses were conducted within the statistical environment R v4.2.2
https://www.r-project.org/ (accessed on 20 July 2023). Association of OS and gene expres-
sion was investigated via univariate Cox regression analysis using the survival package.
Unlike the Kaplan–Meier method, Cox proportional hazards regression is able to provide
an effect estimate by quantifying the difference in survival between patient cohorts but it
does not require the assumption of survival distributions. The hazard ratio (HR) obtained
from this analysis was used to identify candidate genes associated with the OS. Genes with
HR < 1 were considered as protective genes, meaning that a lower expression is associated
with poor prognosis while genes with HR > 1 were defined as risky genes, where poor
prognosis is related to higher expression. A p value of <0.05, resulting from log-rank test,
was considered statistically significant for the selection of the OS-related genes.

2.5. Gene Expression Signature-Based Prognostic Risk Score

Significant genes resulting from Cox regression analysis were used to create a prog-
nostic scoring system based on this formula:

∑n.genes
i=1 (gene i Cox regression coe f f icient)x (gene i expression level)

The patients were ranked by their prognostic scores. An optimum threshold on the
score to separate patients into high-risk and low-risk groups was determined using the
MaxStat package [10] to identify the cutoff value producing the maximum log-rank score
in the discovery set. Kaplan–Meier plots were constructed, and a long-rank test was
implemented to evaluate differences in OS for MF patients.

2.6. Development and Validation of Nomogram

We constructed a nomogram of 3-year and 5-year OS to visualize the results of the Cox
regression analysis for both discovery and validation sets with the R package, ‘rms’. The
concordance index (C-index), which shows the consistency between predicted probability
and observed outcome, can be used to estimate the predictive performance of nomogram.
The C-index value ranges from 0.5 to 1.0, where 0.5 indicates random and 1.0 represents a
perfect match. A higher C-index indicates a better consistency between the prediction and
the observed result. When C-index reaches a value of at least 0.7, the nomogram prediction
can be considered significant.

https://www.r-project.org/
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3. Results
3.1. Development of a Nine-Gene Prognostic Signature Able to Distinguish High-Risk vs.
Low-Risk MF Patients

First, we analyzed the discovery set in order to identify molecular markers able to
discriminate patients with different outcomes.

A univariate Cox proportional hazard regression analysis of all 730 genes was per-
formed to determine the association between gene expression and OS of MF patients.

This analysis identified a nine-gene signature whose lower expression was signifi-
cantly associated with poor prognosis (LogRank < 0.05, Table 1). Next, a prognostic score
was used to estimate a patient’s risk of death and was determined by the linear combi-
nation of logarithmically transformed gene expression levels weighted by average Cox
regression coefficient. Hence, the prognostic scores were assigned for all MF patients and
the cohort was then divided into two groups, namely low- and high-risk groups accord-
ingly. Kaplan–Meier analysis was performed, and a log-rank test was used to determine
significant differences in OS among the two groups. High-risk patients were found to have
a significantly worse OS compared to low-risk patients (Figure 1A).

Table 1. List of 9 genes identified by Cox regression analysis. Based on their hazard ratio (<1), their
lower expression is associated with poor prognosis. HR: hazard ratio.

Gene LogRank HR Gene Class
Immune
Response
Category

Annotation

CCL13 0.0051 0.5856
Immune

Response-Cell
Type specific

Chemokines Cell Type specific, Chemokines and
receptors, Inflammatory response

CCL23 0.0113 0.7450 Immune Response Chemokines,
Regulation

Chemokines and receptors, Regulation of
Inflammatory response

CCL26 0.0152 0.8097 Immune Response Chemokines Chemokines and receptors,
Inflammatory response

CCL18 0.0158 0.8412 Immune Response Chemokines Chemokines and receptors,
Anti-inflammatory cytokines

TRAP 0.0284 0.3845 Immune Response Innate immune response

FCER2 0.0328 0.8044 Immune Response Adaptative immune response, CD
molecules, Inflammatory response

CCL24 0.0346 0.7381 Immune Response Chemokines.
Regulation

Chemokines and receptors, Regulation of
Inflammatory response

CD209 0.0349 0.5643
Immune

Response-Cell
Type specific

Cell Functions Basic cell functions, Cell Type specific,
CD molecules

LILRB3 0.0370 0.7764 Immune Response Regulation CD molecules, Regulation of
immune response

The nine-gene prognostic signature was tested in the validation set. Patients were
ranked based on their score and divided into high-risk and low-risk groups. Kaplan–Meier
analysis confirmed a significant difference among the two cohorts, as reported in the
discovery set (p value < 0.001). (Figure 1B).
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Figure 1. Survival analysis of MF cases. Overall survival curves according to the nine-gene prognostic
signature showing significant differences in outcome between high-risk (high score in light blue) vs.
low-risk cases (low score in red) in: (A) discovery set cases; (B) validation set cases; (C) early stage
MF (IA-IIA); (D) advanced-stage MF (IIB-IVA2). p-values were calculated with the log-rank test.

Hence, to evaluate the robustness of our signature we divided early-stage cases
and advanced-stage cases from both the discovery and validation sets, and we analyzed
them using the nine-gene prognostic signature. As shown in Figure 1C,D, the nine-gene
prognostic signature significantly recognized high-risk and low-risk patients also in early
or advanced MF groups.

3.2. The Low-Risk vs. High-Risk MF Patients Presented a Tumor Immune Microenvironment
(TIME) with a Prominent Activation of Cytokine Signaling Pathway and Enrichment of Dendritic
Cells and Mast Cells

We conducted a differential expression analysis of low-risk vs. high-risk discovery set
patients and found 42 DEGs, all up-regulated but one, supporting a global up-regulation
of immune response in low-risk MF patients with a more favorable outcome (Table S1).
Next, we interrogated the identified 42 DEGs by functional analysis and found that the
cytokine–cytokine receptor interaction was the pathway most significantly activated in
low-risk MF cases (Figure 2A). We also interrogated the validation set and found 162 DEGs,
134 up- (82.7%) and 28 down-regulated genes (17.3%) (Table S2). The cytokine–cytokine
receptor interaction resulted to be the biological pathway mostly represented in low-risk
vs. high-risk cases, confirming the discovery set findings. (Figure 2B).
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Figure 2. Tumor immune microenvironment analysis. (A) The bar chart displays the top 10 Kegg
biological pathways significantly enriched in low-risk vs. high-risk MF cases of discovery set. The
pathways, colored in light blue, are displayed based on the −log10 (p value), from the most enriched
to the lowest one (p value adjusted <0.05); (B) the top 10 Kegg biological pathways significantly
enriched in low-risk vs. high-risk MF cases of validation set; (C) box plots show a higher infiltration
of mast cells in low-risk vs. high-risk cases in discovery set as well as in (D) validation set; (E) box
plots illustrate the higher level of dendritic cells in low-risk vs. high-risk cases in discovery set,
namely Disc_low and Disc_High and also in (F) validation set, namely Val_Low and Val_High.
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Next, to assess if specific immune cell types of TIME may be associated with the clinical
outcome of MF patients, we performed the cell-type profiling of low-risk vs. high-risk
MF cases of the discovery set. We detected a higher infiltration of dendritic cells (DCs),
CD8 T-cells and mast cells (MCs) in low-risk vs. high-risk cases. (p value ≤ 0.05 via the
Mann–Whitney Test). We also conducted the cell type profiling analysis in the validation
set, confirming that low-risk cases are significantly enriched in DCs and MCs, possibly
involved in the inflammatory, cytokine-mediated response (Figure 2C,D).

4. Discussion

In this study, we developed a nine-gene prognostic signature able to discriminate
at diagnosis MF patients with a better or worse clinical outcome, namely low-risk and
high-risk MF patients, regardless of their clinical stage.

Compared to other nodal lymphomas, a standardized prognostic index for MF is
still not available, because of its rarity and heterogeneity. Stage remains the strongest
prognostic factor, though other clinical and histological markers have been validated, such
as age, gender, folliculotropism, and CD30 expression, but none of them are able to predict
which early-stage patients can evolve to late stages [2,3,11] In recent years, numerous
genomic alterations have been found with a potential diagnostic and prognostic purpose.
It is well-known that genomic instability is typical of advanced stages with aggressive
course [3]. Litvinov et al. [12] stratified patients with CTCL into three prognostic groups,
based on targeted gene expression profiles. Authors were able to identify genes more
frequently expressed in a favorable disease course (such as WIF1) compared to those in
patients with a poor prognosis (such as IL17F). Shin et al. [13] grouped CTCL patients
based on gene expression, regardless of the stage, finding that the cluster with worse
prognosis and therapy-resistant disease showed an up-regulation of genes involved in
lymphocyte activation and inflammation. MiR-155 and miR-200 b were also significantly
associated with patient overall survival and were considered valid predictors for patient
clinical outcomes [14].

Recently, the role of the TIME has been found to be critical in regulating tumor
cell migration and proliferation and influencing disease progression, opening up the
possibility of using new therapeutic approaches targeting the non-tumoral components of
the microenvironment.

In view of these findings, we decided to analyze, at the transcriptional level the TIME
of MF, in search of immune molecular markers capable of predicting the disease progression
and clinical outcome of MF patients, at diagnosis.

Thanks to our multi-stage bioinformatics approach, we have developed a nine-gene
prognostic signature capable of recognizing high- and low-risk MF cases at diagnosis.

As reported by functional enrichment analysis, low-risk cases have been found to
have a more inflamed TIME, predominantly enriched in cytokines, known to regulate the
migration and recruitment of immune cells into and out of the tissue and to guide the spatial
organization and cellular interactions of immune cells within tissues. As is already known,
the cytokines may exert opposite functions by triggering an anti-tumor immune response
in some contexts or, alternatively, may contribute to chronic inflammation and immune
escape inducing tumor growth [15]. The nine-gene prognostic signature included different
genes encoding for cytokines or chemokines involved in the recruitment of inflammatory or
cancer-associated cells and reported as dysregulated in hematological and/or solid cancers.
CCL13 and CCL23 are chemoattractant for various cells of the immune systems, including
DCs and MCs [16–18]. CCL23 has been also reported to participate in the recruitment
of cancer-related cells and its decrease is associated with shortened patient survival in
solid tumors [18]. CCL18 is chemo-attractive for T cells, B cells, and immature DCs. Its
expression is reported in MF, but it has not been determined whether CCL18 has a positive
or negative effect on the development of CTCL in vivo [19].
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In our study, cell type profiling analysis also confirmed that the skin microenvironment
of low-risk MF has a higher density of different immune cell types, such as DCs and MCs,
compared to high-risk MF.

MCs do not have a well-known role in tumor growth. In solid tumors as well as
hematological neoplasms, a high count of MCs has been correlated with both progression
and good prognosis [20]. Regarding CTCL, MCs are significantly increased in CTCL
lesions compared to normal skin but data about their role are few and contradictory.
Rabenhorst et al. [21] demonstrated a pro-tumorigenic activity and correlation with a higher
microvessel density. On the other hand, Eder et al. [20] found a greater predominance of
MCs in early stages compared to late-stage CTCL.

Regarding DCs, they are antigen-presenting cells which are involved in immune
activation in inflammatory benign lesions as well as in malignant lymphoid proliferations.
There are three types of cutaneous DCs: Langerhans cells, plasmacytoid DCs, and dermal
DCs, which represent the majority of DCs in CTCL infiltrate [22]. In our study both MC
and DCs associated with a better clinical course, but given their debating role in CTCL,
further studies are needed to corroborate our findings.

Although our TIME-based prognostic signature was validated in independent cohorts
to predict tumor prognosis, this study has some limitations. Because of the retrospective
design, the results were biased to some extent, and, despite the rarity of the disease, the
number of samples is small. Thus, a well-designed, prospective, international, multicenter
study is needed to verify our findings prospectively. A further contribution for better
understanding the relationships between TIME and neoplastic cells may be provided by
the new technologies allowing single-cell analysis in FFPE tissue sections.

5. Conclusions

In conclusion, for the first time, we have found a TIME-related prognostic signature
in MF patients. The results presented here are promising because they not only help to
identify at diagnosis patients at high risk of progression, notwithstanding the clinical stage,
but also point to new clinical applications for personalized therapy in patients with MF.
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