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ABSTRACT

Context. The peculiar velocity distribution of cluster member galaxies provides a powerful tool to directly investigate the gravitational
potentials within galaxy clusters and to test the gravity theory on megaparsec scales.
Aims. We exploit spectroscopic galaxy and galaxy cluster samples extracted from the latest releases of the Sloan Digital Sky Survey
(SDSS) to derive new constraints on the gravity theory.
Methods. We considered a spectroscopic sample of 3058 galaxy clusters, with a maximum redshift of 0.5 and masses between
1014−1015 M�. We analysed the velocity distribution of the cluster member galaxies to make new measurements of the gravitational
redshift effect inside galaxy clusters. We accurately estimated the cluster centres, computing them as the average of angular positions
and redshifts of the closest galaxies to the brightest cluster galaxies. We find that this centre definition provides a better estimation of
the centre of the cluster gravitational potential wells, relative to simply assuming the brightest cluster galaxies as the cluster centres,
as done in past literature works. We compared our measurements with the theoretical predictions of three different gravity theories:
general relativity (GR), the f (R) model, and the Dvali–Gabadadze–Porrati (DGP) model. A new statistical procedure was used to fit
the measured gravitational redshift signal, and thus to discriminate among the considered gravity theories. Finally, we investigated the
systematic uncertainties that possibly affect the analysis.
Results. We clearly detect the gravitational redshift effect in the exploited cluster member catalogue. We recover an integrated gravi-
tational redshift signal of −11.4 ± 3.3 km s−1, which is in agreement, within the errors, with past literature works.
Conclusions. Overall, our results are consistent with both GR and DGP predictions, while they are in marginal disagreement with the
predictions of the considered f (R) strong field model.
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1. Introduction

The Λ-cold dark matter (ΛCDM) model is currently considered
the standard cosmological framework and provides a satisfactory
description of the Universe on the largest scales (Amendola et al.
2018; Planck Collaboration VI 2020). Einstein’s theory of gen-
eral relativity (GR) is the foundation of all the equations
that describe how the Universe evolves and the formation of
the cosmic structures we can observe today. During the past
few years, GR has been systematically tested both on small
and large cosmological scales (see e.g. Beutler et al. 2014;
Moresco & Marulli 2017, and references therein), though cur-
rent measurements are not accurate enough to discriminate
among the many alternative theories of gravity that have been
proposed to explain the accelerated expansion of the Universe
and the growth of cosmic structures.

Clusters of galaxies are the most massive virialised structures
in the Universe. Thanks to their high masses and deep gravita-
tional potentials, it is possible to test GR on the scales of these
large structures by measuring the gravitational redshift through

the peculiar velocity distribution of cluster member galaxies
(Cappi 1995; Kim & Croft 2004).

The first detection of the gravitational redshift effect in
galaxy clusters was made by Wojtak et al. (2011) using data
from the seventh data release (DR7) of the Sloan Digital Sky
Survey (SDSS, Abazajian et al. 2009) and the Gaussian Mix-
ture Brightest Cluster Galaxy (GMBCG) sample (Hao et al.
2010). Wojtak et al. (2011) measured the gravitational red-
shift signal up to 6 Mpc from the cluster centre, which was
assumed to be coincident with the brightest cluster galaxy
(BCG) position. Their measurements were in agreement with
both GR and f (R) theories. Similar analyses have been per-
formed by Jimeno et al. (2015) and Sadeh et al. (2015) using
SDSS DR10 data (Ahn et al. 2014). These authors, differ-
ently from Wojtak et al. (2011), included in their theoretical
model the effects described in Kaiser (2013). In particular,
Jimeno et al. (2015) measured the gravitational redshift signal
up to 7 Mpc from the cluster centre, analysing three differ-
ent cluster catalogues: the GMBCG, the sample described in
Wen et al. (2012, WHL12), and the RedMaPPer cluster sample
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(Rykoff et al. 2014). The gravitational redshift effect was mea-
sured both as a function of the distance from the cluster cen-
tre and as a function of the cluster masses. Jimeno et al. (2015)
detected a significant signal in the GMBCG and RedMaP-
Per samples, while the measurements in the WHL12 sample
were not in agreement with theoretical expectations. The latest
attempt was carried out by Mpetha et al. (2021), who analysed
the SPectroscopic IDentification of ERosita Sources (SPIDERS,
Clerc et al. 2020) survey. In particular, they considered three dif-
ferent definitions of the cluster centre: the BCG position, the
redMaPPer identified central galaxies, and the peak of the X-
ray emission. With all the three centre definitions, they obtained
a clear detection of the gravitational redshift, but their results
could not discriminate between GR and f (R) predictions.

Our work aims to update and improve these past analyses
by exploiting the new galaxy data released by the SDSS DR16
(Ahumada et al. 2020) and the new galaxy cluster sample pro-
vided by Wen & Han (2015, WH15). We refined the measure-
ment method and the theoretical model to improve the accuracy
of the analysis. Thanks to these improvements, we were able
to reduce the measurement errors by about 30% with respect
to the works of Sadeh et al. (2015) and Mpetha et al. (2021),
up to a distance of almost 3 Mpc from the cluster centres. The
huge number of measured redshifts inside our sample allowed
us to perform an accurate Bayesian analysis, imposing new con-
straints on GR on megaparsec scales.

The paper is organised as follows. In Sect. 2 we introduce the
analysed cluster catalogue and the SDSS DR16 galaxy sample,
while in Sect. 3 we describe the new cluster member catalogue
that we constructed for this analysis. In Sect. 4 we present the
theoretical predictions on the galaxy line-of-sight velocity distri-
bution offsets as a function of the distance from the cluster centre
in three different gravity theories. The method used to measure
this statistic from the observed galaxy redshifts is described in
Sect. 7. In Sect. 8 we present the main results of our work. In
Sect. 9 we conclude with closing remarks and future prospects.
Finally, in Appendix A we describe the analysis of the system-
atic uncertainties affecting our measurements.

In this work all the cosmological calculations were per-
formed assuming a flat ΛCDM model, with Ωm = 0.3153
and H0 = 67.36 km s−1 Mpc−1 (Planck Collaboration VI 2020,
Paper VI: Table 2, TT,TE,EE+lowE+lensing,). The whole cos-
mological analysis was performed with the CosmoBolognaLib
(CBL, Marulli et al. 2016), a large set of ‘free software’
C++/Python libraries that provides an efficient numerical envi-
ronment for statistical investigations of the large-scale struc-
ture of the Universe. The new likelihood functions for fitting
the velocity distributions and computing GR and the alternative
gravity theory predictions, will be released in the forthcoming
public version of the CBL.

2. Data

2.1. The cluster sample

In this work we exploit the galaxy cluster sample described in
Wen & Han (2015), which is an updated version of the WHL12
cluster catalogue. The WHL12 sample was built using the SDSS-
III photometric data (SDSS DR8, Aihara et al. 2011). The method
used to identify the galaxy clusters was based on a ‘friend-of-
friend’ algorithm. In practice, a cluster was identified if more
than eight member galaxies, with an r-band absolute magnitude
smaller than −21, were found within a radius of 0.5 Mpc and
within a photometric redshift range of 0.04(1 + z). After that,

the BCG was recognised among the cluster members and it was
taken as the cluster centre. WHL12 calculated the total luminosity
within a radius of 1 Mpc, L1 Mpc, then by using a scaling relation
between L1 Mpc and the cluster virial radius r200, they computed
r200. The total luminosity within the r200 radius and the cluster
richness were eventually computed. The optical richness, RL200,
was used as a proxy for the cluster mass, M200, within r200.

In the WH15 catalogue, the cluster masses have been recal-
ibrated. Specifically, WH15 exploited new cluster mass estima-
tions from X-ray and Sunyaev–Zeldovich effect measurements
to recalibrate the richness-mass relation within the redshift range
0.05 < z < 0.75. The calibrated relation can be expressed as
follows:

log(M500) = 14 + (1.08 ± 0.02) log(RL500) − (1.37 ± 0.02), (1)

where M500 and RL500 are the mass and the optical richness
within r500

1, respectively. By using the spectroscopic data of the
SDSS DR12 (Alam et al. 2015), the authors also extended the
number of clusters with spectroscopic redshifts.

The final sample includes the data of BCG angular posi-
tions and redshifts of 132 684 clusters within the redshift range
0.05 ≤ z ≤ 0.8. The identified clusters have an average redshift
of 〈z〉 = 0.37, an average mass of 〈M500〉 = 1.4 × 1014 M�, and
an average radius of 〈r500〉 = 0.67 Mpc. The authors claimed that
this sample is almost complete in the redshift range 0.05 ≤ z <
0.42 and for masses above 1014 M�.

2.2. The spectroscopic galaxy samples

We exploited the galaxy coordinates and spectroscopic red-
shifts derived from SDSS DR16 (Ahumada et al. 2020). Specif-
ically, we analysed the data collected by the Baryon Oscil-
lation Spectroscopic Survey (BOSS, Dawson et al. 2013), the
Extended Baryon Oscillation Spectroscopic Survey (eBOSS,
Dawson et al. 2016), and the Legacy Survey obtained as part
of the SDSS-I and SDSS-II programmes (York et al. 2000).
Although the spectroscopic data and the sky coverage of the
galaxy samples have remained unchanged during the past years,
the imaging and the spectroscopic pipelines have been improved
in subsequent SDSS data releases. Therefore, in this work we
used the data of the latest release.

The Legacy Survey covers a total sky area of 8032 deg2

and it is composed of two galaxy samples: the ‘Main sample’,
a magnitude-limited sample of galaxies with a mean redshift
of z ' 0.1 (Strauss et al. 2002) and the ‘luminous red galax-
ies’ (LRGs) sample, a volume-limited sample up to z ' 0.4
(Eisenstein et al. 2001).

Within the Legacy Survey, we selected the galaxies with
the most reliable spectra and the lowest redshift errors. Specif-
ically, we selected the objects in the catalogue that had the fol-
lowing flags2: SPECPRIMARY equal to 1, CLASS ‘Galaxy’,
ZWARNING equal to 0, 4, or 16, ZERR less than 6 × 10−4, and
Z between 0.05 and 0.75 included. These selections were applied
to avoid multiple entries of the same object in the final catalogue,
and to include only those galaxies with reliable spectroscopic
redshift measurements. Moreover, we selected the redshift range
where the richness-mass relation of the cluster sample had been
calibrated. We found almost 760 000 galaxies within the Legacy
Survey that were useful for our analysis.
1 r500 is the radius where the cluster density is equal to 500 times the
Universe critical density.
2 The official SDSS DR16 website (https://www.sdss.org/
dr16/) provides a detailed description of the flags in the spectroscopic
catalogues.
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Table 1. Summary of the considered selections on the galaxy sample.

Flag Selection Justification

SPECPRIMARY 1 Select unique objects
CLASS “Galaxy” Select only galaxies
ZWARNING 0, 4, 16 Good spectral fit
Z 0.05 < z < 0.75 Richness-mass relation
ZERR <6 × 10−4 Accurate redshifts

Fig. 1. Redshift distribution of the selected galaxies. The blue histogram
represents the galaxy redshift distribution of the Legacy Survey, while
the red histogram shows the distribution of BOSS and eBOSS.

BOSS is part of the six-year SDSS-III programme, which
obtained the spectroscopic redshifts of about 1.5 million LRGs
out to a redshift of almost 0.7. We also included data from the
eBOSS, which collected the spectroscopic redshifts of LRGs,
emitting luminous red galaxies (eLRGs), and quasars (QSO), up
to z = 3.5. We selected galaxies from these surveys using simi-
lar flags3 to the Legacy Survey case. We considered objects that
had the flag SPECPRIMARY equal to 1 and we selected those
that had CLASS_NOQSO equal to ‘Galaxy’. We considered the
galaxies with the most reliable redshift estimations by select-
ing those that had the flag ZWARNING_NOQSO equal to 0, 4,
or 16, and the flag ZERR_NOQSO less than 6 × 10−4. Finally,
we selected the galaxies with redshift between 0.05 and 0.75 by
using the flag Z_NOQSO. These selections were applied for the
same reasons explained previously for the Legacy Survey. We
found about 1.9 million galaxies useful for our analysis within
BOSS and eBOSS.

Table 1 shows the selections we made on the galaxy sample.
Figure 1 shows the redshift distribution of the galaxies

inside the exploited sample. The mean galaxy redshift within the
Legacy Survey is z ' 0.16, while BOSS and eBOSS galaxies
have a mean redshift of z ' 0.48.

3. Searching for cluster member galaxies

To recover the signal of the gravitational redshift effect, it is nec-
essary to calculate the distribution of the galaxy line-of-sight
velocity offsets, ∆ (see Sect. 4), as a function of the distance

3 The flags that end with _NOQSO are specific for the BOSS and
eBOSS galaxies. The description of the flags and their meaning are the
same as in the Legacy Survey.

from the cluster centre. We constructed a new catalogue of clus-
ter member galaxies by cross-correlating the WH15 cluster cat-
alogue, described in Sect. 2.1, with the public spectroscopic
galaxy data, described in Sect. 2.2. Then we computed the pro-
jected transverse distance, r⊥, and the ∆ of all the galaxies with
respect to each cluster centre. We define the latter as the mean
value of the angular positions and redshifts of the closest galax-
ies to the BCG, considering objects having a transverse distance
smaller than r500 from the BCG. Below we explain in details how
we selected our data set.

The WH15 sample provided the BCG angular positions of
the identified clusters. However, most of the BCGs did not have a
spectroscopic redshift measurement. Thus, to increase the num-
ber of the available spectroscopic BCGs, we cross-matched the
cluster samples with the considered galaxy catalogue. We took
into account the fact that, according to the SDSS specifications,
two galaxies are considered the same object if they are closer
than 3 arcsec in the Legacy Survey case, and 2 arcsec in the
BOSS and eBOSS cases. Thus, we considered the cluster mem-
ber galaxies only inside clusters that had the BCG identified
in the galaxy sample described in Sect. 2.2. The advantage of
doing so is that we increased the statistics of the cluster samples,
and we made sure that we only analysed clusters that had reli-
able spectroscopic redshift measurements for their BCGs. From
the cross-matching of the WH15 catalogue and the SDSS data,
we obtained 85 588 clusters with a spectroscopic BCG identi-
fication; 47 779 of these had the BCG identified in BOSS and
eBOSS, while the other 37 809 clusters had the BCG identified
in the Legacy Survey.

Once we had identified the cluster BCGs, we searched for
the closest galaxies to define a new cluster centre. To do this,
we computed the projected transverse distances, r⊥, and the
line-of-sight velocities of all the SDSS galaxies with respect to
the BCGs. We kept the galaxies that lay within r⊥ < r500 and
|∆| < 2500 km s−1 from the BCGs. For each cluster in our sam-
ple, we computed the average value of the redshifts and angu-
lar positions of the selected galaxies, including the BCG, and
we defined these averages as the new cluster centres. It should
be noted that this centre definition has never been used in past
literature works to measure the gravitational redshift in galaxy
clusters. Instead, it was always assumed that the cluster centre
coincides exactly with the BCG position (Wojtak et al. 2011;
Sadeh et al. 2015; Jimeno et al. 2015). We find instead that the
average of the member galaxy positions provides a more reliable
location of the centre than the BCG, because the BCG could be
misidentified due to the surface brightness modulation effect. In
fact, peculiar velocities can change the ranking of the two cluster
brightest galaxies. In order to investigate the impact of assuming
the average galaxy positions as the centre of the cluster potential
wells, we compared our results to the results obtained by instead
assuming the BCG as the cluster centre. We find that the mea-
surements are in substantial disagreement with the theoretical
predictions in the BCG centre case, showing positive values of
the mean of the galaxy velocity distribution for r⊥ < 2r500. Simi-
lar results were obtained by Jimeno et al. (2015) when analysing
the WHL12 cluster sample. The detailed description of the anal-
ysis we carried out assuming the BCG as the cluster centre is
presented in Appendix A.1.

Once we had defined the cluster centre, we re-selected the
cluster member galaxies. We considered a galaxy to be a clus-
ter member if it lay within a separation of r⊥ < 4 r500 and
|∆| < 4000 km s−1 from the cluster centre. We adopted a lower
limit in the transverse distance, which was about half the size
considered in past literature works, in order not to depart too
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Table 2. Summary of the considered selections on the cluster sample.

Selection Justification

Redshift z < 0.5 High purity
Mass M500 > 1.5 × 1014 M� High signal
N◦ of members ≥ 4 High purity
N◦ of members Accurate
to compute ≥ 3 Cluster centre
the centre Determination

much from the cluster virialised region. On the other hand, this
was the same selection threshold on the galaxy line-of-sight
velocity adopted in Wojtak et al. (2011) and Sadeh et al. (2015).
Hence, we created a cluster member catalogue, given the galaxy
position average described above as the centre, and we retrieved
the galaxy line-of-sight velocity distribution4. It should be noted
that the galaxies that had |∆| between 3000 km s−1 and 4000 km
s−1 were considered as either foreground or background galax-
ies, which were not gravitationally bound to any cluster. Never-
theless, we also included these galaxies to correct the velocity
distribution of the galaxies that effectively lay within the cluster
gravitational potential well, as described in Sect. 7.1.

Before proceeding with the measurement of the gravitational
redshift, we made some further selections on the cluster member
catalogue. Firstly, we discarded the clusters that had a redshift
above 0.5. We made this selection in order to avoid the red-
shift range where the probability of a false cluster identification
was higher than about 5%, as estimated in WHL12 and WH15.
Moreover, with this selection we restricted the analysis to a red-
shift range where the impact of possibly incorrect cosmologi-
cal model parameters was less significant (see e.g. Wojtak et al.
2011). Then, we considered only the clusters that had at least
four associated galaxies, and where the average centre was com-
puted using data of at least three galaxies, including the BCG.
We considered this selection in order to be conservative, consid-
ering only the clusters that had their centres estimated with a suf-
ficient number of galaxies. When the cluster mass increases, the
gravitational redshift effect becomes stronger and the probability
of having a cluster false identification decreases. Moreover, the
galaxy line-of-sight velocity offsets measured in low-mass clus-
ters are more affected by the galaxy peculiar velocities than in
high-mass clusters (Kim & Croft 2004). To minimise these pos-
sible sources of systematic uncertainties, we selected the clus-
ters that had a mass above 1.5 × 1014 M�. The effects of all
these selections are discussed in Appendix A.2. Finally, we dis-
carded the configurations in which Legacy Survey and BOSS-
eBOSS spectra were mixed together, that is to say, the cluster
member galaxies (comprising the BCGs) of the Legacy clus-
ter sample were selected only from the Legacy spectroscopic
galaxy sample, while those of the BOSS-eBOSS cluster sample
were selected only from the BOSS-eBOSS galaxy sample. We
made this choice because the mixed configurations tend to sup-
press the gravitational redshift signal for small values of trans-
verse distances, as demonstrated by Sadeh et al. (2015). It should
be noted that all these conservative selections were possible
thanks to the high statistics of the galaxy and cluster samples we
analysed.

Table 2 shows the selections we made on the cluster sample.

4 We included the BCG in the galaxy sample when we calculated the
velocity distribution of the cluster member galaxies.

Fig. 2. Redshift (top panel) and mass distribution (bottom panel) of the
selected cluster sample. The solid blue histograms represent the distri-
butions of all WL15 clusters within the redshift and mass ranges where
the richness-mass relation was calibrated. The yellow histograms show
the distributions of the clusters with mass above 1.5 × 1014 M�, while
the green histograms show the distributions of the clusters with z < 0.5.
The dashed purple histograms show the distributions of the clusters that
have at least four associated galaxies. Finally, the red histograms repre-
sent the distributions of the final selected cluster sample.

The final selected sample consisted of 3058 galaxy clusters
and 49 243 associated member galaxies. The average redshift is
〈z〉 = 0.25 and the average mass was 〈M500〉 = 2.75 × 1014 M�.
The number of galaxy clusters in our sample was similar to the
one of Jimeno et al. (2015). However, we selected the cluster
member galaxies using an upper transverse distance limit, which
was half the size of the one used in that work. Moreover, to min-
imise the problems created by the false cluster identification, we
applied more conservative selections. The average redshift of our
sample was similar to the redshifts of the samples analysed by
Wojtak et al. (2011) and Jimeno et al. (2015), while we selected
clusters with higher masses on average.

Figure 2 shows the redshift and mass distributions of the
WH15 clusters within the redshift and mass ranges where the
richness-mass relation was calibrated, that is 0.05 < z < 0.75
and 3 × 1013 M�. The figure also shows the resulting distribu-
tions after each selection was applied individually, and the final
selected sample analysed in this work.
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Fig. 3. Angular maps around four galaxy clusters of the selected sample. The black points represent the cluster member galaxies, while the red
squares show the positions of the field galaxies. The gold diamond shows the cluster centres and the cyan star represents the cluster BCGs. The
dashed green circle indicates the cluster r500 radii. The arrows show the galaxy line-of-sight velocities with respect to the cluster centres. The
arrows pointing upwards (downwards) represent positive (negative) velocities. The objects are representative examples of four different cluster
types: a low-redshift massive cluster with a large number of identified galaxy members (top left panel); a high-redshift small cluster, though with
a sufficient number of members (top right panel); an isolated cluster with only a few identified members (bottom left panel); and two small close
clusters (bottom right panel).

Figure 3 shows the angular maps around four galaxy clusters
of the final selected sample analysed in this work. Both member
and field galaxies are shown, along with their line-of-sight veloc-
ities. The objects are representative examples of four different
cluster types: a low-redshift massive cluster with a large num-
ber of identified galaxy members; a high-redshift small cluster
though with a sufficient number of members; an isolated cluster
with only a few identified members; and two small close clusters.
It should be noted that the BCG positions are not always near to
the cluster centres identified by the galaxy member positions.

4. Predicting gravitational redshift in different
gravity theories

Gravity theories, overall, predict that photon frequencies are red-
shifted by a gravitational field. When a photon with wavelength
λ is emitted inside a gravitational potential φ, it loses energy

when it climbs up in the gravitational potential well, and is con-
sequently redshifted. The gravitational redshift, zg, observed at
infinity in the weak field limit, can be expressed as follows:

zg :=
∆λ

λ
'

∆φ

c2 , (2)

where ∆λ and ∆φ are, respectively, the wavelength and the
potential differences between the positions where the photon is
emitted and where it is observed.

If we consider a galaxy, which resides inside a cluster, as a
source of photons, the measurement of the total observed galaxy
redshift, zobs, is the sum of different effects, where the main com-
ponents are the following: the cosmological redshift, zcosm, the
peculiar redshift, caused by the motion of the galaxy within the
cluster, zpec, and the gravitational redshift, zg:

ln(1 + zobs) = ln(1 + zcosm) + ln(1 + zpec) + ln(1 + zg) . (3)
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We used differences in the logarithm of the redshifts, as previ-
ously done by Mpetha et al. (2021). Baldry (2018) demonstrated
that this provides a better approximation of the galaxy line-of-
sight velocity, with respect to assuming z = v/c. The gravita-
tional redshift depends on the cluster gravitational potential, and
thus on the mass distribution around the galaxy. For a typical
cluster mass of 1014 M�, the gravitational redshift is estimated
to be czg ' 10 km s−1 (Cappi 1995; Kim & Croft 2004), which
is about two orders of magnitude smaller than the peculiar red-
shift. The tiny effect of the gravitational redshift can be detected
only when the number of analysed galaxies is large enough,
that is Ngal & 104 (Zhao et al. 2013). Therefore, stacked data of
large samples of clusters and cluster member galaxies are neces-
sary to measure the gravitational redshift effect with reasonable
accuracy.

To disentangle the gravitational redshift from the other com-
ponents, we measured the distribution of the galaxy line-of-
sight velocities in the cluster reference frame (Kim & Croft
2004). The line-of-sight velocity offset is defined as follows
(Mpetha et al. 2021):

∆ := c [ln(1 + zobs) − ln(1 + zcen)] , (4)

where zcen is the redshift of the cluster centre. By construction,
the line-of-sight velocity offset does not depend on the cosmo-
logical redshift component, which is the same in the two terms
of Eq. (4), and thus it cancels out. The ∆ distribution of all the
galaxy cluster members can be modelled as a quasi-Gaussian
function with a non-zero mean velocity, ∆̄. The value of ∆̄
depends on the spatial variation of the gravitational potential.
This effect is present also in the most popular alternative theo-
ries of gravity, which aim to modify GR, possibly explaining the
Universe accelerated expansion without a dark energy compo-
nent. Thus, the value of the ∆ distribution mean is the quantity
of interest in this study. Specifically, we focus on the dependence
of ∆̄ on the distance from the cluster centre.

4.1. General relativity

The distribution of line-of-sight velocity offsets between clus-
ter member galaxies and their host cluster centre, defined in
Eq. (4), is expected to have an average value that is blueshifted
(Cappi 1995; Kim & Croft 2004). In fact, photons experience
the largest gravitational redshifting at the minimum of the clus-
ter potential wells, and the gravitational redshift effect decreases
towards the cluster outskirts, as the gravitational potential well
decreases as well. Therefore, comparing the redshift of the clus-
ter centre with the redshifts of member galaxies gives the net
result of a blueshift. For a single galaxy, the gravitational red-
shift, expressed as a velocity offset, is given by:

∆ =
φ(0) − φ(r)

c
, (5)

where r is the distance from the cluster centre. Generally, only
the projected distance from the cluster centre, r⊥, is known with
sufficient accuracy. Thus, to compute the gravitational redshift
signal, the density along the line of sight to that distance has to
be integrated along with the potential difference.

In this work we assumed that the cluster density pro-
file follows the Navarro-Frank-White radial profile (NFW,
Navarro et al. 1995). Moreover, we used the projected distance
from the centre of the cluster in units of r500, because scaling the
separation between galaxies and the associated cluster centres
takes advantage of the cluster self-similarity. Moreover, stacking

data by considering comoving distances is not ideal, as clusters
can have a large range of sizes, and therefore different masses
and densities at the same distance from the centre. The NFW
density profile of a cluster, in units of its radius r500, can be
expressed as follows (Łokas & Mamon 2001):

ρ(r̃) =
M500c2

500g(c500)

4πr3
500r̃(1 + c500r̃)2

, (6)

where r̃ := r/r500, c500 is the cluster concentration parameter
defined as c500 := r500/rs, rs is the so-called scale radius of the
cluster, and the function g(c500) can be expressed as follows:

g(c500) =

[
ln(1 + c500) −

c500

1 + c500

]−1

. (7)

The gravitational potential, associated with the density distribu-
tion given by Eq. (6), results in:

φ(r̃) = −g(c500)
GM500

r500

ln(1 + c500r̃)
r̃

. (8)

Hence, under these assumptions, the gravitational redshift for
a single cluster (i.e. the mean of the cluster member galaxies
velocity distribution) can be written as follows:

∆̄c,gz(r̃⊥) =
2r500

cΣ(r̃⊥)

∫ ∞

r̃⊥

[
φ(0) − φ(r̃)

] ρ(r̃)r̃dr̃√
r̃2 − r̃2

⊥

, (9)

where r̃⊥ is the projected distance from the centre of the cluster
in units of r500. Σ(r̃⊥) is the surface mass density profile com-
puted from the integration of the NFW density profile along the
line of sight:

Σ(r̃⊥) = 2r500

∫ ∞

r̃⊥

ρ(r̃)r̃√
r̃2 − r̃2

⊥

dr̃. (10)

Here we are assuming that a stacked sample of many clusters
exhibits spherical symmetry, even though it is not often the case
for a single cluster (Kim & Croft 2004). Following Wojtak et al.
(2011), the gravitational redshift signal for a stacked cluster sam-
ple can be calculated by convolving the gravitational redshift
profile for a single cluster with the cluster mass distribution. This
operation can be expressed as follows:

∆̄gz(r̃⊥) =

∫ Mmax

Mmin
∆c,gz(r̃⊥)Σ(r̃⊥)(dN/dM500)dM500∫ Mmax

Mmin
Σ(r̃⊥)(dN/dM500)dM500

. (11)

Equation (11) can be used to compute the gravitational redshift
effect for a stacked cluster sample as a function of the projected
radius.

Equation (11) is valid in any theory of gravity, although dif-
ferent theories predict different gravitational accelerations expe-
rienced by photons within the clusters. In particular, in alter-
native gravity theories, the Newtonian constant G is usually
replaced by a function of the cluster radius.

In the following sections, we describe the gravitational
acceleration as a function of the cluster radius, g(r), pre-
dicted by two different gravity theories: the f (R) model (see
Sotiriou & Faraoni 2010, for a complete review) and the Dvali–
Gabadadze–Porrati model (DGP, Dvali et al. 2000). These two
alternative gravity theories appreciably modify the gravity inter-
action on the largest scales to reproduce the Universe accel-
erated expansion, but restore GR locally, satisfying all current
constraints if their parameters are properly adjusted.
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4.2. The f(R) gravity model

In GR, the Einstein-Hilbert action, S , which is the integral of the
Lagrangian density over the space-time coordinates, describes
the interaction between matter and gravity and can be expressed
as follows:

S =

∫
d4x
√
−g

 M2
pl

2
(R − 2Λ) + Lm

 , (12)

where Mpl =
√

1/8πG is the reduced Planck mass, R is the Ricci
scalar, Lm is the matter Lagrangian, and g is the Friedmann–
Lemaître–Robertson–Walker metric determinant.

Starobinsky (1980) demonstrates that it is possible to modify
Eq. (12) to describe a consistent gravity theory as follows:

S =

∫
d4x
√
−g

 M2
pl

2
(R − f (R)) + Lm

 , (13)

where the cosmological constant is replaced by a function of the
Ricci scalar, f (R), which is an unknown function. f (R) models
are scalar-tensor theories, where the scalar degree of freedom is
given by fR ≡ d f /dR, which mediates the relation between den-
sity and space-time curvature. The theory is stable under pertur-
bations if fR < 0. The Starobinsky (1980) model is constructed
to reproduce the properties of the ΛCDM framework on linear
scales. Moreover, GR is restored on the smallest scales, thus ful-
filling local constraints.

Schmidt (2010) showed that in the strong field scenario,
| fR0| = 10−4, the f (R) theory predicts a 4/3 enhancement of
the gravitational force for all halo masses, that is G f (R) = 4/3G.
Thus, the gravitational potential, given by Eq. (8), is significantly
enhanced, and the gravitational redshift effect, given by Eq. (9),
is consequently stronger than in GR. Following Wojtak et al.
(2011) and Mpetha et al. (2021), in this work we considered the
f (R) theory in this strong field scenario. Although the strong
field scenario has been already excluded by different observa-
tions (e.g. Terukina et al. 2014; Wilcox et al. 2015), we con-
sidered this model as comparison because its predictions are
significantly enough different from GR to be detectable with cur-
rent gravitational redshift measurements.

4.3. The Dvali–Gabadadze–Porrati gravity model

In the DGP braneworld scenario (Dvali et al. 2000), matter and
radiation live on a four-dimensional brane embedded in a five-
dimensional Minkowski space. The action is constructed so that
on scales larger than the so-called crossover scale, rc, gravity is
five-dimensional, while it becomes four-dimensional on scales
smaller than rc. Thus, the gravitational potential is 1/r at short
distances for the sources localised on the brane. As a result, an
observer on the brane will experience Newtonian gravity, despite
the fact that gravity propagates in extra space, which is flat and
has an infinite size. This model admits a homogeneous cosmo-
logical solution on the brane, which obeys a modified Friedmann
equation (Deffayet 2001):

H2 ±
H
rc

= 8πG (ρ̄ + ρDE) , (14)

where ρDE is the density associated with the cosmological con-
stant. The sign on the left-hand side of Eq. (14) is determined
by the choice of the embedding of the brane. The negative sign
is the so-called self-accelerating branch, which allows for accel-
erated Universe expansion even in the absence of a cosmolog-
ical constant. The positive sign is the so-called normal branch,

which does not exhibit self-acceleration. On scales smaller than
rc, the DGP models can be described as a scalar-tensor theory
where the brane-bending mode ϕ mediates an additional attrac-
tive (normal branch) or repulsive (self-accelerating branch) force
(Nicolis & Rattazzi 2004).

In DGP models the gravitational forces are governed by the
equation:

∇φ = ∇φN +
1
2
∇ϕ, (15)

where∇φN is the Newtonian gravitational potential. It is possible
to find an analytical solution for ϕ in the case of a spherically
symmetric mass. In particular, it is possible to obtain an equation
for the ϕ gradient, which can be expressed as follows:

dϕ
dr

=
GδM(< r)

r2

4
3β
g

(
r

r∗(r)

)
, (16)

where the function g (y) is:

g (y) = y3
[√

1 + y−3 − 1
]
, (17)

and r∗(r) is the so-called r-dependent Vainsthein radius. The
function r/r∗ depends on the average over-density δρ(< r),
within r. It is possible to re-scale this function to a halo with
mass M∆ and radius R∆, determined by a fixed over-density ∆.
Thus, we obtain:

r
r∗(r)

= (ε∆)−1/3x
[

M(< x)
M∆

]−1/3

, (18)

where x := r/R∆ and the quantity ε is determined by the
background cosmology. By combining these equations, Schmidt
(2010) calculated the gDGP(r) parameter, which quantifies the
differences between GR and DGP models:

gDGP(r) = 1 +
2

3β
g

(
r

r∗(r)

)
. (19)

On the largest scales g
(

r
r∗(r)

)
tends to 1/2, so we obtain gDGP =

gDGP,lin = 1 + 1/(3β). On the other hand, on the smallest scales
where r � r∗, the modified forces are suppressed.

In this work, we considered a self-accelerating model (sDPG
model) with ρDE = 0, and rc = 6000 Mpc, which was adjusted to
best match the constraints derived from cosmic microwave back-
ground observations and Universe expansion history (Fang et al.
2008). We made this choice to test a model that does not need
a dark energy component to explain the Universe accelerated
expansion. Marulli et al. (2021) found that the redshift-space
clustering anisotropies of the two-point correlation function of
the same cluster sample exploited in this work are in good agree-
ment with the predictions of this DGP model.

Schmidt (2010) showed that this model predicts a reduction
of the gravitational force, independently of the halo masses. In
this work we set β = −1.15 in Eq. (19), and ε = 0.32 in Eq. (18)
at z = 0, in order to reproduce the Schmidt (2010) simulation
results. The model predictions were significantly affected by the
values of the two parameters. In fact, with β = 1/3 we recovered
GR on the largest scales.
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5. Other relativistic and observational effects

There are other effects beyond the gravitational redshift that can
cause a shift of the mean of the galaxy velocity distribution, as
shown by Zhao et al. (2013) and Kaiser (2013). In this section
we describe all the dominant effects that need to be considered to
model the shift of the mean of the velocity distribution in order to
not bias the final constraints on the gravity theory. The following
description is valid in any reliable theory of gravity.

5.1. Transverse Doppler effect

The peculiar redshift of a galaxy can be decomposed as follows:

1 + zpec ' 1 +
vlos

c
+

1
2
v2

c2 , (20)

where vlos is the velocity component along the line of sight and
v is the total galaxy velocity. The second-order term, due to
the transverse motion of the galaxy, gives rise to the transverse
Doppler (TD) effect. The TD effect contributes with a small posi-
tive shift of the mean in the velocity distribution; this is typically
of a few kilometres per second, and is relatively constant with
respect to the distance from the cluster centre. The additional
effect on the radial velocity shift of the mean can be expressed
as follows:

∆TD =
〈v2

gal − v
2
0〉

2c
, (21)

where vgal and v0 are the peculiar velocities of the galaxies and
the cluster centre, respectively. Calculating this effect involves an
integral over the line-of-sight density profile and a convolution
with the mass distribution (Zhao et al. 2013). The TD effect for
a single cluster is:

∆̄c,TD(r̃⊥) =
2Qr500

cΣ(r̃⊥)

∫ ∞

r̃⊥
(r̃2 − r̃2

⊥)
dφ(r̃)

dr̃
ρ(r̃)dr̃√
r̃2 − r̃2

⊥

, (22)

where Σ(r̃⊥) is the surface mass density profile, given by
Eq. (10), and φ(r̃) is the gravitational potential, given by Eq. (8).
Q is set equal to 3/2 because we assume isotropic galaxy orbits.
This equation must be convolved with the cluster mass function
of the sample, dN/dM500, to retrieve the effect for the stacked
cluster sample:

∆̄TD(r̃⊥) =

∫ Mmax

Mmin
∆c,T D(r̃⊥)Σ(r̃⊥)(dN/dM500)dM500∫ Mmax

Mmin
Σ(r̃⊥)(dN/dM500)dM500

. (23)

5.2. Light-cone effect

We observe cluster member galaxies that lie in our past light
cone (LC). This causes a bias such that we see more galaxies
moving away from us than moving towards us, as explained by
Kaiser (2013). Hence, this effect causes an asymmetry in the ∆
distribution, which results in a positive shift of the mean. The
shift caused by the LC effect is:

∆LC =
〈v2

los,gal − v
2
los,0〉

c
, (24)

where vlos,gal and vlos,0 are the line-of-sight velocities of the
galaxies and the cluster centre, respectively. The LC effect is of
the same order of the TD effect, and is opposite in sign rela-
tive to the effect of gravitational redshift. To compute the LC

effect on a stacked sample of clusters, it is necessary to repeat
the operations already done for the TD effect. Hence, by assum-
ing isotropic galaxy orbits, we obtain:

∆̄LC =
2
3

∆̄TD. (25)

5.3. Surface brightness modulation effect

Galaxies in spectroscopic or photometric samples are generally
selected according to their apparent luminosity, l. The apparent
luminosity of a galaxy depends on its peculiar motion through
the special relativistic beaming effect, which changes the galaxy
surface brightness (SB), and thus its luminosity. In particular,
this effect enhances the luminosity of galaxies that are in motion
towards the observer, while it decreases the luminosity of those
moving away. Thus, the beaming effect could shift the galax-
ies moving towards the observer into the luminosity cut, while
it could shift the galaxies moving away outside the luminosity
cut. This causes a bias in the galaxy selection, promoting galax-
ies that are moving towards the observer, with the overall effect
of a blueshift on the centre of the distribution of velocity off-
sets. If we consider the effect on the BCGs, for these galaxies,
the flux limit is irrelevant, due to their high intrinsic luminosity.
However, there could be a systematic bias due to peculiar veloc-
ities that can change the ranking of the two brightest galaxies,
possibly causing a wrong selection of the BCG. This is one of
the reasons why we chose not to assume the BCG as the cluster
centre.

The size of the SB modulation effect depends strongly on the
galaxy survey. The relativistic beaming effect can be calculated
considering the fractional change in the apparent galaxy lumi-
nosity as a function of the spectral index, α, at the cosmological
redshift of the source, as well as considering the peculiar veloc-
ity of the galaxy (Kaiser 2013). The fractional change can be
expressed as follows:

∆l
l

= [3 + α(z)]
vx

c
. (26)

Furthermore, the modulation of the number density of detectable
objects at a given redshift is given by:

∆l
l
δ(z) = −[3 + α(z)]

vx

c
d ln n(>llim(z))

d ln l
, (27)

where δ(z) is the redshift-dependent logarithmic derivative of the
number distribution of galaxies and llim is the apparent luminos-
ity limit of the survey. The value of δ(z) depends strongly on the
galaxy sample. The redshift dependence comes from translating
the apparent luminosity limit into an absolute luminosity limit
that varies with redshift. Following Kaiser (2013), we assumed
α(z) = 2 for the whole redshift range. Hence, assuming isotropy,
we can obtain the predicted shift of the mean due to the SB effect
as follows:

∆SB = −5〈δ(z)〉
〈v2

x,gal − v
2
x,0〉

c
, (28)

where 〈δ(z)〉 is the average value of δ computed over the redshift
range of the cluster sample. Just as it was done for the LC effect,
we can write the SB effect as a function of the TD effect. The
result can be expressed as follows:

∆̄SB = −
10
3
〈δ(z)〉∆̄TD. (29)
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Thus, we notice that the SB effect is of the same order of the TD
and LC effects, but is opposite in sign. The SB effect leads to a
blueshift of the centre of the distribution of velocity offsets, as
mentioned previously.

5.4. The combined effect

The effects described in the previous sections are not the only
ones present, although they are the dominant ones. Cai et al.
(2017) provided a comprehensive summary of the different con-
tributions to the mean of the velocity offset distribution, ∆̄,
including the cross-terms. It is demonstrated that these cross-
terms change the ∆̄ signal by a factor less than 1 km s−1, so
they will not be considered any further in this work. Hence, the
combination of the effects considered in this analysis are the
following:

∆̄ = ∆̄gz + ∆̄TD + ∆̄LC + ∆̄SB, (30)

which can be written as:

∆̄ = ∆̄gz + (2 − 5〈δ(z)〉)
2
3

∆̄TD. (31)

The factor 2/3 in Eq. (31) arises from the fact that we consider
logarithmic differences in redshifts, and it alters the size of the
TD effect (Mpetha et al. 2021).

All the TD, LC, and SB effects are small compared to the
gravitational effect. Thus, for simplicity, as done in past liter-
ature works, we henceforth refer to the combined effect as the
gravitational redshift effect.

6. Computing the theoretical models

We used Eq. (31) to predict the mean value of the member galaxy
velocity distribution in the different theories of gravity consid-
ered in this work. Specifically, we calculated ∆̄gz and ∆̄TD, given
by Eq. (31), as well as 〈δ(z)〉, given by Eq. (29). We computed
∆̄gz by solving Eq. (11), while ∆̄TD was computed with Eq. (23).
The red histogram in the bottom panel of Fig. 2 shows the mea-
sured cluster mass distribution used to compute the integrals in
Eqs. (11) and (23), where the minimum and maximum masses of
the samples are 1.5×1014 M� and 2×1015 M�, respectively. The
Duffy et al. (2008) relation and the NFW density profile were
used to compute the c500 concentration parameter for each clus-
ter. The median value of c500 of the selected cluster sample was
about 2.5, which was agreement with the typical value expected
for clusters in these ranges of mass and redshift (Miyazaki et al.
2017).

We followed the procedure described in Kaiser (2013) to
compute the intensity of the galaxy number distribution. Specif-
ically, we calculated the redshift-dependent logarithmic deriva-
tive of the number distribution of galaxies, δ(z), defined as:

δ(z) :=
d log n(< Mlim(z))

d log M
, (32)

where Mlim is the absolute magnitude limit of the galaxy survey.
Following Kaiser (2013) and Jimeno et al. (2015), we used

the model of Montero-Dorta & Prada (2009) for the r-band lumi-
nosity function, that is, a Schechter function with a character-
istic magnitude M∗ − 5 log10 h = −20.7 and a faint end slope
α = −1.26. Ideally, we should use a specific luminosity function
of the cluster member galaxies. However, Hansen et al. (2009)
demonstrated that the parameters of the overall luminosity func-
tion for the cluster member galaxies does not differ significantly

Fig. 4. Predicted value of ∆̄ as a function of the cluster radius in units of
r500. The blue lines refer to the predictions computed assuming GR, the
green lines refer to the sDGP predictions, and the red lines refer to f (R)
gravity theory. For each colour, the dashed line shows the gravitational
effect only, the dotted line the TD effect, the dot-dashed line the SB
effect, and the solid line shows the combined effect.

from those of the luminosity function of the field galaxies. Thus,
we assumed an overall luminosity function, as was done in past
literature works (Kaiser 2013; Jimeno et al. 2015; Mpetha et al.
2021).

To calculate δ(z), we used the SDSS fibre magnitude limit
in r-band of 22.295, as magnitude cut. The intensity of the SB
effect wass computed from the average value of δ(z) over the
cluster sample redshift range by solving the following integral:

〈δ(z)〉 =

∫ z2

z1
δ(z)(dN/dz)dz∫ z2

z1
(dN/dz)dz

, (33)

where z1 = 0.05 and z2 = 0.5 were the lower and upper redshift
limits of the exploited cluster samples. To solve the integral in
Eq. (33), we considered, as dN/dz, the galaxy redshift distribu-
tion shown in Fig. 1. The result of the integral computation was:
〈δ(z)〉 = 0.516.

Figure 4 shows the predicted value of ∆̄ as a function of
the transverse distance from the cluster centre in units of r500.
The figure shows not only the combined effect given by Eq. (31)
(solid lines), but also the gravitational, TD, and SB effects indi-
vidually. The ∆̄ value becomes more negative as the transverse
distance increases. This is expected because ∆̄ gives information
on the difference between the gravitational potential at the clus-
ter centre and at a given transverse distance from it. This differ-
ence increases going outside the cluster potential well, then the
shift of the mean of the cluster member galaxy velocity distri-
bution grows. Figure 4 also shows that the TD effect causes a
positive shift of ∆̄, while the SB effect causes a negative shift,
as described in Sect. 5. The TD and SB effects are small com-
pared to the gravitational effect, as expected. Particularly, in GR
at 4r500 from the cluster centre, the TD and SB effects have an
intensity of about 2 km s−1 and −2.5 km s−1, respectively, while
the gravitational effect has a magnitude of about −15 km s−1.
Furthermore, as the distance from the cluster centre increases,
the difference between the GR, f (R), and sDGP predictions rises
as well.
5 This value is taken from the SDSS official website, see https://
www.sdss.org/dr12/algorithms/magnitudes
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Fig. 5. Phase-space diagram for the stacked member galaxy data of
the clusters in the WH15 catalogue. The top panel shows the dia-
gram before the correction procedure, while the bottom panel shows the
background-corrected phase-space diagram. The colour bar shows the
number of member galaxies we have in each bin. The bins have a size of
0.05 r500 ×50 km s−1. The vertical dashed red lines show the bins where
we calculated the mean of the velocity distributions.

7. Measuring the gravitational redshift

7.1. Correction of the phase-space diagram

To measure the gravitational redshift effect from the cluster
member catalogue constructed in Sect. 3, we stacked all the
data of the member galaxies (i.e. the transverse distances r⊥,
and line-of-sight velocities ∆) in a single phase-space diagram
(Kim & Croft 2004; Wojtak et al. 2011). Figure 5 (top panel)
shows the stacked line-of-sight velocity offset distributions for
the member galaxies in the WH15 catalogue.

The phase-space diagram is affected by the contamination of
the foreground and background galaxies, which are not gravita-
tionally bound to any selected cluster, due to projection effects.

We have to take into account only the galaxies that are within
the cluster gravitational potential well to make a reliable mea-
surement of the gravitational redshift. We followed the proce-
dure described in Jimeno et al. (2015) to remove the contam-
ination of foreground and background galaxies. The galaxies
that did not belong to any cluster were considered statistically,
once the data of all cluster member galaxies had been stacked
into a single phase-space diagram (see Wojtak et al. 2007, for a
detailed review on foreground and background galaxy removal
techniques). Firstly, we split the phase-space distribution into
bins of size 0.05 r500 × 50 km s−1. We assumed that the galax-
ies that lay in the stripes 3000 km s−1 < |∆| < 4000 km s−1

belonged either to pure foreground or to pure background, as
already described in Sect. 3. We selected the upper limit for
galaxy line-of sight velocity of 4000 km s−1 following the past
literature work of Wojtak et al. (2011) and Sadeh et al. (2015).
On the other hand, we made some tests changing the lower limit
of 3000 km s−1. Selecting the lower cut-off within the range
2000 km s−1 < |∆| < 3500 km s−1, we obtained consistent results,
within the errors, to the ones we present in Sect. 8.

We fitted a quadratic polynomial function, which depended
on both ∆ and r⊥, to the points in both stripes. We used the
interpolated model to correct the phase-space region where |∆|
was less than 3000 km s−1, namely the region where the galax-
ies were gravitationally bound. The function f (r⊥,∆), which we
used to model the phase-space region where the background and
foreground galaxies lay, can be expressed as follows:

f (r⊥,∆) = ar2
⊥ + b∆2 + cr⊥∆ + d∆ + er⊥ + f , (34)

where a, b, c, d, e, and f represent the free parameters of the
model. We used a function that depended on both r⊥ and ∆
because, due to observational selections, we may observe more
galaxies that are closer to us with respect to the cluster centre
(i.e. negative ∆) than further away (i.e. positive ∆). Moreover,
the possibility of finding galaxies that do not belong to the clus-
ter increases with the distance from the cluster centre.

The bottom panel of Fig. 5 shows the background-corrected
phase-space diagram. After removing the background, the
phase-space diagram clearly shows the inner region where
the gravitationally bound galaxies reside. Indeed, most of the
galaxies in the foreground and background regions have been
removed, proving that the background-correction method was
successful. However, not all the contamination was removed
because of the intrinsic uncertainties in the fitting. Thus, we
took this error into account when we fitted the galaxy velocity
distributions. In particular, we considered the mean rms as the
error of the fitting procedure. In fact, the bottom panel of Fig. 5
shows that a certain amount of galaxies with a large velocity off-
set around r⊥/r500 ∼ 1 and 3 < r⊥/r500 < 4 was still present after
the background correction. Nevertheless, in each bin of these
parameter regions, we find at most one galaxy. This non-uniform
background subtraction might be due to minor statistical uncer-
tainties. To test the impact of this effect on the final results of
our analysis, we measured again the gravitational redshift, con-
sidering only those galaxies with |∆| < 2000 km s−1, finding
consistent results, within the errors, to the results presented in
Sect. 8.

7.2. Fitting the data

We split the background-corrected phase-space diagrams into
four equal bins of transverse distance to recover the gravitational
redshift signal as a function of the transverse distance from the
cluster centre. Each bin had a width of 1r500, as shown in Fig. 5.
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Fig. 6. Velocity distributions of the WH15 cluster member galaxies in
the four bins of projected transverse distance. These distributions were
shifted vertically by an arbitrary amount (−0.2, 0, 0.2 and 0.35), for
visual purposes. The coloured points represent the data of the binned
background-corrected phase-space diagram and the error bars represent
the Poisson noise combined with the error of the background-correction
method. The solid lines and the shaded coloured areas show the best-fit
models and their errors, respectively.

We fitted the galaxy line-of-sight velocity distribution within
each bin, in order to recover the mean of the distribution, ∆̄.
The mean value of the distribution was proportional to the inten-
sity of the gravitational redshift effect and we expected a nega-
tive value, as explained in Sect. 4. We performed a Monte Carlo
Markov chain (MCMC) statistical analysis to fit ∆̄ within each
bin. We modelled the velocity distribution as a double Gaussian
function, which can be expressed as follows:

f (∆) =
ε√

2πσ2
1

exp
 (∆ − ∆̄)2

2σ2
1

+
1 − ε√
2πσ2

2

exp
 (∆ − ∆̄)2

2σ2
2

 , (35)

where the two Gaussian functions have the same mean, ∆̄. The
relative normalisation of the two functions, ε, and their widths,
σ1 and σ2, were considered as free parameters of the MCMC
analysis, and marginalised over. The Bayesan fit was imple-
mented by using a Gaussian likelihood, with flat priors on all the
free model parameters. We considered the combination of two
independent sources of errors: (i) the Poisson noise, and (ii) the
error of the background-correction method. The quasi-Gaussian
function given by Eq. (35) took into account the intrinsic non-
Gaussian distributions of galaxy velocities in individual clusters
and the different cluster masses.

8. Results

Figure 6 shows the velocity distributions in each bin of projected
transverse distance. The figure shows the data of the binned
background-corrected phase-space diagram, the associated error
bars, and the best-fit models within each bin. We notice that the
model systematically underestimates the data with low ∆ at any
distance from the centre. This is a feature that was present also
in past literature works (Wojtak et al. 2011; Jimeno et al. 2015)
and it does not significantly affect the final ∆̄ estimation.

Figure 7 shows the comparison between the estimated ∆̄
within each bin and the GR, f (R), and sDGP theoretical predic-

Fig. 7. Comparison between the estimated ∆̄ of the WH15 cluster mem-
ber galaxies within each bin of transverse distance and the theoretical
predictions from GR (solid blue line), f (R) (dotted red line), and sDGP
(dash-dotted green line). The shaded coloured areas show the model
errors that were caused by the fitting uncertainties on the cluster mass
distribution, and the dispersion of the cluster redshifts. The black points
show the estimated ∆̄. The vertical error bars represent the range of the
∆̄ parameter, containing 68% of the marginalised posterior probability,
while the horizontal error bars show the dispersion of the galaxy trans-
verse distances in a given bin.

tions, as a function of the transverse distance from the cluster cen-
tre. As it can be seen, we find a clear negative shift of the mean
of the velocity distributions, as we expected from the theoretical
analysis described in Sect. 4. As shown in Fig. 7, our measure-
ments are in agreement, within the errors, with the predictions of
GR and sDGP, while in marginal tension with f (R) predictions,
though the disagreement is not statistically significant.

The richness-mass scaling relation is a crucial element in this
kind of analysis, since it can introduce systematic biases in the
final constraints if not properly calibrated in the assumed gravity
theory considered. In particular, the so-called fifth force, pos-
sibily arising from the new scalar degrees of freedom of mod-
ified gravity models, such as the f (R) scenario considered in
this work, modifies the relation between the cluster masses and
observable proxies (Terukina et al. 2014; Wilcox et al. 2015).
To test the impact of this effect, we performed the full anal-
ysis again using Eqs. (6) and (22) from Mitchell et al. (2021)
to compute the M500 masses for each cluster in the f (R) strong
field scenario. We find that the new M500 values are, on aver-
age, about 15% higher than the corresponding masses estimated
in GR, and the new gravitational redshift measurements are
shifted, on average, by about 20% towards positive ∆̄ values
with respect to the results shown in Fig. 7. The results of this
test are shown in Appendix A.3. These new results are within
the estimated statistical uncertainties, and thus do not introduce
dominant systematic effects for the current analysis. An accurate
calibration of the mass-observable scaling relation in different
modified gravity models will be mandatory for similar analy-
ses on next-generation large cluster samples and will deserve a
detailed study that is beyond the scope of the present paper.

We also measured the integrated gravitational redshift signal
up to 4r500, ∆̄int, by considering all the cluster member galax-
ies in the background-corrected phase-space diagram shown in
Fig. 5. We obtained ∆̄int = −11.4±3.3 km s−1, which is in agree-
ment, within the errors, with the expected value of −10 km s−1
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Fig. 8. Best-fit model of ∆̄(r⊥/r500) from MCMC (solid grey line) for the
WH15 cluster member galaxies. The shaded grey area shows the 68%
uncertainty on the posterior median. The theoretical predictions of GR
(solid blue line), f (R) (dotted red line), and sDGP (dash-dotted green
line) are shown for comparison.

predicted in GR for clusters in the mass range of the WH15 clus-
ter member catalogue.

We fitted the measured value of ∆̄, shown in Fig. 7, to impose
new constraints on the gravity theory and discriminate among
the three different models considered. To do this, we modified
the theoretical model given by Eq. (31), by changing the gravi-
tational acceleration experienced by the photons inside the clus-
ters. In practice, we multiplied the gravitational constant G by
a constant α, which was considered as the free parameter of the
fit. This simple model was accurate enough to take into account
the modification of the gravitational force predicted by both the
f (R) and sDGP models. By construction, α is equal to unity in
GR theory, while α = 1.33 in the f (R) theory and α ' 0.85 in
the sDGP model. We performed a MCMC analysis to fit the mea-
sured ∆̄, using a Gaussian likelihood. It should be noted that this
fitting procedure has never been implemented in past literature
works.

Figure 8 shows the results of the MCMC analysis. We
obtained α = 0.86 ± 0.25, with a reduced χ2 = 0.23. The value
of the reduced χ2 indicates a possible overestimation of the mea-
surement errors. The best-fit results confirm that our measure-
ments are in agreement, within the error, with GR and sDGP
predictions, while the f (R) model is marginally discarded at
about 2σ. This result is consistent with past literature works that
have already discarded the f (R) strong field scenario considered
here (e.g. Terukina et al. 2014; Wilcox et al. 2015). Our result is
also compliant with what has been found by Marulli et al. (2021)
from a redshift-space distortion analysis of the two-point corre-
lation function of the same cluster catalogue. On the other hand,
this is in slight disagreement with the works of Wojtak et al.
(2011) and Mpetha et al. (2021), whose results were consistent
also with f (R). Nevertheless, as noted above, a proper self-
consistent treatment of the richness-mass scaling relation in
modified gravity models would be required to assess unbiased
constraints. In fact, the analysis presented here provides robust
constraints on GR predictions, for which the likelihood model
calibration is accurate enough, given the current uncertainties.
On the other hand, the comparison of our measurements with
different gravity theories should be taken with caution, and no
strong conclusions can be drawn in this respect.

9. Conclusions

In this work we tested the Einstein theory of GR by measur-
ing the gravitational redshift effect in galaxy clusters, within
the ΛCDM cosmological framework. To perform the gravi-
tational redshift measurements, we constructed a new cluster
member galaxy catalogue, as discussed in Sect. 3. Differently
from past literature works, we used the average positions and
redshifts of central galaxies to estimate the cluster centres. In
Appendix A.1 we compare the results obtained with this choice
to those obtained assuming the BCGs as the cluster centres. Fol-
lowing the method described by Kim & Croft (2004), we stacked
the data of the cluster member galaxies in a single phase-space
diagram and corrected them for the background and foreground
galaxy contaminations, as explained in Sect. 7.1. We split the
phase-space diagrams in four bins of transverse distances from
the cluster centre, recovering the galaxy velocity distributions
within them. We implemented an MCMC analysis, described in
Sect. 7.2, to recover the shift of the mean of the velocity distribu-
tions, which was proportional to the gravitational redshift effect.
We found a significant negative signal in all four of the bins of
projected transverse distances from the cluster centre. Moreover,
the signal becomes more negative as the distance from the centre
increases, as expected. We recovered an integrated gravitational
redshift signal of ∆̄int = −11.4 ± 3.3 km s−1 up to a distance of
about 3 Mpc from the cluster centre. This value is in agreement
with the expected value of approximately −10 km s−1, predicted
in GR for clusters in the same range of masses as those con-
sidered here. The error on this integrated signal is about 30%
lower with respect to what was found in the previous works by
Sadeh et al. (2015) and Mpetha et al. (2021).

We computed the theoretical gravitational redshift effect in
three different gravity theories: GR, f (R), and sDGP. The grav-
itational redshift model predictions are shown in Fig. 4. We
compared our measurements with theoretical predictions as a
function of the transverse distance from the cluster centre. This
comparison is shown in Fig. 7. We implemented a new statisti-
cal analysis method in order to discriminate among the different
gravity theories, as described in Sect. 8. The free parameter of
this analysis was α, which modelled the gravitational accelera-
tion in different gravity theories (by construction, α is equal to
unity in GR). We obtained α = 0.86±0.25. This result is in agree-
ment with GR and sDGP predictions, within the errors, while
marginally inconsistent with the f (R) strong field model at about
2σ significance, in line with literature results (e.g. Terukina et al.
2014; Wilcox et al. 2015).

This work demonstrates that the peculiar velocity distribu-
tion of the cluster member galaxies provides a powerful tool
to directly investigate the gravitational potentials within galaxy
clusters and to impose new constraints on the gravity theory
on megaparsec scales. Further investigations are necessary to
corroborate the measurement method by exploiting cosmolog-
ical simulations, especially at high redshifts, and to improve
the modelling for both galaxy velocity distributions and gravita-
tional redshift theoretical predictions. The model improvements
are necessary to take into account the BCG proper motions, and
to relax the assumption of the cluster spherical symmetry and
the NFW density profile. Forecasting analyses are needed to
compute the required number of clusters and associated mem-
ber galaxies necessary to discriminate among different gravity
theories with a high statistical significance. It will be useful
to investigate the effects possibly caused by mixing data from
different spectroscopic surveys, which can be done to increase
the available statistics by jointly combining different data sets.
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Furthermore, it will be crucial to accurately calibrate the
richness-mass scaling relation in different gravity models,
to minimise the related systematic biases in the likelihood
analysis.

To perform an even stronger test on GR, it will be necessary
to reduce the measurement errors, which mainly depend on the
number of cluster member galaxies available with spectroscopic
redshift measurements. Large cluster and galaxy samples from
upcoming missions will be crucial. In particular, the ESA Euclid
mission6 (Laureijs et al. 2011; Amendola et al. 2018) will detect
∼2 × 106 galaxy clusters up to z ∼ 2 with a spectroscopic identi-
fication of the cluster member galaxies (see e.g. Sartoris et al.
2016). The scientific exploitation of the Euclid cluster cata-
logues will be key to obtain definite constraints on the gravity
theory from gravitaional redshifts inside galaxy clusters.
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Appendix A: Testing the systematic uncertainties in
the analysis

In this appendix we describe the tests we conducted to investi-
gate the effects on the gravitational redshift measurements of the
various selections on the cluster member galaxies. Moreover, we
discuss how our results change when we assume the BCG as the
cluster centre, as done in past literature works by Wojtak et al.
(2011), Jimeno et al. (2015) and Sadeh et al. (2015).

A.1. Assuming the BCG as the cluster centre

In this work, we used the average galaxy positions and redshifts
to estimate the cluster centres. To investigate the impact of this
choice on the measurement results, we repeated the analysis by
assuming the BCG as the cluster centre, as done in past literature
works. We constructed the cluster member catalogues by using
the same selection criteria described in Sec. 3. When we esti-
mated the cluster centre from the BCG, all the cluster member
galaxies were selected all over again. The new set of member
galaxies in the outer cluster region was different in this case,
since galaxies near the edges of our selection could be either
included or excluded, depending on the centre choice, accord-
ing to the selection criteria described in Sec. 3. We obtained a
cluster member catalogue with 3065 clusters and 46 819 cluster
member galaxies.

We constructed the background-corrected phase-space dia-
grams as described in Sec. 7.1, in order to compare the results
with those described in Sec. 8. Then, we fitted the galaxy veloc-
ity distributions to retrieve the gravitational redshift signal as a
function of the transverse distance from the cluster centre. We
also estimated the α parameter by fitting the measured ∆̄, using
the same fitting procedure described in Sec. 8.

Figure A.1 shows the MCMC results, comparing the esti-
mated ∆̄ assuming the BCG as the cluster centre within each
distance bin and the theoretical predictions from GR, f (R), and
sDGP as functions of the transverse distance from the cluster
centre. Figure A.1 shows that the measurements in the outermost
bins are in agreement with the theoretical models, while those in
the inner bins are not, showing positive values of the mean of
the galaxy velocity distribution. We interpret this result in the
inner bins as mainly caused by two effects. Firstly, the BCG
peculiar velocities cause a positive shift of ∆̄, as demonstrated
by Kaiser (2013), which is similar to the TD effect, but less
intense. This effect was not included in the theoretical model,
described in Sec. 4, because it was expected to be a second-
order effect. Moreover, we did not have any information about
the BCG peculiar velocities. Further investigations are necessary
to understand the real impact of the BCG peculiar motions. Sec-
ondly, the BCGs might be misidentificated, due to the surface
brightness modulation and velocity effects. In cases where the
true BCG is not identified, we may erroneously consider a hot-
population object as the cluster centre. Thus, these galaxies may
be located at a non-negligible distance from the centre of the
cluster gravitational potential well. Thus, the BCG false identi-
fication might cause a positive shift of the mean of the veloc-
ity distribution. A similar result was obtained by Jimeno et al.
(2015) analysing the WHL12 cluster sample and assuming the
BCG as the cluster centre. Jimeno et al. (2015) found marginally
positive values of ∆̄ in all the analysed bins of transverse distance
from the cluster centre, up to 7 Mpc.

In this case, we obtained α = 0.32+0.25
−0.20 with a reduced χ2

equal to 1.78. The best-fit model is marginally inconsistent with
any gravity theory we analysed, and it is almost compatible with

Fig. A.1. Best-fit model of ∆̄ from MCMC (solid grey line) for the anal-
ysed cluster member galaxies, which are identified assuming the BCG
as the cluster centre. The symbols are the same as in Fig. A.3.

zero. The error on the α parameter is asymmetric because we
imposed, as a prior, that α had to be greater than zero (if α = 0,
we do not have a gravitational force, while α < 0 would imply
an anti-gravity force).

Hence, we conclude that, in this case, we do not have a
reliable α estimation due to the BCG misidentification and the
peculiar velocity effects, which are not taken into account in the
model. Further investigations are necessary to improve the mod-
elling when the BCG position is assumed as the cluster centre.

A.2. Testing the selections

When we searched for the cluster member galaxies, we applied
a number of selections, which are described in Sec. 3. Here we
discuss the impact of these choices on the gravitational redshift
measurements.

A.2.1. Selection of the cluster member galaxies

In the analysis presented in this work, we considered only the
clusters that had at least four associated member galaxies. We
did this following Wojtak et al. (2011) and Jimeno et al. (2015),
who made a similar selection. This choice was useful to mit-
igate the problem of false cluster identification. We tested the
effect of this selection by measuring the gravitational redshift in
the phase-space diagrams constructed by changing the minimum
number of cluster associated member galaxies. We notice that if
the minimum number increases above six, the statistics becomes
too low, and the measurement cannot be performed due to the too
small number of remaining clusters, which increases the Pois-
son noise in the velocity distributions. Considering a number of
members in the range between three and six, the final results are
not significantly affected and remain in agreement with those
described in Sec. 8. On the other hand, if the minimum num-
ber of cluster member galaxies is less than three, the cluster
false identification significantly affects the measurement causing
a positive shift of the velocity distribution mean.

A.2.2. Minimum number of galaxies used to compute the
centre

A second choice we made in our analysis was to select only the
clusters whose centres could be computed with at least three
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Fig. A.2. Comparison between the estimated integrated gravitational
redshift signal ∆̄int up to 4r500 and the theoretical predictions from GR
(solid blue line), f (R) (dotted red line), and sDGP (dash-dotted green
line) as a function of the cluster mass. The shaded coloured areas show
the model errors, while the black points show the estimated ∆̄int. The
vertical error bars represent the range of the ∆̄int parameter containing
68% of the marginalised posterior probability, while the horizontal error
bars show the dispersion of the cluster masses in a given bin.

member galaxies. We made this choice to select only clusters
whose average redshifts had an error that was reduced by at
least 50% with respect to the BCG spectroscopic redshift error.
In fact, when we computed the velocity distributions, the centre
redshift error propagated to all the redshifts of the cluster mem-
ber galaxies. This is a major issue, especially for the clusters with
a large number of members. We made several tests by arbitrarily
increasing the redshift error of the cluster centre, up to 5 × 10−3.
We notice that, as the error increases, the velocity distributions
have an increasing larger positive shift of the mean. Further anal-
yses are necessary to investigate this effect. Moreover, we notice
that if the number of member galaxies used to estimate the cen-
tres increases above five, the statistics becomes too low, which
does not allow us to obtain any sufficiently accurate measure. On
the other hand, if this number is less than three, the results are
not statistically distinguishable from those obtained when con-
sidering the BCG as the cluster centre (these measurements are
described in Sec. A.1). For clusters whose average centre posi-
tions were computed with three to five galaxies, the final results
do not vary significantly from those described in Sec. 8.

A.2.3. Cluster redshift range

In our analysis, we selected only the clusters that had a redshift
smaller than 0.5, to mitigate the problem of false cluster iden-
tifications, and to mitigate the possible impact of the assumed
cosmological model on the measurements. In order to test this
selection, we measured the gravitational redshift by changing
the cluster redshift cut-off. When we considered the low-redshift
clusters with z < 0.2, the lack of statistics prevented us from
obtaining any measurement. We also tested the analysis up to
z = 0.6. In this case the final measurements did not vary signifi-
cantly from those described in Sec. 8. Further studies are neces-
sary to investigate the method at higher redshifts, by exploiting
cosmological simulations, to quantify how gravitational redshift
theoretical predictions are affected by the redshift dependence of
cosmological parameters.

Fig. A.3. Best-fit model of ∆̄ from the MCMC (solid grey line) for all
the clusters with mass above 3 × 1013 M�. The shaded grey area shows
the 68% uncertainty on the posterior median. The theoretical predic-
tions as functions of the transverse distance from the cluster centre from
the GR (solid blue line), f (R) (dotted red line), and sDGP (dash-dotted
green line) are shown for comparison.

A.2.4. Mass selection

A further selection we applied in our analysis was to consider
only the clusters that had masses above 1.5×1014 M�, in order to
mitigate the problem of false cluster identification, as described
in Sec. 3. To investigate the impact of also including lower-mass
clusters, we measured the gravitational redshift as a function
of the cluster mass. We split the cluster member catalogue in
four sub-samples covering different cluster mass ranges. We did
not take into account clusters with masses lower than 3 × 1013

M�, because for those clusters, the richness-mass relation was
not calibrated, as described in Sec. 2.1. For each sub-sample we
constructed the background-corrected phase-space diagram and
measured the integrated gravitational redshift ∆̄int signal up to a
transverse distance from the cluster centre of 4r500.

Figure A.2 shows the comparison between the estimated
integrated signal ∆̄int up to 4r500, within each sub-sample, and
the GR, f (R), and sDGP predictions. The figure shows that the
measurements at M500 & 2 × 1014 M� are in agreement, within
the errors, with the GR and sDGP theoretical predictions. More-
over, in this mass range, the integrated signal up to 4r500 becomes
more negative as the cluster mass increases, as expected. On the
other hand, the ∆̄int value for clusters with average mass of about
1.5× 1014 M� is positive and it is not in agreement with any pre-
diction, while the ∆̄int measurement in the lowest mass range is
again in agreement with all theoretical predictions. The positive
value of ∆̄int is probably caused by a high percentage of falsely
identified clusters in this mass range.

To investigate the impact of the mass selection on the mea-
surements, we stacked all the clusters with masses above 3×1013

M� in a single background-corrected phase-space diagram, and
measured the gravitational redshift effect as a function of the
transverse distance from the cluster centre. We split the phase-
space diagrams into four bins of width equal to r500, as done
in Sec. 8. We also fittedthe measured ∆̄ with the procedure
described in Sec. 8, to constrain the α parameter.

Figure A.3 shows the result of the MCMC and the com-
parison between the estimated ∆̄ within each bin and the GR,
f (R), and sDGP theoretical predictions. Figure A.3 shows that
the measurements are in marginal agreement only with the sDGP
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predictions in all four of the bins, which is different from the
mass-selected cluster member sample considered in the analy-
sis of this work (see Fig. 7). We interpret this result as possibly
caused by the falsely identified low-mass clusters. In this case
we obtained a value of α equal to 0.51 ± 0.19, with a reduced χ2

of 0.07. This value is marginally inconsistent with the estimation
obtained from the mass-selected cluster member sample, which
is 0.86 ± 0.25 (see Fig. 8).

A.3. Cosmological dependence of the relation between the
cluster masses and observable proxies

As described in Sec. 8, we tested the impact of modifying
the relation between the cluster masses and observable proxies,
when we assumed f (R) gravity theory. We computed the new
M500 masses for each cluster in the f (R) strong field scenario fol-
lowing Mitchell et al. (2021). For each cluster we also computed
the radius, r500, and the concentration parameter, c500. Then we
performed the full statistical analysis again. Figure A.4 shows
the comparison between ∆̄ f (R), which are the results of this test,
and ∆̄GR, which are the measurements also shown in Figs. 7 and
8. The f (R) theoretical predictions were computed considering
the new M500 values. As shown in the figure, the ∆̄ f (R) measure-
ments are shifted towards positive values with respect to ∆̄GR, as
discussed in Sec. 8.

Fig. A.4. Comparison between the ∆̄ values computed with the scaling
relation estimated in the f (R) strong field scenario, ∆̄ f (R) (red triangles),
and the ones assuming the reference scaling relation considered in this
paper, ∆̄GR (black points). The former values are shifted horizontally by
0.1r⊥/r500, for visual purposes. The theoretical f (R) predictions were
computed using the M500 values obtained from the f (R) scaling relation.
The shaded coloured areas show the theoretical uncertainties caused by
the fitting uncertainties on the cluster mass distribution, and the disper-
sion of the cluster redshifts. The vertical error bars represent the range
of the ∆̄ parameter containing 68% of the marginalised posterior proba-
bility, while the horizontal error bars show the dispersion of the galaxy
transverse distances in each given bin.
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