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1. INTRODUCTION

The presence of input noise causes biased (non-consistent)
parameter estimates when system identification is applied,
Söderström and Stoica (1989), Söderström (2007). When
the purpose of identification is to gain physical insight
rather than to design a model-based controller, large
parameter biases should be avoided, Söderström (2018).
In Söderström and Soverini (2022b) it was shown that
the bias is significant when the system is almost not
identifiable.

This paper discusses three options for how one can cope
with such cases.

A first possibility is to use an instrumental variable (IV)
estimator. The bias will then often be reduced as compared
to the use of a prediction error method. A second option
is to use a reduced order model structure to circumvent
the identifiability issue. The estimates will still be bi-
ased though. Another option is to apply a full errors-in-
variables (EIV) model structure, Söderström (2018). As
will be seen, in this case the bias is strongly reduced.

The paper is organized as follows. The next section gives
a general background on the setup and the modeling.
Section 3 reviews the bias issues for the case of an
almost non-identifiable system, based on Söderström and
Soverini (2022b). In that paper the evaluation of the bias
was carried out by using the prediction error method.
In Section 4 this analysis is extended, and the bias is
evaluated when an instrumental variable method is used
for identification of the system. Use of a reduced model
structure is considered in Section 5, while the use of a full
EIV model is treated in Section 6. Some conclusions are
given in Section 7.

2. BACKGROUND AND MODELLING

This section starts off by giving assumptions on the
recorded data. This is formulated as a description of the
unknown system to be identified. Next a general model
description is postulated for identification purposes.

Assume that the system (the mathematical description of
the unknown dynamics to be identified) is linear and single
input-single output. Measurements of both input and out-
put are assumed to be noise-corrupted. In mathematical
form, these assumptions are expressed as

y(t) =G0(q)u0(t) +H0(q)e(t) , (1)

u(t) = u0(t) + ũ(t) , (2)

u0(t) = F (q)v(t) . (3)

Here u0(t) denotes the noise-free input signal, while u(t) is
the noise-corrupted input and y(t) is the noise-corrupted
output. Further, the transfer functions G0(q), H0(q) and
F (q) are all assumed to be rational functions of the shift
operator q. To simplify expressions in the following the
argument q will often be dropped.

The input noise ũ(t) is assumed to be white with variance
λ2
u. Further, e(t) is assumed to be white noise with variance

λ2
e, and v(t) is assumed to be white noise with variance

λ2
v. The output noise is therefore an ARMA process and

it is white only in the special case H0(q) = 1. Note
that the output noise H0(q)e(t) consists of both process
noise affecting the system as well as measurement noise.
The equation (3) means that the noise-free input u0(t)
is an ARMA process. The variances λ2

u, λ2
e and λ2

v are
all assumed to be unknown. These noise assumptions are
fairly general in an EIV setting, Söderström (2018).

It is also assumed that the signals e(t), v(t) and ũ(t)
are independent. This means in particular that open loop
operation is assumed.
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The input noise ũ(t) is assumed to be white with variance
λ2
u. Further, e(t) is assumed to be white noise with variance

λ2
e, and v(t) is assumed to be white noise with variance

λ2
v. The output noise is therefore an ARMA process and

it is white only in the special case H0(q) = 1. Note
that the output noise H0(q)e(t) consists of both process
noise affecting the system as well as measurement noise.
The equation (3) means that the noise-free input u0(t)
is an ARMA process. The variances λ2

u, λ2
e and λ2

v are
all assumed to be unknown. These noise assumptions are
fairly general in an EIV setting, Söderström (2018).
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Torsten Söderström ∗ Umberto Soverini ∗∗

∗ Division of Systems and Control, Department of Information
Technology, Uppsala University, P O Box 337, SE-751 05 Uppsala,

Sweden. Email: torsten.soderstrom@it.uu.se
∗∗ Dept of Electrical, Electronic and Information Engineering,

University of Bologna, Bologna, Italy. Email:
umberto.soverini@unibo.it

Abstract: Standard identification methods give biased parameter estimates when the recorded
signals are corrupted by noise on both input and output sides. When the system is close to
be non-identifiable, the bias can be large. The paper discusses the possibilities and potential
benefits when using either a reduced model structure or a full errors-in-variables model. The
case of using an instrumental variable estimator is also treated.

Keywords: System Identification, Errors-in-variables, Bias

1. INTRODUCTION

The presence of input noise causes biased (non-consistent)
parameter estimates when system identification is applied,
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The equation (3) means that the noise-free input u0(t)
is an ARMA process. The variances λ2

u, λ2
e and λ2

v are
all assumed to be unknown. These noise assumptions are
fairly general in an EIV setting, Söderström (2018).

It is also assumed that the signals e(t), v(t) and ũ(t)
are independent. This means in particular that open loop
operation is assumed.
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1. INTRODUCTION

The presence of input noise causes biased (non-consistent)
parameter estimates when system identification is applied,
Söderström and Stoica (1989), Söderström (2007). When
the purpose of identification is to gain physical insight
rather than to design a model-based controller, large
parameter biases should be avoided, Söderström (2018).
In Söderström and Soverini (2022b) it was shown that
the bias is significant when the system is almost not
identifiable.

This paper discusses three options for how one can cope
with such cases.

A first possibility is to use an instrumental variable (IV)
estimator. The bias will then often be reduced as compared
to the use of a prediction error method. A second option
is to use a reduced order model structure to circumvent
the identifiability issue. The estimates will still be bi-
ased though. Another option is to apply a full errors-in-
variables (EIV) model structure, Söderström (2018). As
will be seen, in this case the bias is strongly reduced.

The paper is organized as follows. The next section gives
a general background on the setup and the modeling.
Section 3 reviews the bias issues for the case of an
almost non-identifiable system, based on Söderström and
Soverini (2022b). In that paper the evaluation of the bias
was carried out by using the prediction error method.
In Section 4 this analysis is extended, and the bias is
evaluated when an instrumental variable method is used
for identification of the system. Use of a reduced model
structure is considered in Section 5, while the use of a full
EIV model is treated in Section 6. Some conclusions are
given in Section 7.

2. BACKGROUND AND MODELLING

This section starts off by giving assumptions on the
recorded data. This is formulated as a description of the
unknown system to be identified. Next a general model
description is postulated for identification purposes.

Assume that the system (the mathematical description of
the unknown dynamics to be identified) is linear and single
input-single output. Measurements of both input and out-
put are assumed to be noise-corrupted. In mathematical
form, these assumptions are expressed as

y(t) =G0(q)u0(t) +H0(q)e(t) , (1)

u(t) = u0(t) + ũ(t) , (2)

u0(t) = F (q)v(t) . (3)

Here u0(t) denotes the noise-free input signal, while u(t) is
the noise-corrupted input and y(t) is the noise-corrupted
output. Further, the transfer functions G0(q), H0(q) and
F (q) are all assumed to be rational functions of the shift
operator q. To simplify expressions in the following the
argument q will often be dropped.

The input noise ũ(t) is assumed to be white with variance
λ2
u. Further, e(t) is assumed to be white noise with variance

λ2
e, and v(t) is assumed to be white noise with variance

λ2
v. The output noise is therefore an ARMA process and

it is white only in the special case H0(q) = 1. Note
that the output noise H0(q)e(t) consists of both process
noise affecting the system as well as measurement noise.
The equation (3) means that the noise-free input u0(t)
is an ARMA process. The variances λ2

u, λ2
e and λ2

v are
all assumed to be unknown. These noise assumptions are
fairly general in an EIV setting, Söderström (2018).

It is also assumed that the signals e(t), v(t) and ũ(t)
are independent. This means in particular that open loop
operation is assumed.
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Next the model description will be specified. Assume that
a model of the form

y(t) = G(q)u(t) +H(q)ε(t) (4)

is to be fitted to the recorded input-output data. Here
G(q) = G(q, θ) and H(q) = H(q, θ) are parameterized
with a vector θ, and ε(t) denotes the prediction error. The
dependence on θ is mostly not spelled out in what follows.

In the study assume that the parameterization is such that
there is a unique value θ∗ that makes

G(q, θ∗) ≡ G0(q), H(q, θ∗) ≡ H0(q) . (5)

This is a form of identifiability assumption.

Let the estimate (in the asymptotic case when the number

of data points N → ∞) be denoted by θ̂. The bias of the
estimate is then

θ̃ = θ̂ − θ∗ . (6)

For consistency it is required that the bias is zero. The
focus here is on the asymptotic case, and one may think
of the bias in this sense as a systematic error that does
not disappear when the number of data points tends to
infinity.

3. REVIEW OF BIAS DUE TO ALMOST
NON-IDENTIFIABILITY

The results in this section are taken from Söderström and
Soverini (2022b).

Assume that identification is made using the prediction
error method (PEM) applied to the data. In the case of
no input noise present it is well-known that PEM gives
consistent and statistically efficient parameter estimates,
Ljung (1987), Söderström and Stoica (1989).

Use of the PEM means that the parameter estimate can
be written as

θ̂ = argmin
θ

V (θ) , V (θ) =
1

2
E
{
ε2(t, θ)

}
. (7)

In (7) the prediction error ε(t, θ) can be found directly
from (4), leading to

ε(t, θ) = H(q)−1 [y(t)−G(q)u(t)] . (8)

An approximate way to express the bias θ̃ is as follows.

Let θ̂ denote the minimum point of V (θ), and assume that

the bias θ̃ is small. Then using a linearization

0 = V ′
θ (θ̂) ≈ V ′

θ (θ∗) + V ′′
θθ(θ∗)(θ̂ − θ∗) , (9)

leads to

θ̃ ≈ − [V ′′
θθ(θ∗)]

−1
V ′
θ (θ∗) . (10)

It was shown in Söderström and Soverini (2021), Söderström
and Soverini (2022b) that (10) is indeed often a good

approximation of the bias θ̃. Further, θ̃ will be large when

the inverse [V ′′
θθ(θ∗)]

−1
is large, which occurs when the

Hessian V ′′
θθ(θ∗) is almost singular.

This happens when the system is (almost) not identifiable,
meaning that identifiability is lost if the system parameters
are slightly changed. Such a situation can occur in two
different ways:

• (Almost) overparameterization. This will show up in
that some polynomials of the model have (almost) a
common factor.

• The noise-free input u0 is (almost) not persistently
exciting of enough order.

An explicit analysis of (10) for the case of an output error
model is given in Söderström and Soverini (2022b). In
particular it was shown that when the system is almost
overparameterized, the bias can be large.

To be specific, let the system have poles pi, i = 1, . . . , na

and zeros zj , j = 1, . . . , nb. Then set

δ = min
i,j

|pi − zj | , (11)

which is a measure of the pole-zero separation. It was
shown in Söderström and Soverini (2022b) that for small
values of δ (which we refer to as almost non-identifiability),
the parameter bias is O(1/δ).

4. PARAMETER BIAS WHEN USING AN
INSTRUMENTAL VARIABLE ESTIMATOR

An alternative to use PEM is to apply an instrumental
variable (IV) method, Söderström and Stoica (1989). The
effect on the parameter bias for such cases is analyzed in
some detail in the report Söderström and Soverini (2022a).
Its main findings are summarized here.

The model structure considered is

A(q−1)y(t) = B(q−1)u(t) + ε(t) , (12)

and the parameter vector to be estimated is

θ = ( a1 . . . ana
b1 . . . bnb )

T
. (13)

Let θ0 denote the true value of the parameter vector.
Introduce also the following notations for the regressor
vector:

ϕ(t) = (−y(t− 1) . . . −y(t− na)

u(t− 1) . . . u(t− nb) )
T

(14)

= ϕT
0 (t) + ϕ̃T (t) , (15)

ϕ0(t) = (−y0(t− 1) . . . −y0(t− na)

u0(t− 1) . . . u0(t− nb) )
T

. (16)

The model (12) can be written as

y(t) = ϕT (t)θ + ε(t) . (17)

The general form for the IV estimate is then

θ̂ =
(
R̂T

zϕR̂zϕ

)−1

R̂T
zϕr̂zy , (18)

where

R̂zϕ =
1

N

N∑
t=1

z(t)ϕT (t), r̂zy =
1

N

N∑
t=1

z(t)y(t) . (19)

Several assumptions have to be applied in the analysis:

• The unperturbed input signal u0(t) is persistenly
exciting, at least of order na+nb. This assumption is
needed to guarantee identifiability.

• The polynomials A and B are coprime. This assump-
tion is also needed to guarantee identifiability.

• The three signals u0(t), ũ(t) and ỹ(t) are uncorre-
lated. This is a convenient and mild assumption.

• The elements of the instrumental variable vector z(t)
is uncorrelated with the output noise ỹ(t). A natural
way to achieve this is to let the elements of z(t)
consists of delayed and/or filtered values of the input.

• The asymptotic case with an infinite amount of data
is considered, that is N → ∞. Then due to ergodicity
the sample estimates can be substituted by expecta-
tions, such as R̂zϕ → Rzϕ = E

{
z(t)ϕT (t)

}
, etc.

The parameter bias θ̃ = θ̂ − θ0 is found to be

θ̃=R†
zϕrzy − θ0 = R†

zϕ [rzy −Rzϕθ0]

=R†
zϕE

{
z(t)

[
y(t)− ϕT (t)θ0

]}

=−R†
zϕE

{
z(t)

[
ϕ̃T (t)θ0

]}
= −R†

zϕrzϕ̃θ0 , (20)

where R†
zϕ is the pseudoinverse of Rzϕ.

One can conclude so far that the factor rzϕ̃θ0 is propor-
tional to λ2

u, and thus that the bias for small values of the
input noise variance also is proportional to λ2

u. Recall that
both z(t) and ϕ̃(t) depends linearly on the input noise ũ.

This can be expressed as θ̃ = O(λ2
u), which is a result of

the same sort as when a prediction error method is used, cf.
Söderström and Soverini (2021), Söderström and Soverini
(2022b).

Apparently the size of R†
zϕ is indeed of importance for the

size of the bias θ̃, cf. (20). It holds

Rzϕ = Rzϕ0
+Rzϕ̃ . (21)

A detailed analysis in Söderström and Soverini (2022a)
leads to σmin (Rzϕ0) = O(δ), where σmin denotes the
smallest singular value.

Indeed, the term Rzϕ̃ is proportional to λ2
u. When λ2

u is

small, the bias θ̃ may therefore be approximated by θ̃app
as

θ̃ = R†
zϕ0

rzϕ̃θ0︸ ︷︷ ︸
θ̃app

+O(λ4
u) (22)

The bias θ̃ and its approximation θ̃app do only partly
behave in similar ways. The analysis in Söderström and
Soverini (2022a) has established the following:

• For small values of the input noise variance λ2
u it holds

θ̃=O(λ2
u), θ̃app = O(λ2

u) (23)

θ̃= θ̃app +O(λ4
u) (24)

• For small values of a pole-zero separation δ it holds

θ̃app =O(1/δ) (25)

θ̃=O(1) in general (26)

Due to (26) the bias term of an IV estimate is often smaller
than that of a prediction error method (PEM) used with
an output error model. PEM as well as the approximate
bias θ̃app will both be of order O(1/δ).

5. SMALL POLE-ZERO SEPARATION: USE OF A
REDUCED MODEL STRUCTURE

As described above and illustrated in Söderström and
Soverini (2022b), when the pole-zero separation δ is small
it can be very hard to identify the system using the
postulated model structure. For identification, it may be
an alternative to instead using a reduced model where
a pole-zero cancellation is enforced. This idea is now
examined, by making reference to the PEM estimator
recalled in Section 3.

As models of different orders are to be compared a measure
of fit has to be selected with care. (Models with different
model structures have parameter vectors of different di-
mensions, and it is generally not meaningful to compare
individual parameters.)

To that aim consider the relative error in the transfer
function G, taken as

δG =

∫
|B(eiω)
A(eiω) −

B0(e
iω)

A0(eiω) |
2dω

∫
|B0(eiω)
A0(eiω) |2dω

. (27)

Numerical example

Consider a simple numerical example with na = 1, nb = 2
and let u0(t) be an AR(1) process,

u0(t) = Fv(t), F =
(
1− 0.9q−1

)−1
, E{v2(t)} = 1 .(28)

The other parameters in the numerical example are

a1 = −0.8, λ2
y = 10, b1 = 2 . (29)

In the numerical study the input noise variance λ2
u was

varied. So was also the coefficient b2 = 2(−0.8 − δ). Note
that the value δ = 0 corresponds to A0 and B0 having a
common zero, and identifiability is then lost. This example
was also considered in Söderström and Soverini (2022b).

Figure 1 shows the frequency plots of the true system
(dash-dotted lines) and the approximate models (solid
lines) for some different values of λ2

u and δ. As the
true system is of first order, the reduced model will
be a constant in this case. Its value is determined as
the minimizer of the (asymptotic) output error criterion,
taking the character of the noise-free input (i.e. the filter
F in (3) into account.

Figure 2 shows contour plots of the criterion δG which
expresses the deviation of the estimated transfer function
G of the reduced order model from the true system transfer
function G0.

Finally, Figure 3 shows how the criterion δG varies with
the pole-zero separation δ for some different values of the
input noise variance λ2

u.

Some observations

• From Figure 1, the difference between the true system
transfer function and that of the reduced order model
is increasing when the noise variance λ2

u is increasing.
It is also increasing when the pole-zero separation δ
is increasing.
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• The polynomials A and B are coprime. This assump-
tion is also needed to guarantee identifiability.

• The three signals u0(t), ũ(t) and ỹ(t) are uncorre-
lated. This is a convenient and mild assumption.

• The elements of the instrumental variable vector z(t)
is uncorrelated with the output noise ỹ(t). A natural
way to achieve this is to let the elements of z(t)
consists of delayed and/or filtered values of the input.

• The asymptotic case with an infinite amount of data
is considered, that is N → ∞. Then due to ergodicity
the sample estimates can be substituted by expecta-
tions, such as R̂zϕ → Rzϕ = E

{
z(t)ϕT (t)

}
, etc.

The parameter bias θ̃ = θ̂ − θ0 is found to be

θ̃=R†
zϕrzy − θ0 = R†

zϕ [rzy −Rzϕθ0]

=R†
zϕE

{
z(t)

[
y(t)− ϕT (t)θ0

]}

=−R†
zϕE

{
z(t)

[
ϕ̃T (t)θ0

]}
= −R†

zϕrzϕ̃θ0 , (20)

where R†
zϕ is the pseudoinverse of Rzϕ.

One can conclude so far that the factor rzϕ̃θ0 is propor-
tional to λ2

u, and thus that the bias for small values of the
input noise variance also is proportional to λ2

u. Recall that
both z(t) and ϕ̃(t) depends linearly on the input noise ũ.

This can be expressed as θ̃ = O(λ2
u), which is a result of

the same sort as when a prediction error method is used, cf.
Söderström and Soverini (2021), Söderström and Soverini
(2022b).

Apparently the size of R†
zϕ is indeed of importance for the

size of the bias θ̃, cf. (20). It holds

Rzϕ = Rzϕ0
+Rzϕ̃ . (21)

A detailed analysis in Söderström and Soverini (2022a)
leads to σmin (Rzϕ0) = O(δ), where σmin denotes the
smallest singular value.

Indeed, the term Rzϕ̃ is proportional to λ2
u. When λ2

u is

small, the bias θ̃ may therefore be approximated by θ̃app
as

θ̃ = R†
zϕ0

rzϕ̃θ0︸ ︷︷ ︸
θ̃app

+O(λ4
u) (22)

The bias θ̃ and its approximation θ̃app do only partly
behave in similar ways. The analysis in Söderström and
Soverini (2022a) has established the following:

• For small values of the input noise variance λ2
u it holds

θ̃=O(λ2
u), θ̃app = O(λ2

u) (23)

θ̃= θ̃app +O(λ4
u) (24)

• For small values of a pole-zero separation δ it holds

θ̃app =O(1/δ) (25)

θ̃=O(1) in general (26)

Due to (26) the bias term of an IV estimate is often smaller
than that of a prediction error method (PEM) used with
an output error model. PEM as well as the approximate
bias θ̃app will both be of order O(1/δ).

5. SMALL POLE-ZERO SEPARATION: USE OF A
REDUCED MODEL STRUCTURE

As described above and illustrated in Söderström and
Soverini (2022b), when the pole-zero separation δ is small
it can be very hard to identify the system using the
postulated model structure. For identification, it may be
an alternative to instead using a reduced model where
a pole-zero cancellation is enforced. This idea is now
examined, by making reference to the PEM estimator
recalled in Section 3.

As models of different orders are to be compared a measure
of fit has to be selected with care. (Models with different
model structures have parameter vectors of different di-
mensions, and it is generally not meaningful to compare
individual parameters.)

To that aim consider the relative error in the transfer
function G, taken as

δG =

∫
|B(eiω)
A(eiω) −

B0(e
iω)

A0(eiω) |
2dω

∫
|B0(eiω)
A0(eiω) |2dω

. (27)

Numerical example

Consider a simple numerical example with na = 1, nb = 2
and let u0(t) be an AR(1) process,

u0(t) = Fv(t), F =
(
1− 0.9q−1

)−1
, E{v2(t)} = 1 .(28)

The other parameters in the numerical example are

a1 = −0.8, λ2
y = 10, b1 = 2 . (29)

In the numerical study the input noise variance λ2
u was

varied. So was also the coefficient b2 = 2(−0.8 − δ). Note
that the value δ = 0 corresponds to A0 and B0 having a
common zero, and identifiability is then lost. This example
was also considered in Söderström and Soverini (2022b).

Figure 1 shows the frequency plots of the true system
(dash-dotted lines) and the approximate models (solid
lines) for some different values of λ2

u and δ. As the
true system is of first order, the reduced model will
be a constant in this case. Its value is determined as
the minimizer of the (asymptotic) output error criterion,
taking the character of the noise-free input (i.e. the filter
F in (3) into account.

Figure 2 shows contour plots of the criterion δG which
expresses the deviation of the estimated transfer function
G of the reduced order model from the true system transfer
function G0.

Finally, Figure 3 shows how the criterion δG varies with
the pole-zero separation δ for some different values of the
input noise variance λ2

u.

Some observations

• From Figure 1, the difference between the true system
transfer function and that of the reduced order model
is increasing when the noise variance λ2

u is increasing.
It is also increasing when the pole-zero separation δ
is increasing.
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Fig. 1. Frequency plots of the true system (dash-dotted
lines) and the approximate models (solid lines) for
some different values of λ2

u and δ.

Fig. 2. Contour plots of the criterion δG.

• Figure 3 shows that when the pole-zero separation δ is
small, a reduced order model gives a better fit than a
full order model. This behaviour is more pronounced
when λ2

u is not small.

6. SMALL POLE-ZERO SEPARATION: USE OF AN
EIV MODEL STRUCTURE

Assume that there is a pole-zero distance δ that is small. It
was shown in Söderström and Soverini (2022b) that, when
neglecting that there is input noise in the measurement
and applying a standard PEM identification method:

• There will be a bias that is O(1/δ).
• The estimates will have a standard deviation that is
O(1/δ).

What happens if an identification method taking the
EIV aspects into account is applied? When δ → 0,
identifiability is lost. On the other hand, for small δ
there should not be any systematic estimation errors.
Concerning the covariance matrix a crude approximation

Fig. 3. The criterion δG as a function of δ for some different
values of λ2

u. The dashed lines refer to the deviation
between the true system and the reduced order model.
The solid lines refer to the deviation between the
true system and the full order model. The irregular
behaviour of the solid lines for small positive values
of δ is due to the existence of local minimum points,
cf the discussion in Söderström and Soverini (2021).

would be that it is proportional to [V
′′

θθ(θ∗)]
−1 just as in

the case of no input noise.

One would therefore expect:

• There will be no asymptotic bias.
• The estimates will have a standard deviation that is
O(1/δ).

The purpose of this section is to examine and illustrate the
standard deviation of the parameter estimates, for small
values of the pole-zero separation, using a simple example.
The same example as the one in Section 5 is used.

A number of different identification methods are consid-
ered. They all apply to EIV models, and their asymp-
totic distribution of the parameter estimates are known.
The asymptotic normalized standard deviations of the
estimates are computed numerically based on the theory
developed in the cited references, and the influence of the
pole-zero separation δ is examined in particular.

The following methods are considered:

(1) Generalized IV estimates (GIVE), see Söderström
(2011). This class of identification methods in-
clude the Frisch scheme, Guidorzi et al. (2008),
Frisch (1934), as well as the bias-eliminating method
(BELS), Zheng (1998). An overview of how these
seemingly different method can be viewed as alterna-
tive algorithms for solving the same set of nonlinear
equations, such as (30) below, appear in Söderström
et al. (2014a).
In GIVE, the following, possibly overdetermined,

system of equations is considered:

1

N

N∑
t=1

z(t)y(t) =
1

N

N∑
t=1

z(t)ϕT (t)θ , (30)

ϕT (t) = (−y(t− 1) u(t− 1) u(t− 2) ) , (31)

z(t) = ( y(t) . . . y(t− 1− sy)

u(t− 1) . . . u(t− 2− su) )
T

, (32)

with θ, λ2
y, λ

2
u as unknowns.

GIVE is applied here for two cases:
• GIVE1, with a minimal number of equations
(su + sy = 1). This choice is taken as

sy = 1, su = 0 . (33)

• GIVE2, which corresponds to an overdetermined
system of equations. The selected choice corre-
sponds to

sy = 3, su = 2 . (34)

(2) Covariance matching method (CM), see Söderström
et al. (2009), Söderström et al. (2014b).
The GIVE estimates are obtained as a weighted

nonlinear least squares solution to a system of
equations, see (30), formed by covariance elements
ry(τ), ru(τ), ryu(τ), for a number of τ values. The
aim of the CM method is to make a more efficient
use of the information in these sample covariance
elements.
In the general CM case (as implemented) the used

covariance elements are

ry(τ), τ = 0, . . . , py, ru(τ), τ = 0, . . . , pu,
ryu(τ), τ = p1, . . . , p2 .

(35)

CM is applied for two cases:
• CM1, which corresponds to the same covariance
elements as GIVE1. This choice corresponds to

py = 2, pu = 1, p1 = −1, p2 = 2 . (36)

• CM2, which corresponds to the same covariance
elements as GIVE2. This choice corresponds to

py = 4, pu = 3, p1 = −3, p2 = 4 . (37)

(3) ML, the maximum likelihood estimate, Ljung (1987)
using the full EIV model structure. In this case also
the input model u0(t) = Fv(t) is estimated from the
data. Assuming v(t), e(t), ũ(t) are independent white
and Gaussian noise, the asymptotic covariance matrix
is given by the Cramér-Rao lower bound. A way to
compute it is presented in Söderström (2006).

The asymptotic covariance matrices of all the parameter
estimates are computed numerically for a number of δ
values. The matrices are normalized, such that for a large
N the result should be divided by N . The theoretical
standard deviations are computed for the estimates of a1,
b1, b2, λ

2
y and λ2

u.

The results are plotted in Figures 4 and 5.

Some observations

• The ML estimates are much more accurate than those
of the other methods. This is in line with general
findings in Söderström (2018). Further, for ML only
the estimates of a1 and b2 are sensitive to the pole-
zero gap δ.

• Similarly, for GIVE2 and CM2, only the estimates of
a1 and b2 are sensitive to the pole-zero gap δ.

• It is fairly natural that the estimates of a1 and b2 are
sensitive to the pole-zero gap δ, as they are linked to

Fig. 4. Standard deviations of the estimated a1, b1 and b2.

the pole and zero positions. The parameter b1 on the
other hand is primarily linked to the static gain of the
system.

• Both GIVE1 and CM1 are quite sensitive (show large
standard deviations) for small values of δ.

• GIVE2 shows great improvement over GIVE1. Simi-
larly, CM2 shows great improvement over CM1.

It was thus found that when there is a small pole-zero
separation, the parameter estimates become uncertain,
which is fairly natural. In fact, for the model structure
of this subsection one can show by straightforward, but
lengthy, calculations that for small δ

std(â1) = O(1/δ), std(b̂1) = O(1), std(δ̂) = O(1) . (38)
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ϕT (t) = (−y(t− 1) u(t− 1) u(t− 2) ) , (31)

z(t) = ( y(t) . . . y(t− 1− sy)

u(t− 1) . . . u(t− 2− su) )
T

, (32)

with θ, λ2
y, λ

2
u as unknowns.

GIVE is applied here for two cases:
• GIVE1, with a minimal number of equations
(su + sy = 1). This choice is taken as

sy = 1, su = 0 . (33)

• GIVE2, which corresponds to an overdetermined
system of equations. The selected choice corre-
sponds to

sy = 3, su = 2 . (34)

(2) Covariance matching method (CM), see Söderström
et al. (2009), Söderström et al. (2014b).
The GIVE estimates are obtained as a weighted

nonlinear least squares solution to a system of
equations, see (30), formed by covariance elements
ry(τ), ru(τ), ryu(τ), for a number of τ values. The
aim of the CM method is to make a more efficient
use of the information in these sample covariance
elements.
In the general CM case (as implemented) the used

covariance elements are

ry(τ), τ = 0, . . . , py, ru(τ), τ = 0, . . . , pu,
ryu(τ), τ = p1, . . . , p2 .

(35)

CM is applied for two cases:
• CM1, which corresponds to the same covariance
elements as GIVE1. This choice corresponds to

py = 2, pu = 1, p1 = −1, p2 = 2 . (36)

• CM2, which corresponds to the same covariance
elements as GIVE2. This choice corresponds to

py = 4, pu = 3, p1 = −3, p2 = 4 . (37)

(3) ML, the maximum likelihood estimate, Ljung (1987)
using the full EIV model structure. In this case also
the input model u0(t) = Fv(t) is estimated from the
data. Assuming v(t), e(t), ũ(t) are independent white
and Gaussian noise, the asymptotic covariance matrix
is given by the Cramér-Rao lower bound. A way to
compute it is presented in Söderström (2006).

The asymptotic covariance matrices of all the parameter
estimates are computed numerically for a number of δ
values. The matrices are normalized, such that for a large
N the result should be divided by N . The theoretical
standard deviations are computed for the estimates of a1,
b1, b2, λ

2
y and λ2

u.

The results are plotted in Figures 4 and 5.

Some observations

• The ML estimates are much more accurate than those
of the other methods. This is in line with general
findings in Söderström (2018). Further, for ML only
the estimates of a1 and b2 are sensitive to the pole-
zero gap δ.

• Similarly, for GIVE2 and CM2, only the estimates of
a1 and b2 are sensitive to the pole-zero gap δ.

• It is fairly natural that the estimates of a1 and b2 are
sensitive to the pole-zero gap δ, as they are linked to

Fig. 4. Standard deviations of the estimated a1, b1 and b2.

the pole and zero positions. The parameter b1 on the
other hand is primarily linked to the static gain of the
system.

• Both GIVE1 and CM1 are quite sensitive (show large
standard deviations) for small values of δ.

• GIVE2 shows great improvement over GIVE1. Simi-
larly, CM2 shows great improvement over CM1.

It was thus found that when there is a small pole-zero
separation, the parameter estimates become uncertain,
which is fairly natural. In fact, for the model structure
of this subsection one can show by straightforward, but
lengthy, calculations that for small δ

std(â1) = O(1/δ), std(b̂1) = O(1), std(δ̂) = O(1) . (38)
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Fig. 5. Standard deviations of the estimated λ2
y and λ2

u.

A much more general study of the accuracy of estimated
poles and zeros can be found in Mårtensson and Hjalmars-
son (2009).

7. CONCLUSIONS

When a standard system identification method that does
not model the input noise is used, biases appear in the pa-
rameter estimates. Such biases are more pronounced when
the system dynamics has a small pole-zero separation, and
the system is then close to being non-identifiable.

When the pole-zero separation is small, the system transfer
function can be better estimated by using a reduced order
model. Another type of modelling error appears, but the
sensitivity due to almost non-identifiability is lost. In total,
the modelling error is decreased.

When a full EIV model is used, the modelling error is in
many cases smaller than otherwise, also when there is a
small pole-zero separation.

REFERENCES

Frisch, R. (1934). Statistical confluence analysis by means
of complete regression systems. Technical Report 5,
University of Oslo, Economics Institute, Oslo, Norway.

Guidorzi, R., Diversi, R., and Soverini, U. (2008). The
Frisch scheme in algebraic and dynamic identification
problems. Kybernetika, 44(5), 585–616.

Ljung, L. (1987). System Identification - Theory for the
User. Prentice Hall, Englewood Cliffs, NJ, USA.
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