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collision. In this latter case,� would have been one(Cheng
et al.2018), and the reduction of the orbital period would have
been about 7 minutes(Rivkin et al.2021). This agrees with the
impact simulation scenarios performed prior to the DART
impact with different combinations of potential impact
conditions and asteroid physical properties(Raducan &
Jutzi 2022; Stickle et al. 2022). If the impactor were to
generate an ejecta curtain, the determination of� becomes
dependent on the characterization of the ejecta plume, which is
usually modeled as a cone. In the context of the DART
mission, it was therefore necessary to determine the direction of
the net ejecta momentum in inertial space. This is where the
data returned by the Italian Space Agency’s 6U CubeSat
LICIACube become important because it� ew by the Didymos
system and acquired images both prior to and after the DART
impact from varying vantage points(Dotto et al. 2021).
LICIACube was initially housed inside the DART spacecraft
and was released 15 days prior to the impact. After performing
two orbital manoeuvres, the satellite was able to witness the
impact and its aftermath at varying spatial resolutions and
phase angles, thanks to its two imaging cameras LEIA and
LUKE. The aftermath of the impact was also observed using
Hubble Space Telescope data by Li et al.(2023) complimen-
tary to LICIACube data, and this enabled the characterization
of the evolving ejecta. Recently, Hirabayashi et al.(2023)
applied Hubble Space Telescope(HST) and LUKE images to
determine the cone geometry by introducing the assumption
that the cone geometry is elliptical. They found that the cone is
indeed elliptical. In this work, we use a different approach and
start to model the cone with a simple cone with a circular base
and show why it does not� t the data, and we explain the need
to use a cone with an elliptical base including rotation to� t the
data better. We show that the geometric problem of the ejecta
cone can be solved with LICIACube LUKE images alone, and
as discussed below, our solutions are consistent with those
reported in Hirabayashi et al.(2023).

2. Methods and Results

2.1. A Cone with a Circular Base

We � rst assume that the ejecta plume can be approximated
by a cone with a circular base. Under this assumption, we use
the relation of a cone and its projection onto a plane, as
illustrated in Figure1 and parameterized in Equation(1),
because we worked with LUKE data, for which the images
were acquired in the LUKE image plane. With respect to
Figure1, � is the half aperture angle of the original cone,� is
the half aperture angle of the projected cone, and� is the angle
between the cone axis and the image plane,
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We have a sequence of� ve LUKE images, where the ejecta
cone can be seen in a side-on pro� le (Figure2), allowing us to
measure 2� when the cone edges are de� ned. These measure-
ments are reported in Table1 with their uncertainties, which are
associated with the de� nition of the cone edges themselves.
The context of the� yby and the instances where the images
have been acquired are visualized in Figure3. We rearrange
Equation(1) to obtain Equation(2), which isolates� , which is

one of the variables for which we have to solve,
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Currently,� and� remain unknown. However, we do have
indirect information about� because we can recover the image
plane for each LUKE observation in inertial space using the
SPICE kernels(Acton1996; Acton et al.2018) of LICIACube.
Therefore, we are able to recover the coef� cients that de� ne the
plane, allowing us to formulateanx+ bny+ cnz+ dn = 0 as the
plane for each observation in an inertial coordinate system of
the x, y, andz axes. The subscriptn of the coef� cient de� nes
the observation ID. Next, we de� ne the axis of the ejecta cone
as px+ qy+ rz in inertial space and assume it to be a unit
vector. Thep, q, andr coef� cients need to be solved for. The
formulations of the equation of the plane and the aforemen-
tioned unit vector equation allow us to replace� in Equation(2)
by the coef� cients de� ned above. By rearranging Equation(2),
we formulate a nonlinear equation for each of the observations,
as can be seen from Equation(3) through Equation(7), where
abcij corresponds to theith observation, andj refers to the
coef� cient of thex, y, or z component of the corresponding
equation of the plane. We are therefore left with four
unknowns,p, q, r, and ( )�Btan , for which we need to solve,
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Figure 1. A cone with a circular base and its projection onto a plane.
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However, we have� ve equations for the� ve observations
and the unit vector equation, which means six equations in
total. Because we need to solve for four unknowns, there are 15
unique ways in which we can form a system of four
simultaneous nonlinear equations. We systematically proceed
to solve each system of nonlinear equations numerically, using
the Python library scipy(optimize.roots), which takes an initial
guess for the coef� cientsp, q, r, and the half aperture angle�
(Chen & Stadtherr1981). This routine returns a solution and a
� ag whether the solution converges or not, and we only
proceed with the solutions that do converge. It should be
highlighted that this method does not give a unique solution
because there are multiple ways of forming the system of

nonlinear equations that are to be solved. Therefore, for each
obtained converged axis solution, we rotate the solved axis
such that its projection lies within a degree from the bisector of
the projected cone aperture angle in the LUKE images(this
bisector is also assumed as the axis of the ejecta cone). The
rotated solutions visualized in the LUKE frame are then
compared against real LUKE images for consistency and are
rejected if they do not match. For this comparison, we use the
LUKE observations(IDs 1 to 6). Inclusion of the image ID 1 is
crucial in this step, as it brings independent veri� cation of the
solutions due to its very different vantage point compared to
IDs 2 to 6, which go as inputs to the solving routine. The best-
� t solution returned by this solving routine is a cone with an
aperture angle of 122°, with its axis pointing to right ascension
and declination(R.A., decl.): 136°,+ 5° in the J2000 reference
frame (Acton 1996; Acton et al. 2018). This solution is
obtained by solving the system of equations formed by
Equations (4), (6), (7), and (8). Figure 4 illustrates the
simulations of the ejecta cone with this solution for the same
timestamps as for observation IDs 1-6 as seen from the LUKE
frame.

The comparison of the real LUKE images(Figure2) and
the simulated solutions(Figure4) indicates that although the
simulated cone axis seems to be pointing in the correct
direction, the aperture angle of the solution does not
reproduce all analyzed LUKE observations accurately. For
this reason, we begin to model the cone as a cone with an
elliptical base.

Figure 2. A sequence of LUKE images where the ejecta cone can be seen in a face-on pro� le (ID 1), in a side-on pro� le (IDs 2 to 6), and transiting from a side-on
pro� le to a view from behind(IDs 7 and 8). The images have been cropped to highlight the ejecta cone. The red lines in IDs 2 to 6 guide the eye through the edges of
the projected cone. The edges serve for the measurement of the aperture angle of the projected cone 2� . These angular measurements and some information about the
images are given in Table1. Except for ID 1, Dimorphos can be seen in other images with a shadow cast by the optically thick part of the ejecta cone. The very bright
object in the corner of some of the images is Didymos, which is inside the crop.
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2.2. A Cone with an Elliptical Base

We use a model of the cone with an elliptical base, as
illustrated in Figure5. By systematically varying the values
of the half-angles� and 	 and by using a small enough
angular step, we can sample all the cones with an elliptical
base that could exist. Each cone is described by 32 vertices
populated along the base of the cone, and by one vertex
located at its apex. The base of the cone is an ellipse
whenever� � 	 . We then orient the cones along our solved
axis and simulate how they would appear in the LUKE frame
at different times of observations. Given the prior knowledge
about the geometrical nature of ejecta cone, we restrict the
possible angular space of both� and	 to be between 10° and
88°. We thus sample all possible cones in this angular space
with a step of 1� .

Then, we attempt to compute the projected aperture angle
(2� ) of a given cone with an elliptical base projected onto the
LUKE plane. To achieve this, we project each vertex onto the
LUKE frame and compute the angular separation of each
vertex from the axis of the cone projected onto the LUKE
frame. While doing this, we track whether the projection of the
vertex lies above or below the projected cone axis by using
their cross product. Hence, we can� nd the two most extreme
vertices that de� ne the edges of the angle 2� . The sum of their
angular separation from the projected cone axis gives the value
of 2� . We are then able to compare the simulated values of 2�
against the values of 2� that were measured on real LUKE
images and are reported in Table1 (IDs 2 to 6). Therefore, for
each simulation of a cone described by a given permutation of
� and	 , we can give a score that tells how good or poor it� ts
the LUKE observations. The score is de� ned as the absolute

Figure 3. Context of the images from the LICIACube� yby of the Didymos system that are part of this analysis. The diagonal line is the trajectory of the LICIACube
CubeSat as it� ew by the Didymos system, and the exaggerated dots along this trajectory mark the instances of images 1 to 8, referred to in the Figure2 and Table1.
Dimorphos is placed at the center of the J2000 coordinate system and is scaled up by a factor of 100 to improve its visibility. Panels(a), (b), and(c) show three
orthogonal views of the� yby context in the XY, YZ, and XZ planes in J2000. The closest approach of LICIACube to Dimorphos took place at a distance of
about 58 km, and this instance is given as a reference. The blue, red, and green axes correspond to theX,Y,andZ axes, respectively, in J2000.

Table 1
Ancillary Information About LUKE Images That Were Used for the Analysis of the Ejecta Cone(Figure2)

Image ID Timestamp Exposure Time Time Since Impact Measured Projected Cone Aperture Angle
(UTC) (ms) (s) 2� (� ± 2°)

1 2022-09-26T23:17:03.004 4 159 L
2 2022-09-26T23:17:18.000 0.5 174 140
3 2022-09-26T23:17:19.100 0.3 175 145
4 2022-09-26T23:17:20.000 0.2 176 147
5 2022-09-26T23:17:21.000 0.7 177 160
6 2022-09-26T23:17:22.000 0.3 178 170
7 2022-09-26T23:17:24.000 0.7 180 180
8 2022-09-26T23:17:33.000 0.5 189 L

Note. Timestamp indicates the image acquisition time.
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difference between the simulated 2� and the measured 2� . For a
given cone, we compute a score for each LUKE observation in
this way, corresponding to IDs 2 to 7 and the sum of the scores
recorded. After we iterate over the restricted space of� and	 ,
we have a total score for each cone. The minimum total scores
would then correspond to the best candidate cones that describe
the LUKE observations.

To make these iterations more ef� cient, we applied another
constraint to the orientation of the projected cone such that if a

given cone does not� t an observation ID within a given
uncertainty, it will not be iterated for the subsequent
observations IDs, and hence will be discarded by assigning a
very high score. This constraint was placed by comparing the
angular separation between the lowest vertex of a simulated
and projected cone and the vertical axis of the LUKE frame.
The uncertainty was assigned to be± 4° owing to the
dif� culties associated with de� ning the ejecta cone edges in
LUKE images. The projections must therefore lie± 4° from the

Figure 4.Simulations of the ejecta cone using a cone with a circular base corresponding to LUKE observation IDs 1-6. The cone has an aperture angle of 122°, and its
axis points to R.A., decl.: 136°,+ 5° in J2000. Several vectors are shown for reference: Red is the cone axis, gray is the incoming direction of the DART spacecraft,
green is the north celestial pole, purple is the north pole of Didymos, and yellow is the direction of the Sun. Illumination effects and shadowing are not considered in
this � gure.

Figure 5. (a) Model of a cone with an elliptical base, described by two orthogonal half-angles� and	 , de� ned in the BAC plane and BAD plane, respectively. The
cone axis points in the BA direction.(b) An example case of such a cone with� = 60° and	 = 30°, described by 33 vertices. The local Cartesian coordinate system is
also de� ned, with the origin being at the apex.(c) The same cone with its cross section highlighted. Note that the cone axis points in the negative Z direction of the
local cone coordinate system.
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lowest edge of the projected cone in real LUKE images. This
iterative process is illustrated in Figure6, and the outcome of
this constraint placement is given in Figure7.

As can be seen in Figure7, the minimum average score is
4°.25, and it corresponds to� = 64°, 	 = 39°. However, due to
the aforementioned uncertainties, we allow a tolerance when
accepting viable solutions for� and	 . Therefore, we accept�
and 	 combinations that are within 2° of the above minimum
average score. The possible� and	 combinations are therefore
(64°,39°), (64°,40°), (65°,37°), (65°,38°), (65°,39°), (65°,40°),
(66°,38°), (66°,39°), and(67°,38°).

These results show that a cone with an elliptical base
describes the LUKE observations best. The cone is rather
elongated, given both orthogonal half-angles. Using the 3D
visualization software Blender, which can be used for the
simulation of solar system objects(Penttilä et al.2022), we
simulated the solution including solar illumination. These
simulations are shown in Figure8. It can be seen from this
� gure that the simulations closely reproduce the LUKE
observations for IDs 2 through 7. However, the simulations
for IDs 1 and 8 seem to be somewhat different from the
corresponding real LUKE images. We also note that the

Figure 6. Each panel corresponds to a LUKE observation where the ejecta cone is observed projected in a side-on pro� le or a similar geometry. The corresponding
timestamps are given in the panel titles. The� rst panel explores all cones with an elliptical base in the selected restricted� and	 space, and their scores are given in the
scatter plot. The following panels show how the scores evolve for a given cone, as constraints are placed by different LUKE observations. The panels should be
followed from left to right and top to bottom. Thus, the last panel isolates the viable solutions of� and	 that best describe the LUKE observations. The contrasting
very high scores correspond to� and	 combinations that are discontinued from the iterations as they do not fall within the imposed cone edge orientation constraints.

Figure 7. The scores shown in different panels of Figure6 are averaged here and are represented in a narrower scale than in Figure6 in order to highlight the viable
solutions of� and	 .
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