Graphene-Oxide Mediated Chemodivergent Ring-Opening of

Cyclobutanols

Abstract

Andrea Brunetti, ${ }^{[a]}$ Angela Pintus,,${ }^{[b]}$ Lorenzo Lombardi, ${ }^{[a]}$ Alessandro Kovtun, ${ }^{[b]}$ Federico Mascietti, ${ }^{[a]}$ Francesco Bruno, ${ }^{[c]}$ Enrico Ravera, ${ }^{[c]}$, Manuela Melucci, ${ }^{[b]}$ Giulio Bertuzzi*[a,d] and Marco Bandini ${ }^{*[a, d]}$ ${ }^{[a]}$ Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna via Selmi 2, 40126, Bologna, Italy; ${ }^{[b]}$ Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129 Bologna, Italy; [c] Magnetic Resonance Center (CERM), University of Florence via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy. ${ }^{[d]}$ Center for Chemical Catalysis - C ${ }^{3}$, Alma Mater Studiorum Università di Bologna, via Selmi 2, 40126, Bologna, Italy.

Table of Contents

General Methods
 S2

Preparation and Characterization of Starting Materials 1 S4
Characterization of compounds 1 S5
Optimized general procedure for the GO-promoted preparation of indenes 2 S9
Optimized general procedure for the GO-promoted preparation of dienes 3 S14
XPS and ssNMR tables and spectra S19
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra S23
References S65

General Methods.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Varian $400(400 \mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: 7.24 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet doublet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triple doublet, $\mathrm{dt}=$ double triplet, $\mathrm{q}=$ quartet, sext = sextet, sept = septet, $p=$ pseudo, $b=$ broad, $m=$ multiplet), coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}-$ NMR spectra were recorded on a Varian $400(100 \mathrm{MHz})$ spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: 77.0 ppm).
GC-MS spectra were taken by El ionization at 70 eV on a Hewlett-Packard 5971 with GC injection. They are reported as: m / z (rel. intense). LC-electrospray ionization mass spectra were obtained with Agilent Technologies MSD1100 single-quadrupole mass spectrometer.
Chromatographic purification was done with 240-400 mesh silica gel. Other anhydrous solvents were supplied by Sigma Aldrich in Sureseal® bottles and used without any further purification. Commercially available chemicals were purchased from Sigma Aldrich, Stream and TCI and used without any further purification. Melting points were determined with Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are not corrected.
$\mathrm{CO}_{2} \geq 99.5 \%$ purity, purchased from SIAD, was used in the Ni-catalyzed tandem C-C σ-bond carboxylation reaction.
Anhydrous DMF, THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from Merck and used as received. Zn dust refers to a particle size $<10 \mu \mathrm{~m}$ and was purchased from Merck, having $\geq 98 \%$ purity. All other commercially available starting materials and (non-anhydrous) solvents were purchased from Merck, TCl chemicals, Fluorochem or Alfa Aesar and were used as such without further purification.
Starting materials S1-4 are known compounds and were prepared following literature procedures. ${ }^{[1]}$
XPS spectra were acquired by hemispherical analyser (Phoibos 100, Specs, Germany). Nonmonochromatic Mg Ka excitation was set to 125 W (XR50, Specs, Germany). Survey and highresolution spectra were acquired in Fixed Analyser Transmission mode (FAT) on a large area of c.a. $7 \times 3 \mathrm{~mm}^{2}$, overall energy resolution of 0.9 eV measured on freshly sputtered Silver (Ag 3d). Spectrometer was calibrated to $\mathrm{Au} 4 \mathrm{f}_{7 / 2}$ peak at 84.0 eV . Static charging effects was corrected by calibrating all spectra to C 1 s 285.0 eV . Fits were performed by using CasaXPS software after Shirley background subtraction. C 1s was fitted by using asymmetric line-shape for aromatic $\mathrm{C}-\mathrm{sp}^{2}$ and symmetric line-shapes (pseudo-voigt) for the $\mathrm{C}-\mathrm{O}$ defects. ${ }^{[2]}$ The binding energies of C 1s synthetic components were: $C=C s^{2}$ at $284.4 \mathrm{eV}, \mathrm{C}=\mathrm{C}^{*} \mathrm{sp}^{2}$ at $283.6 \mathrm{eV}, \mathrm{C}-\mathrm{C}$ $\mathrm{sp}^{3} 285.0 \mathrm{eV}, \mathrm{C}-\mathrm{OH}$ at $286.2 \mathrm{eV}, \mathrm{C}-\mathrm{O}-\mathrm{C}$ at $286.8 \mathrm{eV}, \mathrm{C}=\mathrm{O}$ at 288.2 eV and $\mathrm{O}-\mathrm{C}=\mathrm{O}$ at 289.1 eV.
Solid-state NMR (ssNMR) experiments were recorded on a Bruker Avance III HD spectrometer operating at $850 \mathrm{MHz}{ }^{1} \mathrm{H}$ Larmor frequency (20 T), corresponding to $213 \mathrm{MHz}{ }^{13} \mathrm{C}$ Larmor frequency. The spectrometer was equipped with a 3.2 mm BVT MAS probe head in triple resonance mode. The magic angle spinning (MAS) frequency of the sample was set to $20 \pm$ $1 \cdot 10^{-3} \mathrm{kHz}$ through a Bruker MAS3 Unit. The tablets used for XPS were directly packed in the rotor ${ }^{[3]}$ to ensure a high filling factor of the rotor. In the 1 D direct excitation ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, the excitation pulse duration was set to $4.15 \mu \mathrm{~s}$, corresponding to a 90° flip angle, the spectral
window was 468 ppm , and the interscan delays were set to 10 s , which is sufficient to make the experiments quantitative for the present samples. For the $2 \mathrm{D}\left\{{ }^{1} \mathrm{H}\right\}-{ }^{-13} \mathrm{C}$ HETCOR experiments, cross-polarization was achieved by matching the $\mathrm{k}=1$ Hartmann-Hahn condition. ${ }^{[4]}$ The 90° pulse duration on ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ were set to $4.15 \mu \mathrm{~s}$ and $2.5 \mu \mathrm{~s}$, respectively. The spectral windows for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ were 20 and 350 ppm , respectively. During the ${ }^{1} \mathrm{H}$ magnetization evolution under the chemical shift in the indirect dimension, the FSLG decoupling sequence ${ }^{[5]}$ at 100 kHz was used to suppress ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ dipolar couplings. In these experiments, the interscan delay was set to 1.5 s . The $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}$ HETCOR spectra were processed for denoising as recently proposed by some of us, ${ }^{[6]}$ and processed applying an exponential modulation with 200 Hz line broadening in the direct dimension and a sine-squared window function on the indirect dimension. ${ }^{[5]}$

Preparation and Characterization of Starting Materials 1

In a heat-gun dried round-bottom flask, equipped with magnetic stirrer, reflux condenser and dropping funnel, dry THF (2.0 mL), Mg (turnings, $1.5 \mathrm{mmol}, 36 \mathrm{mg}$) and iodine (one crystal) were added under N_{2}. The dropping funnel was charged with dry THF (3.0 mL) and the desired aryl bromide (1.13 mmol). The mixture in the flask was heated to $50^{\circ} \mathrm{C}$ and the solution of aryl bromide was added dropwise to the flask under vigorous stirring (the disappearance of the brown color of iodine indicated that the Grignard reagent started forming). After the addition was completed the resulting mixture was heated to reflux for 1 h then cooled to $0^{\circ} \mathrm{C}$. A solution of the desired cyclobutanone ($\mathbf{S 1}$ for compounds 1a-h, $\mathbf{S 3}$ for $\mathbf{1 i}, \mathbf{S 2}$ for $\mathbf{1} \mathbf{j}$, and $\mathbf{S 4}$ for $\mathbf{1 k} \mathbf{- 0}, 0.75 \mathrm{mmol}$ in 2.0 mL of dry THF) was added dropwise through the dropping funnel and the resulting suspension was warmed to room temperature and stirred until TLC indicated full consumption of the starting material (ca. 2 h). A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {(aq.) }}$ was then added cautiously (5 mL) followed by $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and the biphasic mixture was transferred to a separatory funnel where the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, the combined organic phases were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and finally purified by Flash Chromatography $\left(\mathrm{SiO}_{2}\right)$ to give the respective cyclobutanols 1 as white solids (mixture of diastereoisomers).

Characterization of compounds 1

1a (1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=79 \%$ ($0.54 \mathrm{mmol}, 498 \mathrm{mg}$, reaction run on 2.5 mmol scale). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.47-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H})$, $3.03-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (s, 3H), 2.31 (s, 3H), 2.02 (bs, 1H), 1.89 (bs, 1H) 1.72 (s, 3H), 1.26 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=151.8,151.7,144.6,143.6,137.1,136.7,129.3$ (2C), 129.0 (2C), 128.3 (2C), 128.2 (2C), 125.7 (2C), 125.4, 125.3, 125.3 (2C), 125.1 (2C), 124.6 (2C), 72.8, 72.2, 48.8 (2C), 48.4 (2C), 36.0, 34.2, 32.7, 31.3, 21.1, 21.0; Anal. Calc. for ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}: 252.15$): C, 85.67; H, 7.99; found: C, 85.41; H, 8.12.

1b (1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=82 \%(0.62 \mathrm{mmol}, 155 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.39-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 8 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.02-$ $2.92(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.97$ (bs, 2H), 1.71 ($\mathrm{s}, 3 \mathrm{H}$), 1.26 ($\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.7,151.7,147.4,146.3,138.2,138.0,128.5,128.3$ (2C), 128.3, 128.2, 128.2 (2C), 127.8, 126.5, 125.4, 125.4, 125.3, 125.3 (2C), 125.1 (2C), 122.6, 121.7, 73.0, 72.4, 48.8 (2C), 48.3 (2C), 36.1, 34.3, 32.6, 31.4, 21.6, 21.5; Anal. Calc. for ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}: 252.15$): C, 85.67; H, 7.99; found: C, 85.75; H, 8.03.

1c (1.5:1 diastereomeric mixture). White solid. FC eluent: $\mathrm{cHex}: E t O A c:$ 10:1. Yield $=65 \%(0.49 \mathrm{mmol}, 123 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.49-7.45(\mathrm{~m}, 1 \mathrm{H}$ minor), $7.43-7.38(\mathrm{~m}, 2 \mathrm{H}$ major +1 H minor $)$, $7.34-7.29$ ($\mathrm{m}, 2 \mathrm{H}$ major +2 H minor), $7.27-7.19$ ($\mathrm{m}, 3 \mathrm{H}$ major +3 H minor), $7.19-7.12$ ($\mathrm{m}, 2 \mathrm{H}$ major +2 H minor), $3.15-3.03(\mathrm{~m}, 2 \mathrm{H}$ major +2 H minor), $3.02-$ 2.96 ($\mathrm{m}, 2 \mathrm{H}$ minor), $2.80-2.69$ ($\mathrm{m}, 2 \mathrm{H}$ major), 2.49 ($\mathrm{s}, 3 \mathrm{H}$ minor), 2.47 ($\mathrm{s}, 3 \mathrm{H}$ major), 1.97 (bs , 1 H major +1 H minor), 1.79 (s, 3 H major), 1.33 (s, 3 H minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 152.3 (major), 151.4 (minor), 144.0 (major), 143.0 (minor), 137.3 (minor), 136.6 (major), 132.0 (minor), 131.7 (major), 128.4 (2C minor), 128.2 (2C major), 127.8 (minor), 127.7 (major), 125.6 (minor), 125.6 (major), 125.5 (minor), 125.5 (minor), 125.5 (2C minor), 125.3 (major), 125.3 (major), 125.0 (2C major), 74.3 (major), 73.6 (minor), 48.9 (2C minor), 47.7 (2C major), 36.8 (major), 35.3 (minor), 32.4 (minor), 31.9 (major), 20.4 (minor), 20.1 (major); Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}: 252.15\right)$: C, 85.67; H, 7.99; found: C, 85.71; H, 7.84.

1d (1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=78 \% ~\left(0.59 \mathrm{mmol}, 173 \mathrm{mg}\right.$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.53-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 12 \mathrm{H})$, $7.22-7.10(\mathrm{~m}, 3 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.67$ - 2.57 (m, 2H), 1.94 (bs, 2H), 1.72 (s, 3H), $1.36-1.33$ (s, 9H), $1.30-1.25$ (s, $3 \mathrm{H}+9 \mathrm{H}$ overlapped); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.8,151.7,150.3$, 149.9, 144.6, 143.4, 128.3 (2C), 128.2 (2C), 125.5 (2C), 125.4, 125.4 (2C), 125.3 (2C), 125.3,
125.2 (2C), 125.1 (2C), 124.4 (2C), 72.8, 72.2, 48.8 (2C), 48.4 (2C), 36.0, 34.4, 34.3, 32.7, 31.5, 31.5, 31.4 (3C), 31.3 (3C); Anal. Calc. for ($\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}: 294.19$): C, 85.67; H, 8.90; found: C, 85.88; H, 9.02.

1e (1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield = 69\% ($0.52 \mathrm{mmol}, 162 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.28(\mathrm{~m}, 14 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 4 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.89$ (m, 2H), $2.70-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{bs}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.6,151.6,146.5,145.4,140.7,140.7,140.4,140.0$, 128.8 (2C), 128.8 (2C), 128.4 (2C), 128.3 (2C), 127.4, 127.3 (2C), 127.3, 127.1 (4C), 127.1 (2C), 126.2 (2C), 125.5, 125.4, 125.3 (2C), 125.2 (2C), 125.1 (2C), 72.8, 72.3, 48.9 (2C), 48.6 (2C), 36.0, 34.4, 32.8, 31.5; Anal. Calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}\right.$: 314.17): C, 87.86 ; H, 7.05; found: C, 87.99; H, 7.35 .

1f (1:1 diastereomeric mixture). White solid. FC eluent: $\mathrm{cHex}: \mathrm{EtOAc}$ 10:1. Yield $=72 \%(0.54 \mathrm{mmol}, 126 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.22$ $-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.58$ $(\mathrm{m}, 2 \mathrm{H}), 1.99(\mathrm{bs}, 1 \mathrm{H})$ partially overlapped with $1.86(\mathrm{bs}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta=151.6,151.6,147.4,146.4,128.6$ (2C), 128.3 (2C), 128.3 (2C), 128.2 (2C), 127.4, 127.0, 125.7 (2C), 125.5, 125.3, 125.3 (2C), 125.1 (2C), 124.7 (2C), 73.0, 72.5, 48.8 (2C), 48.4 (2C), 36.0, 34.3, 32.7, 31.4; Anal. Calc. for ($\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: 238.14$): C, 85.67; H, 7.61; found: C, 85.75; H, 7.79.

1g (1.2:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=81 \%(0.62 \mathrm{mmol}, 191 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.84(\mathrm{~m}$, $3 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.68$ (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 4 \mathrm{H}), 3.01-2.93(\mathrm{~m}$, 2H), $2.73-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.29$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.7,151.6,144.5,143.6,133.1,133.0,132.7,132.4$, 128.7, 128.4, 128.4 (2C), 128.3 (2C), 128.2, 128.1, 127.6, 127.5, 126.3, 126.2, 126.2, 125.9, 125.5, 125.4, 125.3 (2C), 125.1 (2C), 124.4, 124.1, 123.6, 122.8, 73.1, 72.6, 48.7 (2C), 48.4 (2C), 36.1, 34.4, 32.8, 31.4; Anal. Calc. for ($\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}$: 288.15): C, 87.46 ; H, 6.99; found: C, 87.32; H, 6.81.

1h (1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=77 \%(0.58 \mathrm{mmol}, 157 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.25-$ $7.20\left(\mathrm{~m}, 3 \mathrm{H}\right.$ overlapped with the CHCl_{3} signal), $7.19-7.13(\mathrm{~m}, 4 \mathrm{H})$, $2.98-2.84(\mathrm{~m}, 6 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.3,151.3,145.9,144.8,133.3$,
132.8, 128.7 (2C), 128.4 (4C), 128.3 (2C), 127.2 (2C), 126.3 (2C), 125.6, 125.5, 125.2 (2C), 125.1 (2C), 72.5, 72.1, 49.0 (2C), 48.6 (2C), 35.9, 34.4, 32.8, 31.5; Anal. Calc. for ($\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}$: 272.10): C, 74.86; H, 6.28; found: C, 74.95; H, 5.99.

1i (1.1:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 6:1. Yield $=74 \%$ ($0.56 \mathrm{mmol}, 157 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.93$ (ddd, $J=7.6,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.81 (ddd, $J=7.7,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.70(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.92$ $(\mathrm{m}, 4 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.28$ $(\mathrm{s}, 3 \mathrm{H})$; the alcohol protons signals were not detected; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.6$, 159.5, 153.7, 153.6, 144.7, 143.6, 137.1, 136.6, 129.4, 129.3 (3C overlapped), 129.0 (2C), 128.9, 125.8 (2C), 124.7 (2C), 124.4, 117.8, 117.7, 111.6, 111.5, 110.4, 110.3, 72.7, 72.1, 55.2, 55.2, 48.8 (2C), 48.5 (2C), 36.1, 34.3, 32.6, 31.3; Anal. Calc. for ($\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}: 282.16$): C, 80.82; H, 7.85; found: C, 80.69; H, 7.68.

1j (1.7:1 diastereomeric mixture). White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=61 \%(0.46 \mathrm{mmol}, 122 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.56-7.49(\mathrm{~m}, 2 \mathrm{H}$ minor), $7.43-7.38(\mathrm{~m}, 2 \mathrm{H}$ minor), $7.37-7.16(\mathrm{~m}$, 10 H major +4 H minor), $7.15-7.09$ ($\mathrm{m}, 2 \mathrm{H}$ minor), $3.00-2.88$ ($\mathrm{m}, 2 \mathrm{H}$ major +2 H minor), $2.86-2.77$ ($\mathrm{m}, 2 \mathrm{H}$ major), $2.69-2.60$ ($\mathrm{m}, 2 \mathrm{H}$ minor), 2.10 ($\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, 2H minor), 2.02 (bs, 1H minor), 1.90 (bs, 1H major), 1.58 ($\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ major), 0.69 (t, $J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$ minor), $0.55\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$ major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.9$ (major), 148.7 (minor), 147.6 (minor), 146.5 (major), 128.5 (2C major), 128.3 (2C minor), 128.0 (2C major), 127.8 (2C minor), 127.3 (major), 127.0 (minor), 126.4 (2C major), 126.3 (2C minor), 125.5 (2C major), 125.4 (2C minor), 125.3 (minor), 124.7 (major), 73.2 (minor), 72.9 (major), 47.4 (2C major), 47.2 (2C minor), 39.7 (minor), 38.9 (major), 36.9 (minor), 36.2 (major); Anal. Calc. for ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}: 252.15$): C, 85.67; H, 7.99; found: C, 85.41; H, 8.12.

1k. White solid. FC eluent: $c H e x: E t O A c: ~ 10: 1 . ~ Y i e l d ~=85 \% ~(0.64 ~ m m o l, ~$ 191 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}$, 2H), $7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.37$ - 3.29 (m, 2H), $1.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.4$, 149.3, 146.0, 128.5 (2C), 128.3 (2C), 128.3 (2C), 127.2, 126.4 (2C), 126.1 (2C), 125.7, 125.5, 125.0 (2C), 73.4, 49.9 (2C), 44.0; Anal. Calc. for ($\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}: 300.15$): C, 87.96; H, 6.71; found: C, 88.09; H, 6.44.

1I. White solid. FC eluent: $c H e x: E t O A c: 10: 1$. Yield $=71 \%(0.53$ mmol, 190 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.13(\mathrm{~m}, 10 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.37$ $-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.5,149.4,143.2,136.8,129.0$ (2C), 128.5 (2C), 128.3 (2C), 126.4 (2C), 126.1 (2C), 125.7, 125.5, 124.9 (2C), 73.3, 49.9 (2C), 43.9, 21.0; Anal. Calc. for ($\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$: 314.17): C, 87.86; H, 7.05; found: C, 87.64; H, 7.33.

1m. White solid. FC eluent: $\mathrm{cHex}: E t O A c: ~ 10: 1$. Yield $=71 \%$ (0.53 mmol, 190 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.52-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 1.98$ (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 150.0, 149.6, 149.5, 143.3, 128.5 (2C), 128.3 (2C), 126.5 (2C), 126.1 (2C), 125.7, 125.5, 125.2 (2C), 124.6 (2C), 73.3, 50.0 (2C), 44.1, 34.4, 31.3 (3C); Anal. Calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}: 356.21\right)$: C, 87.60; H, 7.92; found: C, 87.77; H, 7.79.

1n. White solid. FC eluent: cHex:EtOAc: 10:1. Yield $=83 \%$ (0.62 mmol, 218 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.83-7.71$ (m, 4H), $7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, $1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=149.5,149.3,143.2,133.0,132.5$, 128.6 (2C), 128.3, 128.3 (2C), 128.1, 127.5, 126.4 (2C), 126.1 (2C), 126.1, 125.9, 125.8, 125.6, 123.6, 123.4, 73.5, 49.9 (2C), 44.0; Anal. Calc. for ($\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}$: 350.17): C, 89.11; H, 6.33; found: C, 89.34; H, 6.50.

10. White solid. FC eluent: $c \mathrm{Hex}: E t O A c: 10: 1$. Yield $=88 \%(0.66$ mmol, 276 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.58-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29$ - $7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47$ (m, 2H), 3.40-3.32 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.4$, 149.3, 145.1, 140.7, 140.0, 128.7 (2C), 128.6 (2C), 128.3 (2C), 127.3, 127.0 (2C and C overlapped), 126.4 (2C), 126.1 (2C), 125.8, 125.6, 125.4 (2C), 73.3, 50.1 (2C), 44.0; Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}: 376.18$): C, 89.33; H, 6.43; found: C, 89.30; H, 6.51.

Optimized general procedure for the GO-promoted preparation of indenes 2

A screw-cap-vial was charged with reagent grade EtOAc (1.0 ml), the desired cyclobutanol 1 (0.1 mmol) and GO (100 wt\% with respect to 1). The reaction mixture was warmed at $90{ }^{\circ} \mathrm{C}$ and stirred at the same temperature overnight. Removal of the GO by filtration (Celite pad) and subsequent purification via flash chromatography led to the isolation of compounds 2 (generally as a mixture of isomers).

2a

2a'

2a and 2a' (1.2:1 ratio of regioisomers). Viscous colorless oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=55 \%$ ($0.055 \mathrm{mmol}, 12.9 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=7.29-7.19(\mathrm{~m}, 3 \mathrm{H}$ major +3 H minor), $7.18-7.10$ ($\mathrm{m}, 3 \mathrm{H}$ major +3 H minor), $7.09-6.97$ ($\mathrm{m}, 2 \mathrm{H}$ major + 2H minor), $6.19-6.17$ (m, 1H major), $6.14-6.12$ (m, 1H minor), 2.32 (s, 3H minor), 2.27 (s, 3H major), 2.15 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$ major), 2.13 (d, $J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}$ minor), 1.66 (s, 3H minor), 1.65 (s, 3H major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=$ 154.1 (minor), 153.9 (major), 144.3 (major), 143.9 (minor), 141.8 (major), 141.7 (major), 140.7 (minor), 140.4 (minor), 136.8 (minor), 136.7 (major), 135.8 (major), 135.2 (minor), 128.8 (2C major), 128.2 (2C minor), 127.1 (minor), 126.4 (major), 126.1 (minor), 126.0 (2C minor), 125.8 (2C major), 125.3 (major), 123.3 (minor), 122.3 (major), 119.3 (major), 119.0 (minor), 55.1 (minor), 55.0 (major), 22.8 (minor), 22.8 (major), 21.2 (minor), 20.5 (major), 12.5 (minor), 12.4 (major); Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{18}\right.$: 234.14): C, 92.26; H, 7.74; found: C, 92.11; H, 7.95.

2b

2b" not detected
$\mathbf{2 b}$ and 2b' (1.2:1 ratio of regioisomers, isomer 2b"' not detected). Viscous colorless oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=51 \%$ ($0.051 \mathrm{mmol}, 12.0 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.29-7.20(\mathrm{~m}, 4 \mathrm{H}$ major +4 H minor), $7.19-$ $7.08(\mathrm{~m}, 3 \mathrm{H}$ major +3 H minor), $7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$ major), 6.94 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ minor), 6.20 (q, $J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}$ major), 6.04 ($\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ minor), 2.41 (s, 3H major), 2.15 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$ major), 2.11 (d, $J=1.6$ $\mathrm{Hz}, 3 \mathrm{H}$ minor), 2.02 (s, 3H minor), 1.76 ($\mathrm{s}, 3 \mathrm{H}$ minor), 1.69 ($\mathrm{s}, 3 \mathrm{H}$ major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.4$ (minor), 151.0 (major), 145.4 (minor), 144.6 (major), 143.8 (major), 143.4 (minor), 142.2 (minor), 142.1 (major), 136.6 (minor), 136.2 (major), 135.6 (minor), 132.9 (major), 128.3 (2C major), 128.2 (2C minor), 127.6 (major), 127.1 (minor), 126.2 (minor), 126.1 (major), 126.1 (2C minor), 126.1 (minor), 126.1 (2C major), 122.3 (major), 120.2 (major), 116.9 (minor), 55.8 (minor), 55.1 (major), 23.2 (major), 21.5 (minor), 19.3 (major), 18.4 (minor), 12.8 (major), 12.8 (minor); Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{18}\right.$: 234.14): C, 92.26; H, 7.74; found: C, 92.33; H, 7.61.

2c (isomer 2c' not detected). Viscous colorless oil. FC eluent: $100 \% n$ Hex. Yield $=40 \%(0.040 \mathrm{mmol}, 9.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.26-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.94(\mathrm{~m}, 3 \mathrm{H})$, 6.14 (q, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 ($\mathrm{s}, 3 \mathrm{H}$), 2.32 (d, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.65 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.9,143.8$, 142.8, 141.5, 138.2, 131.4, 129.3, 128.2 (2C), 126.1, 126.1 (2C), 125.5, 120.7, 54.4, 23.2, 19.8, 17.4; Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{18}\right.$: 234.14): C, 92.26; H, 7.74; found: C, 92.41 ; H, 7.56.

2c
The product is identified as isomer 2c by 1D NOESY NMR experiments. Upon irradiation of the signal at 2.32 ppm , identified as Me^{1} by its multiplicity (d , coupling with H^{2}), correlation with the singlet at 2.57 ppm (identified as Me^{3} by the chemical shift typical of an aromatic Me) is observed.

2d'

2d and 2d' (1.0:1 ratio of regioisomers). Viscous colorless oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=66 \%$ ($0.066 \mathrm{mmol}, 18.2 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.32(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}+4 \mathrm{H})$, $7.24-7.15(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}), 6.22(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.16 (q, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.14$ (d, J = $1.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.71 (s, 3H), 1.70 (s, 3H), 1.31 (s, 9 H), $1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=153.7,153.4,148.9,148.7,144.4,144.0$, $142.0,141.9,141.3,140.4,136.5,136.3,128.2,126.5,126.1,126.1,125.7,125.3,125.2$, $123.5,122.6,119.8,119.3,118.7,55.5,55.1,34.8,34.3,31.7,31.3,23.4,23.2,12.8,12.8$, all peaks are given without assignment; Anal. Calc. for ($\mathrm{C}_{21} \mathrm{H}_{24}$: 276.19): C, 91.25; H, 8.75; found: C, 91.05; H, 9.02.

$2 e^{\prime}$
$\mathbf{2 e}$ and $\mathbf{2 e}$ ' (5.0:1 ratio of regioisomers). Viscous colorless oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=54 \%$ ($0.054 \mathrm{mmol}, 18.2 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.56-7.51$ ($\mathrm{m}, 3 \mathrm{H}$ major + 3H minor), $7.49-7.36$ (m , 5 H major +5 H minor), $7.34-7.27$ ($\mathrm{m}, 5 \mathrm{H}$ major +5 H minor), 6.23 ($q, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ major +1 H minor), 2.18 (d, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$ minor), 2.17 ($\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$ major), 1.74 (s, 3H minor), 1.73 ($\mathrm{s}, 3 \mathrm{H}$ major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=153.6,144.4,142.7$, $141.7,140.9,139.2,136.9,128.7$ (2C), 128.3, 127.0 (2C), 127.0 (2C), 126.7, 126.5 (2C), 125.5, 122.6, 119.4, 55.2, 23.0, 12.8, only the peaks relative to the major regioisomer are reported; Anal. Calc. for ($\mathrm{C}_{23} \mathrm{H}_{20}$: 296.16): C, 93.20; H, 6.80; found: $\mathrm{C}, 93.41$; $\mathrm{H}, 6.73$.

2f. Viscous colorless oil. FC eluent: 100\% $n \mathrm{Hex}$. Yield $=44 \%(0.044 \mathrm{mmol}$, $9.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.21(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.70 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=153.7,144.4,143.5,141.8,136.7$, 128.3, 126.6, 126.2, 126.1, 125.4, 122.6, 119.4, 55.4, 23.0, 12.8; Anal. Calc. for $\left(\mathrm{C}_{17} \mathrm{H}_{16}\right.$: 220.13): C, 92.68; H, 7.32; found: C, 92.75; H, 7.45 .

2g

$2 g^{\prime}$
$\mathbf{2 g}$ and $\mathbf{2 g}$ ' (6.7:1 2g:2g' ratio). Viscous colorless oil. FC eluent: $100 \% n$ Hex. Yield $=59 \% ~(0.059 \mathrm{mmol}, 16.0 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.92-7.87$ (m, 2H), 7.55 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{ddd}, J$ $=8.2,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, \mathrm{J}=8.2,6.8,1.5 \mathrm{~Hz}$, 1H), $7.23-7.14$ (m, 3H), $7.14-7.08$ (m, 2H), 6.28 (q, J $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$, only the peaks relative to $\mathbf{2 g}$ are reported; diagnostic peak for $\mathbf{2 g}$ ': 1.85 (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=148.3,144.4,142.6,142.4,135.6,132.4,129.0,128.4,128.2,126.6,126.2,126.2$, 125.8, 124.2, 124.1, 118.7, 56.4, 21.7, 13.0, only the peaks relative to $\mathbf{2 g}$ are reported; Anal. Calc. for ($\mathrm{C}_{21} \mathrm{H}_{18}$: 270.19): C, 93.29; H, 6.71; found: C, 93.12; H, 6.98 .

2h
not detected

2h' (isomer 2h not detected). Viscous colorless oil. FC eluent: 100\% nHex. Yield = 53\% (0.053 mmol, 13.5 mg ; isolated as a 1:0.3:0.3 2h':3h:3h' inseparable mixture, $22.4 \mathrm{mg}, 0.088 \mathrm{mmol}$ combined). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.44-7.11(\mathrm{~m}, 8 \mathrm{H}$, overlapped with 3 h and $3 h^{\prime}$), $6.13(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}$, overlapped with 3h and $3{ }^{\prime}$ '), 2.14 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=153.4,146.1,145.1,144.3,144.3,144.0,142.1,141.3,140.8,139.3,137.1,134.4$, 133.2, 133.2, 132.0, 128.4, 128.4, 128.3, 128.3, 128.3, 128.2, 128.1, 128.1, 127.9, 127.9, 127.7, 127.5, 127.5, 127.5, 127.3, 127.3, 126.8, 126.5, 125.9, 125.9, 125.6, 124.6, 122.4, $119.5,115.4,114.9,54.9,45.5,44.3,40.9,30.9,27.3,22.8,12.7$ all the peaks of the mixture are given, without assignment; Anal. Calc. for ($\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}$: 254.09): C, 80.15; H, 5.94; found: C, 80.21; H, 6.07.

$\mathbf{2 i}$ and $\mathbf{2 i}$ ($6.4: 1 \mathbf{2 i} \mathbf{i} \mathbf{2 i}$ ratio, isomer $\mathbf{2 i \prime}$ ' not detected). Viscous colorless oil. FC eluent: 99:1 n Hex:EtOAc. Yield $=50 \%$ ($0.050 \mathrm{mmol}, 13.2 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.17-7.11(\mathrm{~m}, 2 \mathrm{H})$, 7.07 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05-7.01$ (m, 2H), 6.82 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.20 ($q, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), 2.28 (s, 3H), 2.11 ($\mathrm{d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.65(\mathrm{~s}, 3 \mathrm{H})$, only the peaks relative to $\mathbf{2 i}$ ' are reported; diagnostic peak for 2i: 6.08 (q, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=159.1,146.1,146.0,143.3,140.8$,
136.2, 135.7, 129.0 (2C), 125.9 (2C), 123.0, 110.5, 105.4, 55.5, 54.5, 23.3, 20.9, 12.7; Anal. Calc. for ($\left.\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}: 264.15\right)$: C, 86.32; H, 7.63; found: C, 86.41; H, 7.48.

2j

$2 \mathbf{j}^{\prime}$

2j and 2j' (1.7:1 2j':2j ratio). Viscous colorless oil. FC eluent: $100 \% n$ Hex. Yield $=45 \%$ ($0.045 \mathrm{mmol}, 10.5 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34-7.12\left(\mathrm{~m}, 9 \mathrm{H} \mathbf{2 j}{ }^{\mathbf{\prime}}+\right.$ $9 \mathrm{H} 2 \mathrm{j}), 6.19$ ($\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{2 j}$), 6.18 (t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ 2j'), 2.54 (tdd, $J=9.0,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H} \mathbf{2 j}$ '), 2.30 (dq, $J=$ $14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{2 j}$), 2.16 ($\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{2 j}$), 2.07 (dq, $J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{2 j}$), 1.69 ($\mathrm{s}, 3 \mathrm{H} \mathbf{2 j}$ '), 1.27 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{2 j}$ '), 0.69 (t, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{2 j}$); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 3) $\delta=154.0$ ($\mathbf{2 j} \mathbf{j}$), 151.6 ($\mathbf{2 j}$), 145.1 ($\mathbf{2 j}$), 143.9 ($\mathbf{2 j} \mathbf{j}$), 143.8 (2j), 143.6 ($\mathbf{2} \mathbf{j}$), 143.1 ($\mathbf{2 j}$), 143.0 ($\mathbf{2 j} \mathbf{j}), 139.8$ ($\mathbf{2 j} \mathbf{j}), 139.1$ ($\mathbf{2 j}$), 138.1 ($\mathbf{2 j}$), 128.3 (2C 2j), 128.3 (2C 2j), 126.5 (2j), 126.5 (2C 2j), 126.4 ($\mathbf{2 j} \mathbf{j}$), 126.2 ($\mathbf{2 j} \mathbf{j}^{\mathbf{\prime}}$), 126.1 (2C 2j’), 125.4 (2j’), 125.2 ($\mathbf{2 j}$), 122.9
 (2j), 12.2 (2j), 9.5 (2j); Anal. Calc. for ($\mathrm{C}_{18} \mathrm{H}_{18}$: 234.14): C, 92.26; H, 7.74; found: C, 92.33; H, 7.67.

2k' (isomer 2k not detected). Viscous pale yellow oil. FC eluent: $100 \% n H e x$. Yield $=55 \%$ ($0.055 \mathrm{mmol}, 15.5 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56$ (dt, J = 7.6, 1.0 Hz, 1H), $7.49-7.42$ (m, 2H), $7.41-7.36$ (m, 1H), $7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-$ 7.17 (m, 2H), $6.59(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=154.4,143.5,142.9,142.1,141.8,135.6,128.6$ (2C), 128.4 (2C), 127.7, 127.7 (2C), 126.6, 126.5, 126.2 (2C), 125.9, 123.2, 120.9, 55.6, 22.9; Anal. Calc. for ($\mathrm{C}_{22} \mathrm{H}_{18}$: 282.14): C, 93.57; H, 6.43; found: C, 93.51; H, 6.65.

2l' (isomer 2I not detected). Viscous pale yellow oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=56 \%(0.056 \mathrm{mmol}, 16.6 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (dt, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33$ (m, 1H), $7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.10-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=154.5,143.7,142.0,141.7,139.8,136.0,135.6,129.1,128.6$, 127.7, 127.2, 126.6, 126.1, 125.8, 123.1, 120.9, 55.3, 23.0, 20.9; Anal. Calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{20}\right.$: 296.16): C, 93.20; H, 6.80; found: C, 92.99; H, 6.92.

2m'

2m' (isomer 2m not detected). Viscous pale-yellow oil. FC eluent: 100\% n Hex. Yield = 62\% (0.062 mmol, 20.1 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37 (dd, J = 8.4, 6.3 Hz, 1H), $7.33-7.18$ (m, 7H), 6.59 (s, 1H), 1.80 (s, 3H), 1.29 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=154.4,149.2,143.7,142.1,141.6,139.8$, 135.7, 128.6 (2C), 127.7 (2C), 127.7, 126.6, 125.8 (2C), 125.7, 125.3 (2C), 123.2, 120.8, 55.3, 34.3, 31.3 (3C), 23.0; Anal. Calc. for ($\mathrm{C}_{26} \mathrm{H}_{26}$: 338.20): C, 92.26; H, 7.74; found: C, 92.12; H, 7.59.

2n

$2 n^{\prime}$
$\mathbf{2 n}$ and $\mathbf{2 n \prime}$ (1.76:1 $\mathbf{2 n} \mathbf{n} \mathbf{2 n}$ ' ratio). Viscous pale yellow oil. FC eluent: $100 \% n H e x$. Yield $=53 \%$ ($0.053 \mathrm{mmol}, 17.6$ $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.94-7.90(\mathrm{~m}, 1 \mathrm{H}$ 2n + 1H 2n'), 7.87 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H} 2 n), 7.81(\mathrm{dt}, \mathrm{J}=$ 8.2, 1.2 Hz, 1H 2n'), $7.76-7.73$ (m, 1H 2n'), $7.69-7.62$ (m, 3H 2n'), $7.61-7.55(m, 2 H 2 n '+1 H 2 n), 7.49-7.42$ (m, 2H 2n), $7.42-7.36$ (m, 2H 2n'), $7.35-7.28(m, 2 H$ 2n), $7.27-7.22$ (m, 1H 2n + 1H 2n'), $7.22-7.11$ (m, 8H $\mathbf{2 n}+5 \mathrm{H} \mathbf{2 n}$), $6.64-6.60\left(\mathrm{~m}, \mathbf{1 H} \mathbf{2 n}+\mathbf{1 H} \mathbf{2 n}\right.$), 2.26 ($\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{2 n}$), 1.91 ($\mathrm{s}, 3 \mathrm{H} \mathbf{2 n} \mathbf{n}^{\mathbf{\prime}}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.4$ (diagnostic for $2 \mathbf{n}^{\text {' }}$), 146.8, 144.1, 143.4, 142.9, 142.2, 142.2, 141.0, 140.4, 136.6, 135.5, 133.5, 132.4, 132.3, 129.5, 129.0, 128.9, 128.9 (4C, diagnostic of 2n), 128.6, 128.1 (4C, diagnostic of $2 n$), 127.9, 127.8, 127.8, 127.7, 127.4, 126.7, 126.4, 126.0, $125.9,125.8,125.5,125.4,125.0,124.3,124.0,123.3,121.0,119.0,66.3,55.7,22.5,13.0$, all peaks are given, without assignment; Anal. Calc. for $\left(\mathrm{C}_{28} \mathrm{H}_{22}: 358.17\right)$: $\mathrm{C}, 93.81 ; \mathrm{H}, 6.19$; found: C, 94.02; H, 6.10.

20'

20' (isomer 20 not detected). Viscous pale yellow oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=54 \%$ ($0.054 \mathrm{mmol}, 19.3 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58$ $-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.35-7.27$ (m, 3H), $7.26-7.21$ (m, 1H), 6.61 (s, 1H), 1.83 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.3$, 143.4, 142.1, 142.0, 141.9, 140.8, 139.4, 135.5, 128.7 (2C), 128.6 (2C), 127.8, 127.7 (2C), 127.1 (2C), 127.1, 127.0 (2C), 126.7, 126.6 (2C), 125.9, 123.2, 121.0, 55.4, 22.9; Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{22}$: 358.17): C, 93.81; H, 6.19; found: C, 94.02; H, 6.10.

Optimized general procedure for the GO-promoted preparation of dienes 3

A screw-cap-vial was charged with reagent grade EtOAc (3.5 ml), the desired cyclobutanol 1 (0.1 mmol) and GO ($20 \mathrm{wt} \%$ with respect to 1). The reaction mixture was warmed at $90^{\circ} \mathrm{C}$ and stirred at the same temperature overnight. Removal of the GO by filtration (Celite pad) and subsequent purification via flash chromatography led to the isolation of compounds $\mathbf{3}$ (generally as a mixture of isomers).

3a (and 3a'). Viscous colorless oil. FC eluent: $100 \% n H e x$. Yield $=95 \%$ ($0.095 \mathrm{mmol}, 22.2 \mathrm{mg}$). 3a-cnj:3a-skp:3a' = 3.1:3.8:1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.52-7.11(\mathrm{~m}, 9 \mathrm{H}+9 \mathrm{H} 3 \mathrm{a}-\mathrm{cnj}+9 \mathrm{H}$ 3a-skp + 9H 3a'), 6.65 ($\mathrm{s}, 1 \mathrm{H} 3 \mathrm{a}^{\prime}$), 6.55 (t, J = 1.5 $\mathrm{Hz}, 1 \mathrm{H} 3 \mathrm{a}-\mathrm{cnj}), 6.53$ (t, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{cnj})$, 5.66 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{3 a - c n j}), 5.64$ (d, J=1.6 Hz, 1H, 3a-cnj), 5.47 (dt, J = 1.4, 0.7 Hz, 1H, 3a-skp), $5.45(\mathrm{dt}, J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{skp}), 5.23(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{cnj}), 5.19(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, 3a-cnj), 5.12 (q, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{skp}$), 5.08 (q, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{skp}), 3.68$ - 3.62 (m, 2H 3a-skp), 2.94 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathbf{a}^{\prime}$), 2.88 ($\mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{a}^{\prime}$), 2.36 (s, 3H, 3a-cnj), 2.35 (s, 3H, 3a-cnj), 2.34 (s, 3H 3a-skp + 3H 3a'), 2.12 ($\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{a}-\mathrm{cnj}$), 2.10 ($\mathrm{d}, \mathrm{J}=1.4$ $\mathrm{Hz}, 3 \mathrm{H}, \mathbf{3 a - c n j}$), 1.61 (s, 3H 3a'), minor peaks corresponding to the Z-isomers of 3a-cnj were detected $(E / Z>15: 1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.8,145.5,145.1,145.1,143.7,143.4$, 141.1, 141.1, 140.5, 138.6, 138.6, 138.0, 137.6, 137.4, 137.2, 137.0, 132.6, 132.1, 129.0, 129.0, 128.9, 128.8, 128.3, 128.2, 128.2, 128.1, 128.1, 128.0, 127.8, 127.6, 127.5, 127.4 $127.2,126.7,126.6,126.4,126.0,125.9,125.9,125.8,125.8,125.6,124.5,115.2,114.7$, $114.5,114.0,45.9,44.3,40.9,27.6,21.3,21.1,21.1,21.0,17.5$, all expected 56 peaks are given, without assignment. Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{18}\right.$: 234.14): C, 92.26; H, 7.74; found: C, 92.38; H, 7.90

3d (and 3d'). Viscous colorless oil. FC eluent: 100\% n Hex. Yield $=94 \%$ (0.094 mmol, 25.9 mg). 3d-cnj:3d-skp:3d' = 0.8:0.9:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.54 - 7.14 (m, 9H + 9H 3d-cnj + 9H 3dskp + 9H 3d'), 6.66 (s, 1H 3d'), $6.57-$ $6.54(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H} 3 \mathrm{~d}-\mathrm{cnj}), 5.68$ (d, $J=1.6$ Hz, 1H 3d-cnj), 5.66 (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}-\mathrm{cnj}), 5.19$ (t, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}-\mathrm{cnj}), 5.15(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}-\mathrm{skp}), 5.09$ (q, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}-\mathrm{skp}$), 3.65 (dt, $J=1.5,0.8 \mathrm{~Hz}, 2 \mathrm{H} 3 \mathrm{~d}-\mathrm{skp}$), 2.94 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}^{\prime}$), 2.88 (d, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~d}^{\prime}\right), 2.15(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H} 3 \mathrm{~d}-\mathrm{cnj}), 2.11$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H} 3 \mathrm{~d}-\mathrm{cnj}$), 1.62 (s, 3H 3d'), 1.34 (s, 3H 3d-cnj) 1.33 (s, 9H 3d-cnj), 1.32 (s, 9H 3d-skp), 1.31 (s, 9H 3d'), minor peaks corresponding to the Z-isomers of 3d-cnj were detected ($E / Z>15: 1$). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.9,150.7,150.4,147.8,145.5,144.9,143.7,143.4,141.0,140.3$,
$138.5,138.4,138.0,137.9,132.9,132.0,129.5,128.3,128.2,128.0,127.8,127.8,127.6$, $127.5,127.4,127.2,127.0,126.8,126.6,126.2,126.2,126.0,125.9,125.8,125.6,125.6$, $125.2,125.2,125.1,125.0,124.3,115.2,114.7,114.5,114.0,45.9,44.4,40.8,34.6,34.5,34.5$, $31.3,31.3,31.3,27.4,17.5,17.4,57$ over the expected 68 peaks (due to partial overlapping) are given, without assignment. Anal. Calc. for ($\mathrm{C}_{21} \mathrm{H}_{24}$: 276.19): C, 91.25; H, 8.75; found: C, 91.03; H, 8.99.

3e (and 3e'). Viscous colorless oil. FC eluent: $100 \% n$ Hex. Yield $=89 \%$ (0.089 mmol, 26.4 mg). 3e-cnj:3e-skp:3e' = 2.2:6.5:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.66-7.26(\mathrm{~m}, 14 \mathrm{H}+14 \mathrm{H} \mathbf{3 e - c n j}+14 \mathrm{H}$ 3e-skp + 14H 3e'), 6.76 (s, 1H 3e'), 6.65 - 6.63 (m, 1H 3e-cnj), $6.61-6.59$ (m, 1H 3e-cnj), 5.75 (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{e}-\mathrm{cnj}$),
5.70 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{e}-\mathrm{cnj}$), 5.55 (q, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{e}-\mathrm{skp}$), 5.50 (dd, $J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}$ 3e-skp), $5.28-5.25$ (m, 1H + 1H 3e-cnj), $5.19-5.15$ (m, 2H 3e-skp), 3.71 (t, J = $0.7 \mathrm{~Hz}, 2 \mathrm{H}$ 3e-skp), 3.01 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{e}^{\prime}$), 2.94 ($\mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{e}^{\prime}$), $2.17-2.16$ ($\mathrm{m}, 3 \mathrm{H}+3 \mathrm{H}$ 3e-cnj), 1.65 (s, 3H 3e'), minor peaks corresponding to the Z-isomers of 3e-cnj were detected $(E / Z>15: 1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.6,145.4,144.9,144.8,143.5,143.3,142.2$, $141.0,141.0,140.8,140.7,140.7,140.7,140.5,140.5,140.2,140.1,139.8,139.8,138.9$, $138.3,134.0,133.7,128.8,128.7,128.7,128.3,128.3,128.3,128.2,128.1,127.8,127.6$, $127.5,127.4,127.3,127.3,127.3,127.3,127.0,127.0,127.0,127.0,126.9,126.8,126.6$, 126.4, 126.3, 126.0, 125.9, 125.8, 125.7, 125.0, 115.5, 115.3, 114.8, 46.1, 44.3, 40.8, 27.5, 17.6; 61 over the expected 68 peaks (due to partial overlapping) are given, without assignment. Anal. Calc. for ($\mathrm{C}_{23} \mathrm{H}_{20}$: 296.16): C, 93.20; H, 6.80; found: C, 92.99; H, 7.02.

3f-cnj

3f (and 3f'). Viscous colorless oil. FC eluent: 100\% n Hex. Yield $=85 \%$ ($0.085 \mathrm{mmol}, 18.7 \mathrm{mg}$). 3f-cnj:3fskp:3f' $=2.6: 2 \cdot 8: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.55-7.15$ (m, 10H + 10H 3f-cnj +10 H 3f-skp + 10H 3f'), 6.73 (s, 1H 3f'), 6.57 (s, 1H 3f-cnj), 5.68 (s, 1H 3f-cnj), 5.48 (s, 2H 3f-skp), 5.25 (s, 1H 3f-cnj), 5.14 (s, 2H 3f-skp), 3.68 (s, 2H 3f-skp), 2.98 (d, J = 12.0 Hz, 1H 3f'), 2.91 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathbf{3 f}^{\prime}$), 2.13 (s, 3H
3f-cnj), 1.63 (s, 3H 3f'), minor peaks corresponding to the Z-isomers of $\mathbf{3 f}$ - $\mathbf{c n j}$ were detected $(E / Z>15: 1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.7,145.4,145.3,143.8,143.4,141.0,140.9$, $138.8,133.7,128.3,128.3,128.2,128.1,127.8,127.8,127.6,127.5,127.4,127.2,126.6$, 126.0, 125.9, 125.8, 125.7, 124.6, 116.2, 115.4, 114.8, 65.8, 44.2, 40.9, 27.5, 17.6; all expected 33 peaks are given, without assignment. Anal. Calc. for ($\mathrm{C}_{17} \mathrm{H}_{16}$: 220.13): C, 92.75; H, 7.45; found: C, 92.66; H, 7.31.

3g-skp

$\mathbf{3 g}^{\prime}$
$\mathbf{3 g}$ (and $\mathbf{3 g}$ '). Viscous colorless oil. FC eluent: 100\% n Hex. Yield $=96 \%$ (0.096 mmol, 25.9 mg). 3g-cnj:3g-skp:3g' = 1.7:2.5:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.91-7.11$ (m, 12H + 12H 3a-cnj + 12H 3a$\mathbf{s k p}+12 \mathrm{H} \mathbf{3 a}$), $6.84(\mathrm{~s}, 1 \mathrm{H}, \mathbf{3 g}$), 6.73 ($\mathrm{t}, \mathrm{J}=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathrm{cnj})$, $6.70-6.67$ (m, 1H 3gcnj), 5.82 (d, J=1.5 Hz, 1H 3g-cnj), 5.72 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathbf{c n j}), 5.63$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathbf{s k p}), 5.49$ (dt, $J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathbf{s k p}$), 5.35 (t, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{3 g}-\mathrm{cnj}), 5.30(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathrm{cnj}), 5.25$ ($\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}-\mathbf{s k p}$), 5.18 ($\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H} 3 \mathrm{~g}-\mathrm{skp}$), $3.82-3.77$ (m, 2H 3g-skp), 3.09 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}$), 3.02 (d, $\left.J=12.4 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~g}^{\prime}\right), 2.23(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{3 g}-\mathrm{cnj}), 2.15(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H} \mathbf{3 g - c n j}), 1.67$ ($\mathrm{s}, 3 \mathrm{H} 3 \mathrm{~g}$ '), minor peaks corresponding to the Z-isomers of 3 g -cnj were detected ($E / Z>15: 1$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.3,147.7,145.4,145.3,145.2,144.4,143.9,143.3,142.7$, $142.4,141.0,139.0,138.2,138.1,135.6,134.5,133.4,133.4,133.3,133.0,132.9,132.8$, $132.5,132.2,129.0,128.4,128.3,128.3,128.2,128.2,128.1,128.1,127.9,127.8,127.7$, $127.6,127.5,127.4,127.3,126.2,126.2,126.1,126.1,126.0,126.0,125.9,125.9,125.9$, $125.8,125.8,125.7,125.6,124.7,124.7,124.4,124.3,124.2,124.1,123.4,122.7,118.7$, $115.8,115.5,115.4,114.9,58.5,56.4,46.1,44.3,40.9,27.6,22.0,21.7,18.4,17.6,13.0$, all expected 76 peaks are given, without assignment. Anal. Calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{18}\right.$: 270.14): C, 93.29; H, 6.71; found: C, 93.45; H, 6.66.

3h-skp

$3 h^{\prime}$

3h (and 3h'). Viscous colorless oil. FC eluent: $100 \% n H e x$. Yield $=98 \%$ (0.098 mmol, 25.1 mg). 3h-cnj:3h-skp:3h' = 0.4:0.6:1 (only one conjugated diene was detected). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.44-7.25 (m, 9H 3h-cnj + 9H 3h-skp + 9H 3h'), 6.65 (s, 1H 3h'), 6.53 (td, $J=1.4$, $0.6 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{3 h}-\mathrm{cnj}$), 5.67 (dd, $J=1.5,0.6$ Hz, 1H 3h-cnj), $5.45-5.43$ (m, 2H 3hskp), 5.23 (t, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~h}-\mathbf{c n j}), 5.14$ ($\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{~h}-\mathrm{skp}$), 5.09 ($\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$ 3h-skp), $3.67-3.60$ ($\mathrm{m}, 2 \mathrm{H} 3 \mathrm{~h}-\mathrm{skp}$), 2.90 ($\mathrm{s}, 2 \mathrm{H} 3 \mathbf{h}^{\prime}$), 2.08 ($\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H} 3 \mathrm{~h}-\mathrm{cnj}$), 1.59 (s , $3 \mathrm{H} 3 \mathbf{h}^{\prime}$), minor peaks corresponding to the Z -isomer of 3 h -cnj were detected ($E / Z>15: 1$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta={ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CdCl}_{3}$) $\delta 146.1,145.2,145.1,144.3,144.0$, $141.8,140.8,139.3,137.6,134.4,133.2,133.2,131.4,129.5,129.2,128.4,128.3,128.3$, $128.2,128.1,127.9,127.9,127.7,127.5,127.3,127.3,127.2,126.5,125.9,124.6,115.6$, 115.4, 114.9, 58.5, 45.5, 44.3, 40.9, 27.3, 17.5; all expected 39 peaks are given, without assignment. Anal. Calc. for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}\right.$: 254.09): C, 80.15; H, 5.94; found: C, 79.95; H, 6.06.

3i-skp

$3 i^{\prime}$
$3 i$ (and $3 i^{\prime}$). Viscous colorless oil. FC eluent: $100 \% n H e x$. Yield $=$ 95\% ($0.095 \mathrm{mmol}, 25.1 \mathrm{mg}$). 3i-cnj:3i-skp:3i' $=1 \cdot 4: 2 \cdot 2: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.42$ $-6.67(\mathrm{~m}, 8 \mathrm{H}+8 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj}+8 \mathrm{H} 3 \mathrm{i}-$ skp +8 H 3 i '), 6.62 (s, 1H 3i'), 6.55 (t, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj})$, 6.51 (t, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj})$,
5.65 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj}$), 5.64 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj}$), 5.46 (s, 1H 3i-skp), 5.44 (s, 1H $3 \mathbf{i - s k p}), 5.22(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}-\mathrm{cnj}), 5.18(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{3 i - c n j}), 5.12(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$ 3i-skp), 5.09 ($\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H} \mathbf{3 i}-\mathbf{s k p}$), 3.83 ($\mathrm{s}, 3 \mathrm{H} \mathbf{3 i - c n j}$), 3.81 ($\mathrm{s}, 3 \mathrm{H} \mathbf{3 i}$), 3.80 ($\mathrm{s}, 3 \mathrm{H} \mathbf{3 i} \mathbf{i - c n j}$), 3.79 (s, 3H 3i-skp), 3.64 - 3.62 (m, 2H 3i-skp), 2.94 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H} 3 \mathrm{i}$ '), 2.86 (d, J = 12.5 Hz, 1H 3i'), 2.35 (s, 3H3i'), 2.35 (s, 3H 3i-cnj), 2.33 (s, 3H 3i-skp), 2.27 (s, 3H 3i-cnj), 2.11 $2.09(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H} \mathbf{3 i}-\mathrm{cnj}), 1.60(\mathrm{~s}, 3 \mathrm{H} \mathrm{3i})$, minor peaks corresponding to the Z-isomers of $\mathbf{3 i} \mathbf{i}$ cnj were detected $(E / Z>15: 1) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.5,159.5,149.6,145.4$, $145.1,145.1,145.0,143.8,143.3,142.7,140.8,140.5,138.4,138.0,137.6,137.4,137.2$, 136.2, 135.7, 132.4, 132.0, 129.2, 129.2, 129.1, 129.0, 129.0, 128.9, 128.9, 127.8, 126.6, $126.4,125.9,125.8,125.8,124.5,123.0,119.2,118.6,118.5,118.4,115.4,114.9,114.6$, $114.0,112.9,112.7,112.4,112.4,112.1,111.9,111.9,110.6,110.5,105.4,55.5,55.2,55.2$, $55.2,44.2,41.0,27.5,23.3,21.3,21.0,20.9,17.6,17.5,12.7$; all expected 68 peaks are given, without assignment. Anal. Calc. for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}\right.$: 264.15$)$: C, 86.32 ; $\mathrm{H}, 7.63$; found: $\mathrm{C}, 86.30$; H , 7.42

3k

3k'

3k (and $\mathbf{3 k}$ '). Viscous colorless oil. FC eluent: 100\% n Hex. Yield $=89 \%$ ($0.089 \mathrm{mmol}, 25.1 \mathrm{mg}$). 3k:3k' $=$ 1.9:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.48-7.09$ (m , 15H 3k + 15H 3k'), 7.00 (s, 1H 3k'), 6.75 (s, 1H 3k), 5.40 (s, 1H 3k), 5.04 (s, 1H 3k), 3.43 (s, 2H 3k'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=146.1,145.4$, $145.3,144.7,143.1,140.7,140.1,134.2,131.9,130.1,128.3,128.3,128.2,128.1,128.1$, 128.1, 127.9, 127.9, 127.6, 127.4, 127.2, 127.0, 126.7, 125.9, 124.8, 117.3, 53.2, 45.1; all expected 28 peaks are given, without assignment. Anal. Calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{18}: 282.14\right)$: $\mathrm{C}, 93.57$; H, 6.43; found: C, 93.61; H, 6.67.

31

31'

31 (and 3I'). Viscous colorless oil. FC eluent: $100 \% n H e x$. Yield $=64 \%$ ($0.064 \mathrm{mmol}, 19.0 \mathrm{mg}$). 31:31' $=4.0: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.36$ -7.02 (m, 14H 3I + 14H 3I'), 6.91 (s, 1H 3I'), 6.71 (s, 1H 3I), 5.35 (s, 1H 3I), 4.94 (s, 1H 3I), 3.40 (s, 2H 3I'), 2.34 (s, $3 \mathrm{H} 3 \mathrm{I}^{\prime}$), 2.31 (s, 3 H 3 I). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta=144.9,144.5,143.1,140.1,137.9,137.2$, 130.8, 130.1, 129.1, 129.0, 128.8, 128.5, 128.5, 128.2, 128.1, 128.1, 127.9, 127.7, 127.5, 127.2, 126.9, 126.4, 126.1, 125.8, 124.7, 116.2, 53.2, 45.1, 21.3, 21.1; all expected 30 peaks are given, without assignment.

Anal. Calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{20}\right.$: 296.16): $\mathrm{C}, 93.20 ; \mathrm{H}, 6.80$; found: $\mathrm{C}, 93.40 ; \mathrm{H}, 6.77$.

3m (and 3m'). Viscous colorless oil. FC eluent: $100 \% n \mathrm{Hex}$. Yield $=$ 94\% ($0.094 \mathrm{mmol}, 31.8 \mathrm{mg}$). 3m:3m' = 6.3:1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.40-7.10\left(\mathrm{~m}, 14 \mathrm{H} 3 \mathrm{~m}+14 \mathrm{H} 3 \mathrm{~m}^{\prime}\right), 6.93$ (s, 1H 3m'), 6.74 (s, 1H 3m), 5.37 (s, 1H 3m), 4.98 (s, 1H 3m), 3.41 (s, 2H 3m'),

$3 m^{\prime}$ 1.32 (s, 9H 3m'), 1.30 (s, 9H 3m). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 150.4, 145.0, 144.4, 143.2, 140.1, 137.8, 130.1 (2C), 128.6, 128.1 (2C), 127.9 (2C), 127.9 (2C), 127.5, 126.9, 126.4 (2C), 125.0 (2C), 116.7, 34.5, 31.3 (3C); only the peaks of $\mathbf{3 j}$ are reported. Anal. Calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{26}\right.$: 338.20): C, 92.26; H, 7.74; found: C, 92.52; H, 7.45.

$3 n '$

3n. Viscous colorless oil. FC eluent: 100\% n Hex. Yield $=74 \%$ (0.074 mmol, 24.6 mg). 3k:3k' $>\mathbf{2 0 : 1} \mathrm{I}^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.83$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.20-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=145.1,144.9$, 143.0, 140.0, 137.9, 133.2, 132.8, 130.0 (2C), 128.3, 128.2 (2C), 128.1, 128.0 (2C), 127.9 (2C), 127.7, 127.6, 127.4, 127.0, 126.0, 125.8, 125.6, 124.7, 117.6. Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{22}$: 358.17): $\mathrm{C}, 93.81$; $\mathrm{H}, 6.19$; found: $\mathrm{C}, 93.71$; H, 6.22.

Composition expressed in atomic \% were obtained from survey XPS Spectra.
XPS and ssNMR tables and spectra

Sample	C 1 s 285 eV	O 1 s 532.6 eV	N 1 s 400 eV	Cl 2 p 200 eV	S 2 p 168 eV	XPS O / C
Control GO	72.6	26.3	0.2	0.6	0.2	0.36
GO 100\% Conditions A	78.1	21.2	0.2	0.3	0.2	0.27
GO 20\% Conditions B	76.2	22.9	0.3	0.3	0.2	0.30

Table S1. XPS atomic composition (\% at.) and O/C ratio from O 1s and C 1s. Errors on C 1 s and O 1 s are $\pm 1.0 \%$. Errors on $\mathrm{N} 1 \mathrm{~s}, \mathrm{Cl} 2 \mathrm{p}$ and S 2 p are $\pm 0.1 \%$.

Sample	$\mathrm{C}=\mathrm{C} \mathrm{sp}^{2}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{O}-\mathrm{C}=\mathrm{O}$
GO control	41	10	18	23	7	1.3
GO 100\% Conditions A	58	6	10	18	5	2.6
GO 20\% Conditions B	45	8	13	24	7	2.9

Table S2 XPS C 1s fit (\% on total C 1s signal). Errors on C=C sp ${ }^{2}$, $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ are $\pm 2 \%$, errors on COH and $\mathrm{C}=\mathrm{O}$ are $\pm 1 \%$; errors on $\mathrm{O}-\mathrm{C}=\mathrm{O}$ are $\pm 0.5 \%$.

Sample	$\mathrm{C}=\mathrm{C} \mathrm{sp}^{2}$ 130 ppm	$\mathrm{C}-\mathrm{OH}$ 69 ppm	$\mathrm{C}-\mathrm{O}-\mathrm{C}$ 58 ppm	$\mathrm{C}=\mathrm{O}$ 193 ppm	$\mathrm{O}-\mathrm{C}=\mathrm{O}$ 162 ppm
Control GO	43.2	16.3	27.6	2.5	10.4
GO 100\% Conditions A	50.7	12.5	22.9	2.9	11.3
GO 20\% Conditions B	43.8	15.5	22.9	3.0	14.5

Table S3. Quantitative composition of GO in different conditions obtained by using ssNMR ${ }^{13} \mathrm{C}$ direct excitation signal. Errors on all peaks are $\pm 1 \%$; errors on $\mathrm{O}-\mathrm{C}=\mathrm{O}$ are ± 1.5 \%.

Figure S1. XPS of GO 20 \%wt - Conditons B, after 3a-3a' (a, XPS Survey; c, C1s) and control GO in AcOEt $90^{\circ} \mathrm{C} 16 \mathrm{~h}$ (a, XPS Survey; b, C1s).

Figure S2. ${ }^{13} \mathrm{C}$ direct excitation ssNMR spectra of a) GO control; b) GO 100% wt Conditions A, c) GO 20% wt - Conditions B. Spinning side bands are marked with *. The narrow signal at 102-103 was associated with unknown epoxy glue present in spinning probe and marked with **. The broad peak at 112 ppm, with100 ppm FWHM, was associated with resin or is indicative of paramagnetically influenced sp^{2} carbon. ${ }^{[7]}$

Figure S3. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Cross Polarization ssNMR spectra of a) GO control; b) GO 100% wt - Conditions A, after 2a-2a' synthesis; c) GO 20\% wt - Conditions B, after 3a3a' synthesis.

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra
1a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\sim}$

1b ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1c ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{m}{\grave{j}}$
$\underbrace{\infty \sim \underbrace{\infty}}$

1d ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 fis

 $\underbrace{\infty}$

1e ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1f ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 \mathrm{~g}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

1h ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1h ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Mo

$1 \mathrm{i}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 \mathrm{j}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1k ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{+}{\sim}$
$\stackrel{0}{\circ} \dot{\square}$

$11^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 \mathrm{~m}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1n ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$10{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{m}{n}$
분

2a and 2a' ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

2a and 2a' ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

2b and $2 \mathrm{~b}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b and $2 \mathrm{~b}{ }^{\prime}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b

2b'

2c ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

2c ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2c 1D-NOESY NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), relevant region

2d and 2d' ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2d ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\text { ヘni }}$

2d

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

2 e and $2 \mathrm{e}^{\mathbf{\prime}}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2 e and $2 \mathrm{e}^{\mathrm{\prime}}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ก ~~
$\stackrel{\infty}{\sim}$

$2 f{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\sim}{\sim}$
$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim}$

2 g and $\mathbf{2 g}{ }^{\prime}{ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{2 g}$ and $\mathbf{2 g}^{\prime}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\substack{0 \\ i \\ i}}{0}$

2i and $\mathbf{2 i}^{\prime}{ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2j and 2j' ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{2 k}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2I' ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2 \mathrm{~m}^{\prime}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

ni

2n and $2 \mathrm{n}^{\text {, }}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$20{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3a and $3 \mathrm{a}^{\text {' }}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d and $3 \mathrm{~d}^{\prime}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

oin $\dot{\sim}$

3 e and $3 \mathrm{e}^{\prime}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3 g and $3 \mathrm{~g}{ }^{\mathbf{\prime}}{ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3 g and $3 \mathrm{~g}{ }^{\mathbf{1 3}} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3h and $3 \mathrm{~h}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3h-skp 3h'

$3 i$ and $3 i{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3 k and $3 \mathrm{k}{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

31 and $31{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$31 '$

31

3 m and $3 \mathrm{~m}^{\prime}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3m and $3 \mathrm{~m}{ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{n}{\sim}$

-
$3 m^{\prime}$

$3 \mathrm{n}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3n

References

${ }^{[1]}$ X. Ning, Y. Chen, F. Hu, Y. Xia, Org. Lett. 2021, 23, 8348-8352.
${ }^{[2]}$ A. Kovtun, D. Jones, S. Dell'Elce, E. Treossi, A. Liscio, V. Palermo, Carbon 2019, 143, 268-275.
${ }^{[3]}$ R. Gallorini, B. Ciuffi, F. R. Fernández, Co. Carozzini, E. Ravera, A. M. Papini, L. Rosi, ACS Omega, 2022, doi.org/10.1021/acsomega.2c04734.
${ }^{[4]}$ a) A. Pines, M.G. Gibby, J.S. Waugh, J. Chem. Phys. 1973, 59, 569-590; b) D. Marks, S.A. Vega, J. Magn. Reson., Ser. A 1996, 118, 157-172.
${ }^{[5]}$ a) E. Vinogradov, P.K. Madhu, S. Vega, Chem. Phys. Lett. 1999, 314, 443-450; b) E. Vinogradov, P.K. Madhu, S. Chem. Phys. Lett. 2002, 354, 193-202; c) M. Leskes, R.S. Thakur, P.K. Madhu, N.D. Kurur, S. Vega, J. Chem. Phys. 2007, 127, 024501.
${ }^{[6]}$ F. Bruno, R. Francischello, G. Bellomo, L. Gigli, A. Flori, L. Menichetti, E. Ravera, E. Anal. Chem. 2020, 92, 4451-4458.
${ }^{[7]}$ H.R. Thomas, S.P. Day, W.E. Woodruff, C. Vallés' R.J. Young, I.A. Kinloch, G.W. Morley, J.V. Hanna, N.R. Wilson, J.P. Rourke, Chem. Mater. 2013, 25, 3580.

