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ALT-CAFFARELLI-FRIEDMAN MONOTONICITY

FORMULA AND MEAN VALUE PROPERTIES IN

CARNOT GROUPS WITH APPLICATIONS

FAUSTO FERRARI AND NICOLÒ FORCILLO

Abstract. In this paper we provide a different approach to the Alt-
Caffarelli-Friedman monotonicity formula, reducing the problem to test
the monotone increasing behavior of the mean value of a function involv-
ing the norm of the gradient. In particular, we show that our argument
holds in the general framework of Carnot groups.
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1. Introduction

In this paper, we discuss sufficient conditions under which an Alt-Caffarelli-
Friedman-type monotonicity formula holds for functions satisfying homoge-
neous second order elliptic equations in Carnot groups.

In addition, we provide a different approach to that type of result that
changes the classical strategy of facing the problem and becomes useful for
obtaining counterexamples in noncommutative structures. We refer to [1]
and [4] for the original proofs in the Euclidean setting, [9] for an overview,
and [8] for a counterexample in the Heisenberg group.

We have been motivated in this research by the project of extending some
regularity results for free boundary problems already known for linear and
nonlinear elliptic operators, see [10].
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Our strategy is mainly based on the geometric structure underlying the
functions we are dealing with. The main tool is the existence of a group of
dilations under which the solutions remain in the same class. We can refer
to this as an invariant by scaling property. Moreover, the existence of a
fundamental solution associated with the operator and, as a byproduct, the
validity of intrinsic mean value properties for intrinsic harmonic functions
are crucial.

The proof we are going to recall in the next section could be considered
a folk approach to the problem of finding mean formulas. Indeed, its trace
can be found in the potential theory literature for a long time. It was first
applied to the Laplace operator and then adapted to different frameworks,
for instance, taking into account the geometry associated with the operator.

An essential remark, in the problem of finding mean formulas, was made
when it was noticed that the set on which it is useful to apply the mean
formula has to be determined by the level surfaces of the fundamental solu-
tion of the operator under consideration. As far as we know, this idea might
be consider a folk knowledge. The papers in which it was first explicitly
used should be [28], [26], [25], [15], [19], [20], [21], [22] and, more recently,
it was applied in [7] in the parabolic setting. In [6], the approach was ap-
plied to degenerate elliptic operators, determining a new natural geometry.
We quote here [18], [11], and [2] for a comprehensive discussion in Carnot
groups. Also, in [24] an interesting historical review of the mean value prop-
erties can be found. In this paper, we mainly use the results in [6], see also
[2], where the theory about mean value properties was completely developed
and fixed.

In order to introduce our main results, we would need to discuss many
definitions that we have postponed to Section 3 for organizing reasons. Let
us simply recall that L denotes a second order operator satisfying some
suitable properties, such as the class of sub-Laplacians on Carnot groups.
People unfamiliar with this stuff may think that L is the usual Laplace
operator on the Euclidean space R

N and Ω ⊂ R
N is an open connected

set. Moreover, given a function u in a suitable Sobolev space, we write the
following functional:

JG
u,x0

(r) :=
1

r4

ˆ

D(x0,r)
|∇Gu

+|2Γ(x0, ξ) dξ

ˆ

D(x0,r)
|∇Gu

−|2Γ(x0, ξ) dξ,

(1.1)
where Γ denotes the fundamental solution associated with the operator
L, D(x0, r) is the appropriate ball centered at x0 of radius r, and G is
a Carnot group, see Section 3 for the precise definitions. We recall that
u+ := sup{u, 0}, u− := sup{−u, 0}. For instance, if G = R

N , N ∈
N, endowed with the usual commutative inner law, L = ∆, ∇G = ∇,
Γ(x, y) = cN |x− y|2−N , D(x0, r) = B(x0, r) = {x ∈ R

N : |x− x0|RN < r},
2



and | · |RN denotes the usual Euclidean norm in R
N , then

JRN

u,x0
(r) := c2N

1

r4

ˆ

B(x0,r)

|∇u+|2

|ξ − x0|
N−2
RN

dξ

ˆ

B(x0,r)

|∇u−|2

|ξ − x0|
N−2
RN

dξ (1.2)

becomes, up to a multiplicative constant, the classical functional associated
with the Alt-Caffarelli-Friedman formula in the Euclidean framework, see
[1]. In [1], Alt, Caffarelli and Friedman prove that if ∆u± ≥ 0 in Ω and

x0 ∈ ∂Ω+(u), then JRN

u,x0
is monotone increasing in a right neighborhood of

0.
We state here a stronger version of our main result, and we refer to Section

4 for a more general Theorem 4.1, including some technical definitions on the
mean formulas in Carnot groups, see [2], which we prefer to avoid introducing
here for simplifying the exposition.

Mainly following the notation of Section 5.5 in [2], for every x0 ∈ G and
r > 0, we define the intrinsic ball of center x0 and radius r as D(x0, r) :=
{y ∈ G : |x−1

0 ◦ y| < r}, where | · | denotes a suitable norm on the group
G. Moreover, for every continuous function u ∈ C(G) and r > 0, we denote
the mean value associated with u and r at x0 in the Carnot group G by:

Mr(u)(x0) :=

ˆ

∂D(x0,r)
u(y)K(x−1

0 ◦ y)dσ(y), (1.3)

where K is a positive kernel that we recall in Section 3, together with further
details about previous definitions. We set Ω+(u) := {x ∈ Ω : u(x) > 0} and
Ω−(u) := {x ∈ Ω : u(x) ≤ 0}o.

Theorem 1.1. Let Ω ⊂ G be an open set in a Carnot group G. Let u ∈ C(Ω)
such that |∇Gu|

2 ∈ L1
loc(Ω). For every x0 ∈ ∂{u > 0} ∩ Ω, if

r → Mr

(

(

|∇Gu
±(x0 ◦ ·)|

|∇G| · ||

)2
)

(0) (1.4)

are monotone increasing almost everywhere in a right neighborhood of 0,
then the function JG

u,x0
is monotone increasing in a right neighborhood of 0.

Therefore, when G = R
N , condition (1.4) reduces to verify the local

increasing behavior almost everywhere of

r → Mr

(

|∇u±(x0 + ·)|2
)

(0),

because |∇|x|| = 1. In particular, as a consequence of our Theorem 1.1, the
following result holds.

Corollary 1.2. Let u ∈ C2(Ω) be harmonic in Ω. For every x0 ∈ Ω,

r →
cN

r2

ˆ

B(0,r)

|∇u(x0 + ξ)|2

|ξ|N−2
RN

dξ (1.5)

is monotone increasing in a right neighborhood of 0.
3



Remark 1.3. Our results appear useful in some cases. Nevertheless, it cannot
be considered an alternative proof of the celebrated Alt-Caffarelli-Friedman
monotonicity theorem. In fact, our hypotheses apply to the case in which
∆u = 0 in Ω+(u) and ∆u = 0 in Ω−(u), that is in the same assump-
tions of the Alt-Caffarelli-Friedman monotonicity formula. However, despite
u+ and u− are subharmonic, we cannot deduce that ξ → |∇u±(x0 + ξ)|2

are subharmonic. Indeed, in general, ξ → |∇u±(x0 + ξ)|2 are not up-
per semicontinuous, so they cannot be subharmonic, and we cannot de-
duce that r → Mr

(

|∇u±(x0 + ·)|2
)

(0) are monotone increasing. In any
case, in some particular situations, by knowing the relationship between
r → Mr

(

|∇u+(x0 + ·)|2
)

(0) and r → Mr

(

|∇u−(x0 + ·)|2
)

(0), we may de-

duce some results about the monotonicity of JRN

u,x0
.

The last argument may be used in Carnot groups for constructing coun-
terexamples to the increasing monotone behavior of JG

u,x0
. Indeed, in this

paper, in addition to the characterization via mean formulas, we obtain new

counterexamples to the monotonicity of JH1

u,x0
in the Heisenberg group H

1,

see also [8]. Specifically, we obtain the following result.

Corollary 1.4. In the Heisenberg group H
1, there exist harmonic functions

and points x0 ∈ ∂{u > 0} ∩ Ω such that JH1

u,x0
is monotone decreasing in

a right neighborhood of 0. In particular, for every c1, c2 ∈ R such that
c21 + c22 > 0, the function

u(x, y, t) = c1x+ c2y + 3t(c2x− c1y)− 2(c1x
3 + c2y

3)

is harmonic in H
1, 0 ∈ ∂{u > 0}, and

r → JG
u,0(r)

is monotone decreasing in a right neighborhood of 0.

The paper is organized as follows. In Section 2, we start by recalling the
classical approach described in [17] to determine mean formulas. In Section
3, we introduce the basic notation of Carnot groups. In Section 4, we show
the proofs of our main results and corollaries.

2. The well-known key idea for obtaining a mean value

formula

In this section, we recall how to obtain a mean value formula in a standard
way. Let O ⊂ R

n be an open bounded connected set. For every open set
Ω ⊂ O, endowed with a smooth boundary, and for every y ∈ Ω, we consider
a function u satisfying

Lu := div(A(x)∇u(x)) = f(x) in O,

where A ≥ 0 is a matrix with smooth coefficients. If the fundamental
solution ΓA exists for L, then, denoting byD(y) ⊂ Ω a smooth neighborhood

4



of y, it holds
ˆ

Ω\D(y)
ΓA(y, x)f(x) dx =

ˆ

Ω\D(y)
(ΓA(y, x)Lu(x)− u(x)LΓA(y, x)) dx

=

ˆ

∂(Ω\D(y))
(〈A(x)∇u(x), n〉ΓA(y, x)− 〈A(x)∇ΓA(y, x), n〉u(x)) dσ(x).

In particular, if Ω = ΩR(y) :=
{

x ∈ O : ΓA(x, y) >
1
R

}

, R > 0, and we
take D(y) = Ωr(y), 0 < r < R, then
ˆ

ΩR(y)\Ωr(y)
ΓA(y, x)f(x)dx =

=

ˆ

∂(ΩR(y)\Ωr(y))
〈A(x)∇u(x), n〉ΓA(y, x) dσ(x)

−

ˆ

∂(ΩR(y)\Ωr(y))
〈A(x)∇ΓA(y, x), n〉u(x) dσ(x)

=
1

R

ˆ

∂ΩR(y)
〈A(x)∇u(x), n〉dσ(x) −

1

r

ˆ

∂Ωr(y)
〈A(x)∇u(x), n〉dσ(x)

−

ˆ

∂ΩR(y)
〈A(x)∇ΓA(y, x), n〉u(x) dσ(x)

+

ˆ

∂Ωr(y)
〈A(x)∇ΓA(y, x), n〉u(x) dσ(x).

(2.1)

On the other hand, we know that |〈A(x)∇u(x), n〉| ≤ ‖A‖L∞(O)‖∇u‖L∞(O).

Thus, if |∂Ωr(y)|n−1

r → 0 as r → 0, we get

1

r

ˆ

∂Ωr(y)
〈A(x)∇u(x), n〉 dσ(x) → 0 as r → 0.

Moreover, supposing there exists a change of variables Ty,r such that
ˆ

∂Ωr(y)
〈A(x)∇ΓA(y, x), n〉u(x) dσ(x)

= rQ−1

ˆ

∂Ω1(0)
〈A(Ty,r(ξ))(∇ΓA)(y, Ty,r(ξ)), n〉u(Ty,r(ξ)) dσ(ξ)

and

rQ−1

ˆ

∂Ω1(0)
〈A(Ty,r(ξ))(∇ΓA)(y, Ty,r(ξ)), n〉u(Ty,r(ξ)) dσ(ξ) → cnu(y)

as r → 0, it holds, according to (2.1),
ˆ

ΩR(y)\Ωr(y)
ΓA(y, x)f(x)dx = −

ˆ

∂ΩR(y)
〈A(x)∇ΓA(y, x), n〉u(x) dσ(x)

+ cnu(y) +
1

R

ˆ

∂ΩR(y)
〈A(x)∇u(x), n〉 dσ(x).

(2.2)
5



Assuming now that h satisfies
{

Lh = 0 in ΩR(y),

h = ΓA(·, y) on ∂ΩR(y),
(2.3)

we achieve
ˆ

ΩR(y)
h(x)Lu(x) dx =

ˆ

ΩR(y)
(h(x)Lu(x)− u(x)Lh(x)) dx

=

ˆ

∂(ΩR(y))
(〈A(x)∇u(x), n〉h(x) − 〈A(x)∇h(x), n〉u(x)) dσ(x).

(2.4)

Hence, subtracting (2.2) to (2.4) term by term, we find
ˆ

ΩR(y)
(h(x) − ΓA(y, x))f(x) dx

=

ˆ

∂ΩR(y)
〈A(x)∇(−h(x) + ΓA(x, y)), n〉u(x) dσ(x)

− cnu(y) +

ˆ

∂ΩR(y)
〈A(x)∇u(x), n〉(−ΓA(x, y) + h) dσ(x).

Next, recalling that ΓA(x, y)− h = 0 on ∂ΩR(y) in view of (2.3), we obtain
the following representation formula

cnu(y) =

ˆ

∂ΩR(y)
〈A(x)∇(ΓA(x, y)− h(x)), n〉u(x) dσ(x)

−

ˆ

ΩR(y)
(h(x) − ΓA(x, y))f(x) dx,

that is, assuming cn = 1 possibly adjusting the constant in ΓA,

u(y) =

ˆ

∂ΩR(y)
〈A(x)∇GΩR(y),A(x)(x), n〉u(x) dσ(x)

+

ˆ

ΩR(y)
GΩR(y),A(x)(x)f(x) dx,

where GΩR(y),A(x) is the Green function associated with the set ΩR(y) eval-
uated at the pole y. This argument, when f = 0, yields the following mean
formula:

u(y) =

ˆ

∂ΩR(y)
〈A(x)∇GΩR(y),A(x)(x), n〉u(x) dσ(x).

Exploiting the previous strategy, with the suitable matrix A, it is possible
to tailor mean value formulas in Carnot groups associated with the sub-
Laplacian ∆G. A detailed overview of the tools to study mean value formulas
in Carnot groups can be found in [2]. Nevertheless, in the next section, we
recall the main definitions and results we use in our proofs.
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3. Main notation of Carnot groups and mean value formulas

A simply connected stratified nilpotent Lie group (G, ◦) (in general noncom-
mutative) is said a Carnot group of step κ if its Lie algebra g admits a step
κ stratification, i.e., there exist linear subspaces V1, ..., Vκ such that

g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ, (3.1)

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ]
with X ∈ V1 and Y ∈ Vi. The first layer V1, the so-called horizontal layer,
plays a key role in the theory, since it generates g by commutation. Be-
sides Euclidean spaces, the only abelian Carnot groups, typical examples
are Heisenberg groups and upper triangular groups. For a general introduc-
tion to Carnot groups, from our point of view, and further examples, we
refer, e.g., to [2], [11], and [27].

Let us consider a Carnot group G. Set mi := dim(Vi), for i = 1, . . . , κ,
and hi = m1+ · · ·+mi, so that hκ = N . For the sake of simplicity, we write
m := m1. We also denote by Q the homogeneous dimension of G, i.e., we
define

Q :=
κ
∑

i=1

idim(Vi).

We recall that, if e is the unit element of (G, ◦), the map X → X(e), which
associates a left-invariant vector fieldX with its value at e, is an isomorphism
from g to TGe, identified with R

N . From now on, we shall systematically
use these identifications.

We now choose a basis e1, . . . , eN of RN adapted to the stratification of
g, namely

ehj−1+1, . . . , ehj
is a basis of Vj , for each j = 1, . . . , κ.

Moreover, let X = {X1, . . . ,XN} be the family of left-invariant vector fields
such that Xi(e) = ei, i = 1, . . . , N . The sub-bundle of the tangent bundle
TG spanned by the vector fields X1, . . . ,Xh1

plays a crucial role in the
theory, and it is called the horizontal bundle HG. The fibers of HG are

HGx = span {X1(x), . . . ,Xh1
(x)}, x ∈ G.

We can endow each fiber HGx with a scalar product 〈·, ·〉x and a norm | · |x
that make the basis X1(x), . . . ,Xh1

(x) an orthonormal basis. Precisely, if

v =
∑h1

i=1 viXi(x) = (v1, . . . , vh1
) and w =

∑h1

i=1 wiXi(x) = (w1, . . . , wh1
)

are in HGx, then 〈v,w〉x :=
∑h1

j=1 vjwj and |v|2x := 〈v, v〉x. The sections
of HG are called horizontal sections and are the so-called horizontal vector

fields. A vector of HGx is a horizontal vector, while any vector in TGx not
horizontal is vertical. Each horizontal section is identified by its canonical co-
ordinates with respect to the moving frameX1(x), . . . ,Xh1

(x). In this way, a
horizontal section φ is described by a function φ = (φ1, . . . , φh1

) : RN → R
h1 .

Moreover, a Carnot group G can always be identified, through exponential
coordinates, with the Euclidean space (RN , ·), where N is the dimension of

7



g, endowed with a suitable group operation. The explicit expression of the
group operation · is determined by the Campbell-Hausdorff formula.

For any x ∈ G, the (left) translation τx : G → G is defined as

z 7→ τxz := x ◦ z.

For any λ > 0, the dilation δλ : G → G has the expression

δλ(x1, ..., xN ) = (λd1x1, ..., λ
dN xN ), (3.2)

where di ∈ N is called homogeneity of the variable xi in G (see [11], Chapter
1) and is defined as

dj = i whenever hi−1 + 1 ≤ j ≤ hi. (3.3)

Hence, it holds 1 = d1 = ... = dh1
< dh1+1 = 2 ≤ ... ≤ dN = κ. Throughout

this paper, by G-homogeneity we mean homogeneity with respect to group
dilations δλ (see again Chapter 1 in [11]). The Haar measure of G = (RN , ◦)
is the Lebesgue measure in R

N . If A ⊂ G is L-measurable, we write |A|
to denote its Lebesgue measure. We notice that the Lebesgue measure is
invariant under the map y → y−1. In addition, if m ≥ 0, we denote the
m-dimensional Hausdorff measure, obtained from the Euclidean distance in
R
N ≃ G, by Hm.

The following result is contained in [11], see Proposition 1.26.

Proposition 3.1. If j = 1, . . . ,m, the vector fields Xj have polynomial
coefficients and the form

Xj(x) = ∂j +
∑

k≥1, dk>1

pj,k(x)∂k,

where pj,k are G-homogeneous polynomials of degree dk − 1.

We now fix a basis X1, . . . ,Xm of the horizontal layer. For any function
f : G → R for which the partial derivatives Xjf, j = 1, . . . ,m, exist, we
define the horizontal gradient of f , denoted by∇Gf , as the horizontal section

∇Gf :=

m
∑

i=1

(Xif)Xi,

whose coordinates are (X1f, ...,Xmf). Moreover, if φ = (φ1, . . . , φm) is a
horizontal section such thatXjφj ∈ L1

loc(G), j = 1, . . . ,m, we define divG (φ)
as the real-valued function

divG (φ) := −
m
∑

j=1

X∗
j φj =

m
∑

j=1

Xjφj .

According to [11], we also adopt the following multi-index notation for
higher-order derivatives. If I = (i1, . . . , in) is a multi–index, we set

XI := Xi1
1 · · ·Xin

n .

By the Poincaré–Birkhoff–Witt theorem (see, e.g., [3], I.2.7), the differen-
tial operators XI form a basis for the algebra of left-invariant differential

8



operators in G. Furthermore, we define |I| := i1 + · · · + in the order of
the differential operator XI and d(I) := d1i1 + · · · + dnin its degree of
G-homogeneity. Finally, we denote by ∆G the positive sub-Laplacian asso-
ciated to X1, . . . ,Xm

∆G :=

m
∑

j=1

X2
j .

It is easy to see that

∆Gu = divG (∇Gu).

Moreover, ∆G is left-invariant, i.e., for any x ∈ G, we have

∆G(u ◦ τx) = (∆Gu) ◦ τx.

In parallel, if E ⊂ G is a measurable set, a notion of G-perimeter measure
|∂E|G has been introduced in [16]. We refer to [16], [12], [14], [13] for a
detailed presentation. For our needs, we restrict ourselves to recall that if E
has locally finite G-perimeter measure (i.e., it is a G-Caccioppoli set), then
|∂E|G is a Radon measure in G, G-homogeneous of degree Q−1. Moreover,
the following representation theorem holds (see [5]).

Proposition 3.2. Let Ω ⊂ G be an open set. If E is a G-Caccioppoli
set with Euclidean C1 boundary, then there is an explicit representation of
the G-perimeter in terms of the Euclidean (N − 1)-dimensional Hausdorff
measure HN−1

|∂E|G(Ω) =

ˆ

∂E∩Ω

( m1
∑

j=1

〈Xj , n〉
2
RN

)1/2

dHN−1,

where n = n(x) is the Euclidean unit outward normal to ∂E.

We also have the subsequent result, which generalizes the classical diver-
gence theorem.

Proposition 3.3. If E is a regular bounded open set with Euclidean C1

boundary and φ is a horizontal vector field, continuously differentiable on
E, then

ˆ

E
divG φ dx =

ˆ

∂E
〈φ, nG〉 d|∂E|G,

where nG(x) is the intrinsic horizontal outward normal to ∂E, given by
the (normalized) projection of n(x) on the fiber HGx of the horizontal fiber
bundle HG.

Remark 3.4. The definition of nG is well done, since HGx is transversal to
the tangent space to E at x for |∂E|G-a.e. x ∈ ∂E (see [23]).

Definition 3.5. (Carnot-Carathéodory distance) An absolutely con-
tinuous curve γ : [0, T ] → G is a sub-unit curve with respect to X1, . . . ,Xm if

9



it is a horizontal curve, i.e., if there are real measurable functions c1(s), . . . , cm(s),
s ∈ [0, T ], such that

γ̇(s) =
m
∑

j=1

cj(s)Xj(γ(s)), for a.e. s ∈ [0, T ],

and, in addition,
∑

j

c2j ≤ 1.

Given x, y ∈ G, their Carnot-Carathéodory distance (cc-distance) dc(x, y)
is defined as follows:

dc(x, y) := inf {T > 0 : there is a sub-unit curve γ with γ(0) = x, γ(T ) = y} .

The set of sub-unit curves joining x and y is not empty, by Chow-
Rashevsky Theorem (see for instance [2], Theorem 9.1.3). Indeed, by (3.1),
the dimension of the Lie algebra generated by X1, . . . ,Xm is n. Hence, dc
is a distance on G inducing the same topology of the standard Euclidean
distance.

We shall denote by Bc(x, r) the open balls associated with dc. The cc-
distance is well-behaved with respect to left translations and dilations, that
is

dc(z ◦ x, z ◦ y) = dc(x, y), dc(δλ(x), δλ(y)) = λdc(x, y), (3.4)

with x, y, z ∈ G and λ > 0. Using this, we have

|Bc(x, r)| = rQ|Bc(0, 1)| and |∂Bc(x, r)|G(G) = rQ−1|∂Bc(0, 1)|G(G).

Here and in the sequel, we suppose to work with a real sub-Laplacian ∆G

on a Carnot group (G, ◦, δλ) with homogeneous dimension Q ≥ 3. We know,
see [2], that there exists a homogeneous norm d(·) = | · | such that

ΓG(x, y) = cQd
2−Q(x−1 ◦ y),

where ΓG is the fundamental solution of ∆G. This means that, for every
ϕ ∈ C∞

0 (RN ), ΓG : G \ {y} → R satisfies
ˆ

RN

ΓG(x, y)ϕ(x) dx = −ϕ(y),

see Section 5.3 in [2] for the details. In order to simplify the notation, if no
confusion arises, we may write Γ(0, ξ) ≡ Γ(ξ) instead of ΓG(0, ξ) ≡ ΓG(ξ),
since ΓG is homogeneous. We point out that, in general, the homogeneous
norm does not coincide with the Carnot-Cathéodory norm |x|c := dc(x, 0),
descending from the Carnot-Charathéodory distance. Nevertheless, on com-
pact sets they are equivalent, see [11] or [2]. In the trivial Euclidean case,
it holds |x|c = |x|, possibly up to a multiplicative positive constant.

Mainly following the notation of Section 5.5 in [2], for every x0 ∈ G and
r > 0, we define D(x0, r) := {y ∈ G : |x−1

0 ◦ y| < r}. Moreover, for every
10



continuous function u ∈ C(G) and r > 0, we define the following mean value
associated with u and r at x0 in the Carnot group G:

Mr(u)(x0) :=

ˆ

∂D(x0,r)
u(y)K(x−1

0 ◦ y)dσ(y), (3.5)

where

K :=
|∇GΓ|

2

|∇Γ|
. (3.6)

We recall a couple of useful examples. In the trivial case of the Euclidean
space, it holds, for x0, y ∈ R

N ,

K(y − x0) =
|∇RNΓ(|y − x0|)|

2

|∇Γ(|y − x0|)|
= cN (N − 2)|y − x0|

1−N =
r1−N

NωN
,

obtaining the classical mean value formula, see for instance [17].
In the Heisenberg case H

1 ≡ R
3, taking X = ∂

∂x +2y ∂
∂t Y = ∂

∂y − 2x ∂
∂t as

a basis of the horizontal layer and assuming for simplicity x0 = (0, 0, 0), we
obtain, whenever (x, y, t) ∈ H

1,

K(x, y, t) =
|∇H1ΓH1(x, y, t)|2

|∇ΓH1(x, y, t)|
= c|(x, y, t)|−3

H1

|∇H1 |(x, y, t)|H1 |2

|∇|(x, y, t)|H1 |
,

where ΓH1(x, y, t) = c|(x, y, t)|−2
H1 , |(x, y, t)|H1 = ((x2 + y2)2 + t2)

1

4 ,

∇H1 |(x, y, t)|H1 = X|(x, y, t)|H1X + Y |(x, y, t)|H1Y,

and
|∇H1 |(x, y, t)|H1 | =

√

(X|(x, y, t)|H1)2 + (Y |(x, y, t)|H1)2.

We are in position now to recall the main result we use in our proof, which
characterizes the harmonic and subharmonic functions in Carnot groups, see
[2] for the details.

Proposition 3.6 ([2]). Let u ∈ C(Ω), where Ω ⊂ G is an open connected
set. Then, u ∈ C∞(Ω), ∆Gu = 0 if and only if for every D(x, r) ⊂ Ω

u(x) = Mr(u)(x).

In addition, a function u is subharmonic if an only if, for any x ∈ Ω,
r → Mr(u)(x) is monotone increasing for 0 < r ≤ R(x) and

u(x) = lim
r→0+

Mr(u)(x).

We conclude this introductory part by recalling that, like in the classical
case, the following result even holds in the noncommutative framework given
by Carnot groups.

Proposition 3.7. Let Ω ⊂ G be an open set. It holds:

(i) If u, v are two continuous subharmonic functions, then max{u, v} is
a subharmonic function.

(ii) If u, v are two continuous superharmonic functions, then min{u, v}
is a superharmonic function.

11



Proof. Let us prove the case (i). Since for every D(x0, r) ⊂ Ω

u(x0) ≤ Mr(u)(x0), v(x0) ≤ Mr(v)(x0),

then

Mr(max{u, v})(x0) =

ˆ

∂D(x0,r)
max{u, v}(y)K(x−1

0 ◦ y)dσ(y)

≥

ˆ

∂D(x0,r)
u(y)K(x−1

0 ◦ y)dσ(y) ≥ u(x0)

and, arguing in the same way with v instead of u,

Mr(max{u, v})(x0) ≥ v(x0).

As a consequence, we have

Mr(max{u, v})(x0) ≥ max{u, v}(x0).

The case (ii) follows by a similar argument. �

Remark 3.8. Let u be a continuous harmonic function in a Carnot group G.

Then, u+ := max{u, 0} and u− := max{−u, 0} are both subharmonic. This
is an easy consequence of previous Proposition 3.7.

4. Proofs of main results

In this section, we state our main result in its general form. It is a
representation formula of the function JG

u,x0
that guarantees some simple

consequences thanks to correct interpretations of the players inside it, mainly
the average formula. In other words, we present Theorem 1.1 in the following
more detailed way.

Theorem 4.1. Let Ω ⊂ G be an open set. Let u ∈ C(Ω) such that
|∇Gu|

2 ∈ L1
loc(Ω). For every x0 ∈ ∂{u > 0} ∩ Ω, it holds

JG
u,x0

(r) =
1

Q− 2

ˆ 1

0
tMtr

(

(

|∇Gu
+(x0 ◦ ξ)|

|∇G|ξ||

)2
)

(0) dt

·
1

Q− 2

ˆ 1

0
tMtr

(

(

|∇Gu
−(x0 ◦ ξ)|

|∇G|ξ||

)2
)

(0) dt.

Consequently, if

t → Mt

(

(

|∇Gu
±(x0 ◦ ξ)|

|∇G|ξ||

)2
)

(0)

are monotone increasing almost everywhere, then the function JG
u,x0

is mono-
tone increasing in a right neighborhood of 0.

In particular, for every x0 ∈ Ω, we have

1

r2

ˆ

D(x0,r)
|∇Gu|

2Γ(x0, ξ) dξ =
1

Q− 2

ˆ 1

0
tMtr

(

(

|∇Gu(x0 ◦ ξ)|

|∇G|ξ||

)2
)

(0) dt.

12



Thus, if

t → Mt

(

(

|∇Gu(x0 ◦ ξ)|

|∇G|ξ||

)2
)

(0)

is monotone increasing a.e., then

r →
1

r2

ˆ

D(x0,r)
|∇Gu|

2Γ(x0, ξ) dξ

is monotone increasing in a right neighborhood of 0.

Proof of Theorem 4.1 and Theorem 1.1. After a left translation, we may rewrite
(1.1) as

JG
u (r) =

1

r4

ˆ

D(0,r)
|∇Gu

+|2 Γ(0, ξ) dξ

ˆ

D(0,r)
|∇Gu

−|2 Γ(0, ξ) dξ,

that is we may assume x0 = 0 and u = u(x0 ◦ ·), denoting by JG
u,0(r) ≡ JG

u (r).

We remark that, defining ur(x) :=
u(δr(x))

r , it holds

JG
u (r) =

=
1

r4

ˆ

D(0,1)
|∇Gu

+(δrξ)|
2Γ(0, δrξ)r

Q dξ

ˆ

D(0,1)
|∇Gu

−(δrξ)|
2Γ(0, δrξ)r

Q dξ

=
1

r4

ˆ

D(0,1)
|∇Gu

+
r (ξ)|

2 Γ(0, ξ)r2 dξ

ˆ

D(0,1)
|∇Gu

−
r (ξ)|

2 Γ(0, ξ)r2 dξ

= JG
ur
(1).

(4.1)

In addition, for every λ > 0, the function uλ satisfies ∆Guλ = λ(∆Gu)(δλ(x))
and ∇Guλ(x) = (∇Gu)(δλx) in δλ−1(Ω).
Let us study now the behavior of JG

ur
(1), with

JG
ur
(1) =

ˆ

D(0,1)
|∇Gu

+
r |

2 Γ(0, ξ) dξ

ˆ

D(0,1)
|∇Gu

−
r |

2 Γ(0, ξ) dξ.

Recalling the coarea formula, we first obtain

JG
ur
(1) =

ˆ 1

0

(

ˆ

∂D(0,t)
|∇Gu

+
r |

2 Γ(0, ξ)

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

·

ˆ 1

0

(

ˆ

∂D(0,t)
|∇Gu

−
r |

2 Γ(0, ξ)

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

= cQ

ˆ 1

0
t2−Q

(

ˆ

∂D(0,t)
|∇Gu

+
r |

2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

· cQ

ˆ 1

0
t2−Q

(

ˆ

∂D(0,t)
|∇Gu

−
r |

2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt,

13



in other words

JG
ur
(1) = cQ

ˆ 1

0

1

tQ−2

(

ˆ

∂D(0,t)
|∇Gu

+
r |

2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

· cQ

ˆ 1

0

1

tQ−2

(

ˆ

∂D(0,t)
|∇Gu

−
r |

2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt.

By definition of ur, this implies

JG
ur
(1) = cQ

ˆ 1

0

1

tQ−2

(

ˆ

∂D(0,t)
|∇Gu

+(δr(ξ))|
2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

· cQ

ˆ 1

0

1

tQ−2

(

ˆ

∂D(0,t)
|∇Gu

−(δr(ξ))|
2 1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt.

Applying a change of variables in the surface integral, we then achieve

JG
ur
(1) = cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)
|∇Gu

+|2
1

|∇G|z||(δr−1(ξ))
dHQ−1

G
(ξ)

)

dt

· cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)
|∇Gu

−(ξ)|2
1

|∇G|z||(δr−1(ξ))
dHQ−1

G
(ξ)

)

dt.

On the other hand, by homogeneity, ∇G|z||(δr−1ξ) = ∇G|ξ|. Hence, we get

JG
ur
(1) = cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)
|∇Gu

+|2
1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt

· cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)
|∇Gu

−|2
1

|∇G|ξ||
dHQ−1

G
(ξ)

)

dt.

(4.2)

We focus now on the equality

1

|∇G|ξ||
dHQ−1

G
(ξ) =

1

|∇|ξ||
dHN−1

RN (ξ). (4.3)

We first notice that

∇G|ξ| = ∇G((c
−1
Q Γ(0, ξ))

− 1

Q−2 ) = −
c

1

Q−2

Q

Q− 2
Γ(0, ξ)

− 1

Q−2
−1

∇GΓ(0, ξ)

= −
c−1
Q

Q− 2
|ξ|Q−1∇GΓ(0, ξ),

so that

|∇G|ξ||

|∇GΓ(0, ξ)|
=

c−1
Q

Q− 2
|ξ|Q−1. (4.4)

Repeating the same argument with ∇ instead of ∇G, it holds

∇|ξ| = −
c−1
Q

Q− 2
|ξ|Q−1∇Γ(0, ξ).
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Therefore, using this and (4.4), it follows, from (4.3),

1

|∇G|ξ||
dHQ−1

G
(ξ) =

|∇GΓ(0, ξ)|
2

|∇GΓ(0, ξ)|2|∇|ξ||
dHN−1

RN (ξ)

=
Q− 2

c−1
Q

|∇GΓ(0, ξ)|
2

|∇GΓ(0, ξ)|2|ξ|Q−1|∇Γ(0, ξ)|
dHN−1

RN (ξ)

=
Q− 2

c−1
Q

K

|∇GΓ(0, ξ)|2|ξ|Q−1
dHN−1

RN (ξ).

(4.5)

On the other hand, since

ΓG(x, y) = cQd
2−Q(x−1 ◦ y) = cQ|x

−1 ◦ y|2−Q,

we deduce that

∇GΓ(0, ξ) = cQ(2−Q)|ξ|1−Q∇G|ξ|.

Thus, we have, by (4.5),

1

|∇G|ξ||
dHQ−1

G
(ξ) =

1

(Q− 2)cQ

|ξ|Q−1

|∇G|ξ||2
KdHN−1

RN (ξ).

Now, recalling (4.2) and keeping in mind this equality, we obtain

JG
ur
(1) = cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)

(

|∇Gu
+|

|∇G|ξ||

)2
|ξ|Q−1K

(Q− 2)cQ
dHN−1

RN (ξ)

)

dt

· cQ

ˆ 1

0

t

(tr)Q−1

(

ˆ

∂D(0,tr)

(

|∇Gu
−|

|∇G|ξ||

)2
|ξ|Q−1K

(Q− 2)cQ
dHN−1

RN (ξ)

)

dt

=
1

Q− 2

ˆ 1

0
t

(

ˆ

∂D(0,tr)

(

|∇Gu
+|

|∇G|ξ||

)2

KdHN−1
RN (ξ)

)

dt

·
1

Q− 2

ˆ 1

0
t

(

ˆ

∂D(0,tr)

(

|∇Gu
−|

|∇G|ξ||

)2

KdHN−1
RN (ξ)

)

dt.

This, according to (3.5), yields

JG
ur
(1) =

1

Q− 2

ˆ 1

0
tMtr

(

(

|∇Gu
+|

|∇G|ξ||

)2
)

(0)dt

·
1

Q− 2

ˆ 1

0
tMtr

(

(

|∇Gu
−|

|∇G|ξ||

)2
)

(0)dt.

Using (4.1), we finally achieve the desired expression of JG
u .

Since by hypothesis s → Ms

(

(

|∇Gu
±(ξ)|

|∇G|ξ||

)2
)

(0) are monotone increasing

a.e., for every r1 ≤ r2, we have, for almost every t ∈ [0, 1],

tMtr1

(

(

|∇Gu
±(ξ)|

|∇G|ξ||

)2
)

(0) ≤ tMtr2

(

(

|∇Gu
−(ξ)|

|∇G|ξ||

)2
)

(0).
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Hence, we get

JG
u (r1) = JG

ur1
(1) ≤ JG

ur2
(1) = JG

u (r2),

concluding the proof. The case in which we have only one function is a
straightforward consequence of the previous arguments. �

Remark 4.2. We remark that, recalling Proposition 3.6, in case

ξ →

(

|∇Gu
±(x0 ◦ ξ)|

|∇G|ξ||

)2

were subharmonic, we would immediately obtain the monotone increasing

behavior of s → Ms

(

(

|∇Gu
±(x0◦ξ)|

|∇G|ξ||

)2
)

(0), and, as a consequence, the Alt-

Caffarelli-Friedman monotonicity formula whenever x0 ∈ ∂{u > 0} ∩ Ω.

Even in the particular and classical case in which G = R
N is a group of

step one, that is in the Euclidean framework, we obtain ∇G|ξ| = ∇|ξ| = ξ
|ξ| .

Hence, it holds, in view of (4.1),

JRN

u (r) = JRN

ur
(1) =

1

(N − 2)2

ˆ 1

0
tMtr(|∇u+|2)(0)dt

ˆ 1

0
tMtr(|∇u−|2)(0)dt.

Unfortunately, in general, |∇u+|2 and |∇u−|2 are not subharmonic, so we
can not achieve the Alt-Caffarelli-Friedman monotonicity formula exploiting
Remark 4.2. However, in the simpler case described in Corollary 1.2, this
argument applies.

Proof of Corollary 1.2. Since u is harmonic, for every i = 1 . . . , n ∂u
∂xi

is har-

monic as well. Thus, by a straightforward computation, ( ∂u
∂xi

)2 is subhar-

monic, which obviously implies that |∇u|2 is subharmonic. Hence, recalling
that in this case

(

|∇u(x0 + ξ)|

|∇|ξ||

)2

= |∇u(x0 + ξ)|2,

we obtain, from Theorem 4.1,

cN

r2

ˆ

B(0,r)

|∇u(x0 + ξ)|2

|ξ|N−2
RN

dξ =
1

(N − 2)2

ˆ 1

0
tMtr(|∇u(x0 + ·)|2)(0)dt.

Since |∇u(x0 + ·)|2 is subharmonic, we have that

r → Mr(|∇u(x0 + ·)|2

is monotone increasing, proving the monotone increasing behavior of

r →
cN

r2

ˆ

B(0,r)

|∇u(x0 + ξ)|2

|ξ|N−2
RN

dξ.

�

16



Proof of Corollary 1.4. In the simplest noncommutative case of the Heisen-
berg group H

1, in the recent paper [8], the authors have proved that the

Alt-Caffarelli-Friedman monotonicity formula determined by JH1

u fails. In
that paper, we have produced a counterexample to the monotone increasing

behavior of JH1

u . To get it, we have followed a different idea associated with
the lack of orthogonality of harmonic polynomials in the Heisenberg group.

More precisely, we have first proved that, given the polynomial

u = x− 3yt− 2x3, (4.6)

it turns out to be harmonic (a simple straightforward computation) and we
find that

J̃H1

u (r) :=
1

r2

ˆ

D(0,r)
|∇Gu|

2 Γ(0, ξ) dξ

is monotone decreasing in a right neighborhood of r = 0.

The straightforward proof of the decreasing monotonicity property of J̃H1

u

appears a little more delicate in this case, due to the structure of K. Thus,
we first argue by introducing a computation on the solid integral, see [8].

Precisely, let us rewrite J̃H1

u as

J̃H1

u (r) =
1

r2

ˆ

D(0,r)∩{u>0}
|∇Gu|

2 Γ(0, ξ) dξ

+
1

r2

ˆ

D(0,r)∩{u<0}
|∇Gu|

2 Γ(0, ξ) dξ.

Hence, performing the change of variables (x, y, t) → (−x,−y, t) in the sec-
ond integral, see [8], we obtain

J̃H1

u (r) =
1

r2

ˆ

D(0,r)∩{u>0}
|∇Gu|

2 Γ(0, ξ) dξ

+
1

r2

ˆ

D(0,r)∩{u>0}
|∇Gu|

2 Γ(0, ξ) dξ,

because u(−x,−y, t) = −u(x, y, t) by (4.6). This implies

J̃H1

u (r) =
2

r2

ˆ

D(0,r)
|∇Gu

+|2 Γ(0, ξ) dξ,

and with the same argument we also have

J̃H1

u (r) =
2

r2

ˆ

D(0,r)
|∇Gu

−|2 Γ(0, ξ) dξ.

Putting together these equalities, it then holds, with the choice of u as in
(4.6),

JH1

u (r) :=
1

4
(J̃H1

u (r))2. (4.7)
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Let us prove that, again with the choice of u as in (4.6), J̃H1

u is monotone

decreasing. First, see [8], J̃H1

u can be rewritten as

J̃H1

u (r) =
1

r2

ˆ

D(0,r)
((1− 6x2 − 6y2)2 + 9(−t+ 2xy)2)Γ(0, ξ) dξ.

This yields

J̃H1

u (r) =
r4

r2

ˆ

D(0,1)
((1− 6r2(x2 + y2))2 + 9r4(−t+ 2xy)2)r−2Γ(0, ξ) dξ

=

ˆ

D(0,1)
((1− 6r2(x2 + y2))2 + 9r4(−t+ 2xy)2)Γ(0, ξ) dξ

= a0 − a1r
2 + a2r

4,

where

a0 =

ˆ

D(0,1)
Γ(0, ξ) dξ, a1 = 12

ˆ

D(0,1)
(x2 + y2)Γ(0, ξ) dξ,

and

a2 =

ˆ

D(0,1)
(36(x2 + y2)2 + 9(−t+ 2xy)2)Γ(0, ξ) dξ.

Hence, r → J̃H1

u (r) is indeed decreasing in a right neighborhood of 0.

Since J̃H1

u (r) is positive, by (4.7) it then holds that JH1

u (r) is decreasing.

Let us provide now a different proof for the decreasing behavior of J̃H1

u (r).
First, applying the same symmetry argument on u, we may reduce ourselves
to study the monotonicity behavior, in a right neighborhood of 0, of

J̃H1

u (r) = cH1

ˆ 1

0
sMsr

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0)ds. (4.8)

In particular, we focus on

r → sMsr

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0),

remarking that
(

Msr

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0) =

=

ˆ

∂D(0,sr)

(1− 6(x2 + y2))2 + 9(−t+ 2xy)2

|∇H1 |ξ||2
K(ξ)dH2(ξ)

=

ˆ

∂D(0,1)

(1− 6(sr)2(x2 + y2))2 + 9(sr)4(−t+ 2xy)2

|∇H1 |ξ||2
K(ξ)dH2(ξ)
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= M1

(

1

|∇H1 |ξ||2

)

(0)− 12(sr)2M1

(

x2 + y2

|∇H1 |ξ||2

)

(0)

+ (sr)4M1

(

36(x2 + y2)2 + 9(−t+ 2xy)2

|∇H1 |ξ||2

)

(0).

(4.9)

The polynomial in sr in (4.9) is decreasing in a right neighborhood of 0.
Consequently, it holds, for every 0 ≤ r1 ≤ r2,

Msr1

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0) ≥ Msr2

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0),

which implies, for every s ∈ [0, 1],

sMsr1

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0) ≥ sMsr2

(

(

|∇H1u(ξ)|

|∇H1 |ξ||

)2
)

(0).

As a byproduct, recalling (4.8), it follows

J̃H1

u (r1) ≥ J̃H1

u (r2),

proving the decreasing monotonicity of JH1

u , exactly arguing as in the solid
case.

Now, we can generalize this argument finding several functions with this
decreasing property. Indeed, for every c1, c2 ∈ R, the function

u(x, y, t) = c1x+ c2y + 3t(c2x− c1y)− 2(c1x
3 + c2y

3)

is harmonic in H
1 and u(−x,−y, t) = −u(x, y, t) holds. Thus, applying the

same argument, we achieve (4.7) again.

Let us focus on J̃H1

u . Keeping in mind the symmetry of u, after a straight-
forward calculation, we get, because some integrals vanish by symmetry,

J̃H1

u (r) =
1

r2

ˆ

D(0,r)
|∇Gu(ξ)|

2 Γ(0, ξ) dξ

=
c21 + c22

r2

ˆ

D(0,r)
((1− 6x2 − 6y2)2 + 9(t2 + 4x2y2))Γ(0, ξ) dξ.

This implies

J̃H1

u (r) = (c21 + c22)

ˆ

D(0,1)
((1− 6r2(x2 + y2)2 + 9r4(t2 + 4x2y2))Γ(0, ξ) dξ.

Therefore, J̃H1

u is monotone decreasing in a right neighborhood of 0, unless

we are in the trivial case of c1 = c2 = 0. In particular, JH1

u is monotone
decreasing in a right neighborhood of 0. The same argument, which we
omit for shortness, holds using the surface average integrals. �

Remark 4.3. In principle, we may select functions, in a Carnot group G,

for which the correspondent JG
u exhibits a monotone increasing behavior.

The simplest case, in H
1, is the following one. Let v(x, y, t) = t. Then,

v satisfies ∆H1v = 0 in H
1 by a straightforward computation. Now, since
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∇H1v = (2y,−2x), denoting by ξ = (x, y, t), it holds, for x0 = 0, that
(

|∇
H1v|

|∇
H1 |ξ||

)2
= 4|ξ|2

H1 is sufficiently regular. Hence, we can directly compute

∆H1

(

(

|∇H1v|

|∇H1 |ξ||H1

)2
)

= 4∆H1

(

|ξ|2
)

= 32
x2 + y2

|ξ|2
H1

≥ 0.

Consequently, in view of Proposition 3.6, Theorem 1.1 applies, and JH1

t is
monotone increasing.

We conclude observing that, in general, the computation performed in
Remark 4.3 might not be possible when

ξ →

(

|∇Gu
±(x0 ◦ ξ)|

|∇G|ξ||

)2

is not sufficiently regular in a neighborhood of 0.
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