
Energy consumption comparison of parallel linear systems solver
algorithms on HPC infrastructure

Sofia Montebugnoli∗
sofia.montebugnoli3@unibo.it

University of Bologna
Bologna, Italy

Anna Ciampolini∗
anna.ciampolini@unibo.it
University of Bologna

Bologna, Italy

ABSTRACT
High-Performance Computing (HPC) systems today are gradu-
ally increasing in size and complexity due to the correspondent
demand for ever-increasing computing needs, requiring more com-
plicated tasks and higher accuracy. The growing energy needs of
HPC systems require the urgent adoption of green HPC approaches
to mitigate environmental impact and promote energy-efficient
computing.

This paper proposes a monitoring solution for the energy con-
sumption during the execution of parallel software focusing in
particular on the solution of linear systems in HPC systems: the
Inhibition Method and Gaussian Elimination from ScaLAPACK li-
brary. The main goal is to profile their execution from the energy
consumption perspective. The approach follows a white-box par-
adigm, injecting the monitoring component into specific ranks.
Despite a slight overhead compromise due to synchronization, this
design permits accurate measurements.

KEYWORDS
Linear systems solver, HPC systems, energy efficiency, energy mea-
surements, energy consumption, Inhibition Method, ScaLAPACK,
Green HPC

ACM Reference Format:
Sofia Montebugnoli and Anna Ciampolini. 2023. Energy consumption com-
parison of parallel linear systems solver algorithms on HPC infrastructure.
In Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2023), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3624062.3624266

1 INTRODUCTION
Nowadays the reduction of energy wasting is a core issue for many
companies, especially for the most energy-consuming, like data
centers. Since the advent of Green IT, i.e. the study and practice
of environmentally sustainable computing or IT, the interest in
achieving more efficient High-Performance Computing (HPC) sys-
tems has increased. For example, the Green 500 lists the world’s

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624266

most energy-efficient supercomputers, based on floating point oper-
ations per second (flops) per watt metric [1]. Consequently, there is
a compelling need to substantially increase the budget allocation to
procure the necessary energy to power these supercomputers. Thus,
attaining an efficient power usage effectiveness index assumes para-
mount importance, as it not only fosters the development of more
sustainable HPC systems but also contributes to tangible cost re-
ductions [13]. Until 2013 the power budget of the Top500[2] for
supercomputers has increased, but in the last years directly raising
the performance had the effect of increasing the power budget,
and consequently the economic budget to power these HPC sys-
tems. Thus, as it is impossible to increase energy consumption
indefinitely, energy efficiency is a core issue.

The primary objective of this proposal is to design and test a mon-
itoring solution to carefully track the energy consumption of linear
systems resolution algorithms on HPC architectures. Through the
integration of this solution, with the parallel code to be monitored,
our aim is to gain profound insights into the energy utilization
patterns during the execution of parallel algorithms. This approach
will facilitate the identification of potential ways for energy op-
timization and efficiency enhancement, ensuring the execution
of only indispensable instructions, thus mitigating the waste of
computational resources and energy. The monitoring system will
comprehensively capture and analyze data pertaining to energy
consumption, allowing for a thorough assessment of the energy
usage profile of these algorithms under diverse conditions. Being
aware of these results, programmers could take informed decisions
to augment the energy efficiency of linear systems resolutions, con-
tributing to the development of more ecologically sustainable HPC
systems and yielding tangible cost reductions.

Some of the most complex problems can be represented through
matrices and their resolution is represented by the solution of the
matrix as a linear system. Hence, the study of linear system solver
algorithms is important to solve a wide set of problems from many
fields with real-world applications. These linear systems involve
thousands of equations, that can be managed efficiently from paral-
lel architectures like HPC systems. With the purpose of improving
this class of algorithms, it can be helpful to study their performances
on the HPC systems by monitoring the execution of these tasks.

In particular, this work tests the monitoring solution on two
different parallel algorithms for the resolution of linear systems:
the Gaussian Elimination and the Inhibition Method IMe [10]. Both
algorithms were tested with the proposed framework, in order to
measure and compare either performance or energy efficiency, thus
proposing a new perspective for the evaluation of linear systems
solution methods.

1839

https://orcid.org/0000-0002-9314-1958
https://doi.org/10.1145/3624062.3624266
https://doi.org/10.1145/3624062.3624266
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624266
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624266&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Montebugnoli, et al.

Paper outline. Accordingly, the remainder of this work is struc-
tured as follows. Section 2 covers the definition of the proposed
algorithm for linear systems resolution above an HPC architecture.
Section 3 analyzes other linear programming solvers for HPC sys-
tems. Section 4 focuses on how the Message Passing Interface and
the Performance API should integrate to monitor the designated
metrics, moreover, it explains how the monitoring program is inte-
grated and implemented in the code of the linear systems solver
algorithms. Section 5 specifies the parameters of the performed
tests, and the obtained results, through charts. The parameters
consist of a set of different variables for the execution which are
tested during the monitoring phase of the algorithm. Whilst, the
results of the several executions are shown and reviewed in the
second part of the section. Finally, section 6 concludes this work by
summarising its main contribution and presenting eventual future
developments.

2 BACKGROUND
The breakdown of the effectiveness of Dennard’s scaling around
2006 led to the inability to significantly increase the clock frequen-
cies, therefore most CPUs manufacturers have focused on multicore
processors as an alternative way to improve performance. An in-
creased core count benefits many workloads, but the increase in
active switching elements from having multiple cores still results
in increased overall power consumption and thus worsens CPU
power dissipation issues [11] [14]. The result is that the total power
consumption of each device limits the practical achievable perfor-
mance. Moreover, due to the overheating of the cores, the cooling
systems consume more additional power, and this impacts directly
the power budget available for the data center. When a program is
executed on HPC systems using a parallel paradigm, improving the
efficiency of the algorithm is a core issue. In fact, all those problems
which are CPUs intensive like linear systems resolution algorithms
and aim to solve complex problems often require days of compu-
tation and consequently require a lot of energy, computational
resources, and money.

This section offers a comprehensive exposition of key topics es-
sential to our investigation. It delves into the IMe and ScaLAPACK
algorithms and their consequent impact on energy consumption.
Moreover, the section provides an overview of energy measurement
and saving principles in HPC systems, along with an extensive list
of monitoring tools dedicated to optimizing energy efficiency. These
tools, such as Model Specific Registers (MSR), Running Average
Power Limit (RAPL), and Performance Application Programming
Interface (PAPI), enable the monitoring and evaluation of energy us-
age patterns, facilitating the identification of areas for improvement
and energy optimization. Armed with this academic foundation,
our research endeavours to explore energy consumption during
linear systems resolution, contribute to energy-efficient computing,
and promote the development of sustainable HPC systems.

The Gaussian Elimination also known as row reduction is the
most efficient algorithm for solving systems of linear equations
both in a parallel and in a sequential form with an arithmetic com-
plexity of 2/3𝑛3 + 𝑂 (𝑛2). Whereas, the Inhibition method in the
last available version has reached a complexity of 3/2𝑛3 +𝑂 (𝑛2) so
far [15]. However, recently it was proved [7] that IMe has a good

integrated low-cost multiple fault tolerance, which is more efficient
than the checkpoint/restart technique usually applied in Gauss-
ian Elimination linear systems resolution. Therefore, deep analysis
and understanding of IMe can lead to significant contributions to
the available algorithms for linear systems resolution and further
optimizations. Both the Gaussian Elimination and the Inhibition
Method have a parallel version which is implemented by the Netlib
organization in the ScaLAPACK library in the first case, and by
ENEA and University of Bologna in the second case.

2.1 Inhibition Method
The Inhibition Method was proposed in 1963[10] to simplify the
analysis of complex electric circuits. Then it turned out to be useful
also in the resolution of physical linear systems and square matrix
inversion. This algorithm is general because it can be applied to
every linear system or non-linear system, and it is independent
from the physical nature of the system itself. The Inhibition Method
(IMe) is an iterative, exact, non-inverting method to solve any linear
system. It derives from the Cross method, from which IME inherits
the fundamental characteristic of decomposing the problem into
easier-to-solve sub-problems, even though the cross method is non-
exact[6]. IME produces a hierarchical sequence of sub-systems, at
the end of which only elementary systems can be found. Hence,
they can be solved rapidly with the minimum of knowledge, conse-
quently, only a few program code lines are needed.

IMe starts from considering the linear system with n equations
and n unknowns in its matrix form: 𝐴𝑥 = 𝑏, where A is the 𝑛 ×
𝑛 matrix of coefficients, 𝑏 is the vector of constant terms and 𝑥

contains the unknowns. First, it prescribes to compute a matrix T
(n), called inhibition table, and a vector ℎ(𝑛) of elements, called
auxiliary quantities. 𝑇 (𝑛) is built using only the 𝑎𝑖, 𝑗 coefficients
from A as follows:

𝑇 (𝑛) =

1
𝑎1,1

0 0 1 𝑎2,1
𝑎1,1

.
𝑎𝑛,1
𝑎1,1

0 1
𝑎2,2

. 0 𝑎1,2
𝑎2,2

1
𝑎𝑛,2
𝑎2,2

.

.

.
.
.
.
. . .

.

.

.
.
.
.

.

.

.
.
.
.
. . .

.

.

.
.
.
.

0 1
𝑎𝑛−1,𝑛−1

0
.
.
.

.

.

. . . . 1 𝑎𝑛,𝑛−1
𝑎𝑛−1,𝑛−1

0 0 1
𝑎𝑛,𝑛

𝑎1,𝑛
𝑎𝑛,𝑛

.
𝑎𝑛−1,𝑛
𝑎𝑛,𝑛

1

The algorithm is divided into two parts: the first part is the

INITIME procedure. It handles the initialization of the 𝑇 (𝑛) ma-
trix. The second part reduces iteratively the number of rows and
columns. The matrix 𝑇 (𝑛) and the vector ℎ(𝑛) can be seen as a
decomposition of the original problem into n sub-problems (one
for each row). One of the best ways to compute an algorithm faster
is to parallelize parts which are independent from the others, ascer-
taining that the amount of data replicated and exchanged by the
nodes is minimized. In the following procedure, we will use 𝑡 (𝑙)

, 𝑗 and 𝑡 (𝑙) 𝑖 , to address the j-th column and the i-th row of 𝑇 (𝑙) ,
respectively, and N as number of nodes, considering N-1 slaves
and one master. Under certain conditions the fundamental formula
allows an independent computation of each element of T. Precisely,
three different parallelization schemes are possible:

1840

Energy consumption comparison of parallel linear systems solver algorithms on HPC infrastructure SC-W 2023, November 12–17, 2023, Denver, CO, USA

i) column-wise, entailing that the node computing the last
column 𝑡

(𝑙)
∗,𝑛+𝑙 should make it available to all the others, and

all the nodes should share ℎ (𝑙) ;
ii) row-wise, symmetrically, the node computing the last row

𝑡
(𝑙)
𝑙,∗ should make it available to all the others and ℎ (𝑙) is
shared;

iii) block-wise, combining row-wise and column-wise paral-
lelization.

As a matter of fact, the scheme used in the Inhibition Method
Parallelized IMeP is column-wise because its characteristic fits
the integration with the fault tolerance requirements better than
the others. Each computing node works on a subset 𝑇

′
of 𝑇 , by

iteratively applying the fundamental formula. At every level it is
also necessary to broadcast from the master to the slaves ℎ, whilst
the node in charge of the computation of the last column 𝑡∗,𝑛+𝑙
should broadcast it to all the other nodes, and besides only the n
elements of the last row which result modified after the application
of the fundamental formula must be sent to the master.

One of the concerns of parallelization is memory usage: by
spreading the execution of the algorithm in N nodes the memory
occupation increases from 2𝑛2 + 3𝑛 to𝑚𝑜𝐼𝑀𝑒𝑃 = 2𝑛2 + 2𝑛𝑁 + 3𝑛,
whereas the flops remain the same. Furthermore, the distributed
environment forces message exchange, which has a cost. The traffic
generated by the exchanged messages is measured by the number
of messages, and volume, meaning the number of floating points.
The total number and volume of messages exchanged is:

𝑀𝐼𝑀𝑒𝑃 = 𝑛2 + 2(𝑁 − 1)𝑛 + 2(𝑁 − 1)

,

𝑉𝐼𝑀𝑒𝑃 = (𝑁 + 2)𝑛2 + 2(𝑁 − 1)𝑛

.
Which is the sum of:

– the broadcast of the last column 𝑡∗,2𝑛 from the master to all
the slaves, for the initialization.

– ℎ is broadcasted from the master to all slaves.
– the node that oversees of the last column 𝑡∗,𝑛+𝑙 broadcasts it
to all the other nodes.

– all the slaves send the last entry of their columns to the mas-
ter. Only n elements of the last row are exchanged, because
all the others are certainly 0.

2.2 Gaussian Elimination by ScaLAPACK
ScaLAPACK, an abbreviation for Scalable Linear Algebra PACKage
[5], is a high-performance library of linear algebra routines de-
signed for distributed memory computers that support the Message
Passing Interface (MPI). The capabilities of ScaLAPACK encompass
solving dense and banded linear systems, least squares problems,
eigenvalue problems, and singular value problems. This library
incorporates several key concepts to enhance its performance:

– A block cyclic data distribution for dense matrices and a
block data distribution for banded matrices, which can be
parametrized at runtime, allows efficient data distribution
across distributed memory systems.

– Block-partitioned algorithms are utilized to promote signif-
icant data reuse, leading to improved computational effi-
ciency.

– The library is thoughtfully designed with well-structured
low-level modular components that facilitate the paralleliza-
tion of high-level routines. This design maintains uniformity
in the source code between sequential and parallel imple-
mentations.

Regarding the Gaussian Elimination method, to address the nu-
merical instability arising from roundoff errors, the introduction of
the Partial Pivoting technique becomes essential. This technique
involves swapping rows such that the diagonal element 𝐴(𝑖,𝑖) is
the largest in its column. Numerical instability arises when the
diagonal element 𝐴(𝑖,𝑖) becomes exceedingly small (though not
precisely zero), potentially leading to erroneous outcomes even if
the algorithm terminates.

2.3 Tools and APIs for performance-energy
power tracing

All the Intel CPUs offer power management interfaces that are not
architectural but address the power management needs of several
platforms’ specific components. RAPL (Running Average Power
Limit) interfaces provide mechanisms to enforce power consump-
tion limits. RAPL interfaces consist of non-architectural Model
Specific Registers MSR. The counters are 32-bit registers that in-
dicate the energy consumed since the processor was booted up.
The counters are updated approximately once a millisecond (due
to jitter). The MSRs can be accessed directly on Linux using the
MSR driver in the kernel. For direct MSR access, the MSR driver
must be enabled, and the read access permission must be set for the
driver. Reading RAPL domain values directly from MSRs requires
detecting the CPU model and reading the RAPL energy units before
reading the RAPL domain (i.e., PKG, PP0, PP1, etc.) consumption
values.

Once the CPU model is detected, the RAPL domains can be read
per package of the CPU by reading the corresponding ’MSR status’
register.

Performance Application Programming Interface PAPI is an in-
terface for accessing performance counters on different platforms
in a common way. As each processor vendor defines different pro-
cessor interfaces to the performance counters, PAPI was built to
solve this problem and to handle requests to these counters in a
comfortable way.

As for the development of PAPI the main goal was a common
and convenient way to access performance counters on different
platforms: PAPI is built upon different layers for a better abstraction
of different tasks found in each layer as shown in Figure 1. The
main layers are the Portable Layer which offers an API for tool
and application developers and the Machine Specific Layer used
to access performance counters on a given platform. A given plat-
form consists possibly of a certain processor architecture, a certain
operating system, available libraries or a combination of these.

The Portable Layer consists of the PAPI Low Level-API enabling a
developer to access all core functions of PAPI and direct interaction
with the counter interface on a given platform. The PAPI High
Level-API defines only a fraction of functions compared to the

1841

SC-W 2023, November 12–17, 2023, Denver, CO, USA Montebugnoli, et al.

PAPI Low Level-API to access the counters, but these functions are
enough to extract performance data using pre-sets events defined
by PAPI.

The Machine Specific Layer handles all direct access to a given
platform. The term direct access is meant to express access either
to the counters on a platform directly or by using an operating
system interface for accessing these processor-specific functions.
The Machine Specific Layer also limits PAPI in its functionality, as
PAPI supports many different platforms whereas some platforms
do not support specific functionalities.

Between the Portable Layer and theMachine Specific Layer is the
core functionality of PAPI with support for managing the counter
access. Memory allocation, thread binding and event-related issues
are handled here, invisible for the developer of a tool or application
for performance counter instrumentation [9].

Figure 1: PAPI architecture, hierarchy of power domains [9]

3 RELATEDWORKS
Alonso et al. [4] present a comprehensive framework aimed at pro-
filing, monitoring, modelling, and analyzing power dissipation in
parallel MPI and multi-threaded scientific applications. The frame-
work comprises a custom-designed device for internal DC power
consumption measurement and a package that offers a user-friendly
interface to interact with this design, as well as compatibility with
commercial power meters. However, their study does not include
a comparative assessment of the ScaLAPACK algorithm’s perfor-
mance against other libraries. On a different note, McCraw et al.
present a study [16] introducing two new PAPI components that en-
able power and energy monitoring for Intel Xeon Phi co-processors
and the IBM Blue Gene/Q system, with an application on ScaLA-
PACK algorithms. This particular study focuses solely on the men-
tioned hardware architectures, omitting an overview of the hard-
ware architecture used in our paper to test IMe and ScaLAPACK.

In another relevant work, Tan et al. [21] summarize widely de-
ployed power management techniques in HPC systems, presenting

power and energy models and two fundamental types of power
management: static and dynamic approaches. Additionally, they re-
view research on power and energy efficiency for high-performance
numerical linear algebra algorithms, covering aspects like profiling,
performance trade-offs, static and dynamic saving techniques. Al-
though their study is comprehensive, they do not evaluate and test
existing monitoring solutions on HPC architectures, which leaves
room for further investigation.

The paper by Ilya Meignan–Masson et al.[17] introduces Col-
met a monitoring framework, that bridges the gap between system
monitoring and profiling. It emphasizes its dynamic sampling and
reconfigurability as groundbreaking features of this work. Simi-
larly, in the work presented by Bartolini et al. [8], they present a
fine-grained monitoring solution that comprehends the application
of AI techniques to measure and control power and performance.
Agelastos et al. [3] developed a continuous, synchronous, whole-
system monitoring on an HPC system. In this work, they especially
focused on analytic and visualization techniques, that they used
to characterize application and system resource usage under pro-
duction conditions for a Rashti et al. [19] presents WattProf, a
versatile power monitoring platform designed for precise and effi-
cient power and energy monitoring across hardware components in
HPC clusters. WattProf includes a programmable PCIe expansion
card, component-specific sensors, a host runtime system, and a
user-friendly API. The authors showcase WattProf’s capabilities
through two benchmark applications. However, these works do
not tackle linear systems solver algorithms, indeed they represent
general-purpose solutions for performance monitoring on exascale
supercomputing systems.

4 OUR PROPOSAL
The impact of performance is of paramount importance for Green
HPC goals and, consequently, a runtime monitoring system is
needed to grant the collection of the energy values. In this sec-
tion, we propose a monitoring solution for linear system solver
algorithms by monitoring the energy consumption of CPU pack-
ages 0 and 1, as well as DRAM 0 and 1. These metrics respectively
represent the total energy consumption of the CPU and the power
consumed by the RAM.

To effectively monitor the entire execution process, the moni-
toring program must exhibit high portability, enabling seamless
adaptation to various algorithms. Additionally, it should accom-
modate both white-box and black box approaches, introducing
only minimal modifications. Ensuring the efficiency of the adopted
monitoring solution is crucial, as any overhead caused by the mon-
itoring libraries should not significantly impact the algorithm’s
performance, or if possible, should maintain a negligible impact.
Moreover, a key requirement is the modularity of the monitoring
system. Specifically, the system should be structured to initiate
monitoring through a function call and conclude monitoring with
another function call. While these parts work on the same arrays of
events to modify values, direct interactions between them should
be avoided.

The testing framework needs to cater to both simple and complex
tests, offering flexibility in its support. Moreover, it is imperative
that the framework automatically collects and stores results in a

1842

Energy consumption comparison of parallel linear systems solver algorithms on HPC infrastructure SC-W 2023, November 12–17, 2023, Denver, CO, USA

human-readable format for subsequent review and analysis. It is
essential that the testing process does not disrupt the structure of
the tested algorithms or compromise overall performance. The test
framework should be adaptable to different algorithms and func-
tion effectively across various scenarios. Furthermore, considering
that tests will run on multiple nodes, and each node may exhibit
different energy values, comprehensive data collection is vital. The
proposed solution should demonstrate scalability to efficiently man-
age the execution on diverse nodes, ensuring reliable and accurate
measurements.

The proposed solution follows a white-box approach by desig-
nating a single rank in each node to execute the monitoring task.
This approach enables the collection of metrics pertaining to the
overall energy consumption of the CPU package, processor die, and
DRAM. Simplifying the node and rank relationship, where each
node represents a CPU and each rank represents a core, dictates
that only one rank per processor should be responsible for the
monitoring process.

MPI communicators are utilized to establish groupings of ranks
belonging to a single node, creating sub-communicators accord-
ingly. By implementing sub-communicators, a specific rank can be
appointed for the monitoring task. These designated ranks execute
the monitoring process distinctly from the other ranks. Specifically,
they initiate monitoring by initializing PAPI, commence measure-
ments of the selected metrics, and then proceed with the assigned
part of the linear system solver algorithm, similar to all other ranks.
Subsequently, after all the ranks on the same node complete their
respective computations, the monitoring ranks conclude the mea-
surements. To ensure synchronization and alignment of execution
across ranks within the same group, an MPI barrier of synchroniza-
tion is introduced, requiring the monitoring ranks to wait for the
processing ranks in their communicator.

It is crucial to emphasize that both the beginning and end of
the monitoring process are consistently preceded by MPI synchro-
nization barriers for ranks on the same node, enhancing the accu-
racy and correctness of the measurements. The adopted approach
follows the "white-box" paradigm as the monitoring component
implemented through PAPI is introduced into a specific rank for
each node, necessitating the grouping of ranks to subsequently
assign a monitoring rank.

This solution maintains its modular and portable structure while
enhancing efficiency through differentiated rank execution. How-
ever, to achieve accurate measurements, a compromise is made
regarding the time spent on synchronization, which, in turn, results
in slower program execution and adds some overhead, not directly
to the linear system solver algorithm, but to the overall execution.

An additional noteworthy characteristic pertains to the PAPI
initialization. In the first solution, it occurs before the MPI initial-
ization, when the program is still in a sequential state. In contrast,
the second solution initializes PAPI exclusively in the designated
monitoring ranks.

Figure 2 illustrates the general execution flow for each rank of the
involved processors. Initially, ranks are categorized into monitoring
and non-monitoring groups. The process of selecting monitoring
ranks involves designating the rank with the highest value on each
node as the monitoring rank. Following this step, node synchroniza-
tion occurs to enable the monitoring ranks to commence collecting

energy values from the processors. Subsequently, a general execu-
tion synchronization is performed to align the ranks for the linear
system solver execution phase. This results in an additional node
synchronization phase at the conclusion of the algorithm execution,
which is necessary to halt the collection of energy values. Finally,
all ranks are synchronized once more.

The proposed solution entails the designation of one rank per
node to perform effective monitoring. After MPI_init() a new com-
municator for each is created through the method MPI_Comm
_split_type(), through the constant split type MPI_COMM_TYPE
_SHARED the ranks are automatically divided into a group based
on their rank. The following step is to designate the monitoring
rank, which is always the one which has the highest rank value
in the communicator. If the rank is designated for monitoring it
calls start_monitoring() from papi_monitoring.h. The values are
passed as a reference because also the function end_monitoring()
needs the event’s values to process the monitoring measurements.
The method start_monitoring() uses PWCAP_plot_init() to ini-
tialize PAPI. The functions for PAPI initialization perform the li-
brary initialization, the thread initialization, the creation of the
event set and the addition of all the desired events. Eventually,
start_monitoring() calls PAPI_start_AND_time() which starts PAPI
monitoring. The algorithm is executed between start_monitoring()
and stop_monitoring(). Before stopping the whole monitoring,
ranks that run on the same node are synchronized to theMPI_Barrier().
When all the ranks have terminated the execution of the linear
system solver algorithm the PAPI monitoring procedure is ended
by the monitoring ranks. The function end_monitoring() from
papi_monitoring.h stops PAPI event counters with PAPI_stop_AND
_time(), and then it creates one file for each processor with file
_management(). In each file are saved the values of PAPI event
counters for the processor in which the node has run. The function
PAPI_term() cleans up and destroys PAPI Event set. After that, the
monitoring is completed and MPI_Finalize() is performed.

Since most of the RAPL events of interest are included in power-
cap event set, which also adds the power capping functionalities,
the monitored events will belong only to powercap event set of-
fered by PAPI. Therefore, the array event_names which is used to
list the names of the monitored events in papi_monitoring.h will
contain all the powercap event set displayed by PAPI. This array
is a parameter of papi_event_name_to_code which translates the
names into the macros of the PAPI library. Code available at [18].

5 EVALUATION
To facilitate comprehensive evaluations of the proposed monitoring
solution, various aspects of the IMe and ScaLAPACK algorithms
are rigorously tested, considering a multitude of parameters. hests
are performed on CINECA infrastructure using supercomputer
Marconi which mounts Intel OmniPath Cluster architecture, with
17PB of local storage. The performance of Marconi A3 comprehends
forty-five racks, 3188 nodes and each one has 2 x 24-core Intel Xeon
8160 CPU (Skylake) at 2.10 GHz, therefore the total cores per node
are 48, whilst a 192 GB of DDR4 RAM is provided to every node. A
single node can reach a peak performance of 3.2 TFlop/s, whereas
the overall MARCONI A3 architecture can achieve a 10 PFlop/s
peak [20]. The supercomputer batch job submission is managed

1843

SC-W 2023, November 12–17, 2023, Denver, CO, USA Montebugnoli, et al.

MPI Init

Rank0
MPI_COMM_NODE

Rank7
MPI_COMM_NODE

monitoring rank

Rank8
MPI_COMM_NODE

Rank15
MPI_COMM_NODE

monitoring rank

Rank16
MPI_COMM_NODE

Rank23
MPI_COMM_NODE

monitoring rank

Rank24
MPI_COMM_NODE

Rank31
MPI_COMM_NODE

monitoring rank

MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE

Rank7
starts monitoring

Rank15
stops monitoring

Rank7
runs its linear system

solver part

MPI barrier sync COMM_WORLD

Rank15
starts monitoring

Rank23
starts monitoring

Rank31
starts monitoring

MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE MPI barrier sync COMM_NODE

Rank0
runs its linear system

solver part

Rank15
runs its linear system

solver part

Rank8
runs its linear system

solver part

Rank23
runs its linear system

solver part

Rank16
runs its linear system

solver part

Rank31
runs its linear system

solver part

Rank24
runs its linear system

solver part

Rank7
stops monitoring

RanK31
stops monitoring

Rank23
stops monitoring

MPI finalize

MPI barrier sync COMM_WORLD

Figure 2: Structure of the MPI program in the common nodes solution

through Slurm, thus the collected energy values concern only the
processors directly involved in the computation.

5.1 Tested parameters
The monitoring process primarily focuses on measuring energy
status values. However, there are many combinations of the param-
eters that can affect the measurements.

Regarding the optimization level of the compiler (CFLAG), all
tests are set at O3, the highest achievable level. While higher opti-
mization levels (e.g., -O3) increase compilation time and executable
efficiency, they decrease execution time significantly.

The matrices allocation is tested in a contiguous form, which
enhances processing speed by reducing head movements through
buffered I/O and consecutive memory block reads by the operating
system.

The input linear system is not generated at runtime but loaded
from a file to ensure consistent input data for repetitive measure-
ments, particularly when executing a large number of tests. Four
different matrix dimensions (8640, 17280, 25920, and 34560) are
utilized to observe energy trends with fixed dimensions for ranks
and nodes.

The chosen linear system solver algorithms (IMe and ScaLA-
PACK) are tested under identical conditions, and to achieve realistic
values for comparison, ten repetitions for each job are performed.

The algorithm is divided into two phases: matrix allocation and
execution. Monitoring the entire execution, including allocation,
deallocation, and execution, yields an estimation of energy con-
sumption for allocation and deallocation, conserving resources not
crucial for this study.

The number of nodes and ranks significantly impact compu-
tation when the matrix dimension is fixed. There is a trade-off
between execution time (increasing with load per rank) and energy

Ranks Nodes Ranks per Node Sockets Ranks x Socket

144
3 48 2 24 24
6 24 1 24 0
6 24 2 12 12

576
12 48 2 24 24
24 24 1 24 0
24 24 2 12 12

1296
27 48 2 24 24
54 24 1 24 0
54 24 2 12 12

Table 1: test configurations for nodes, ranks and sockets

consumption (powering more ranks on different nodes). Evaluating
the energy-saving potential between assigning 48 ranks per node
versus 24 ranks per processor across doubled nodes is essential.

The tests also explore socket distribution inside the processor,
with 48 cores divided into 2 sockets of 24 cores each. Different
configurations with 12 cores in each socket or only one socket
utilized while the other remains idle are examined.

The strong scalability observation focuses on how energy con-
sumption varies with the number of processors for a fixed problem
size. For each matrix dimension, three specific rank values (144,
576, and 1296) are used, which are related to the matrix dimension
and fulfil IMe’s square number of ranks requirement. The table in
the paper summarizes hardware configurations with the number
of processors, ranks, and included sockets. The smallest number
of nodes is computed by dividing ranks by 48 and multiplying the
result by two for 24 cores per processor, while the most parallelized
involves 54 nodes with 24 ranks each. Table 1 shows the result of
the combination of the parameters presented above.

1844

Energy consumption comparison of parallel linear systems solver algorithms on HPC infrastructure SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 3: Comparison between full loaded processors and half loaded processors

5.2 Test results
The objective of this section is to highlight the trends in energy
consumption and duration across various configurations while
underscoring the distinctions between IMe and ScaLAPACK. As the
results did not reveal significant differences between the monitored
phases, the graphs exclusively present the values from the general
execution phase of both IMe and ScaLAPACK. Given the extensive
number of diverse tests and configurations, the graphs exhibit a
condensed representation of more substantial data aggregations
through combined charts.

IMe vs ScaLAPACK full loaded processors and half loaded pro-
cessors. The charts displayed at 3 show the behaviour of energy
consumption in the full and half-loaded processor. The fully loaded
processor involves all 48 cores in the computation, each of them
is assigned to one core. Whereas, the half-loaded is deployed in
two different ways: in one case one socket is full with 24 cores
running 24 ranks and the other socket is empty, in the other case
there are 12 ranks per socket. From this graph is possible to note
the difference in terms of energy consumption between the three
configurations for IMe and ScaLAPACK. The full load configuration
always consumes less than the other ones. Moreover, there are
only slight differences between the configuration that deploys 24
cores on one socket and the one that distributes 24 cores on two
sockets. In fact, the lines overlap multiple times and for both IMe
and ScaLAPACK, thus is impossible to determine the best one.

Total energy consumption and time duration for fixed ranks sizes.
The total energy consumption and the duration of the execution in-
crease with the dimension of the input matrix. In particular, in these
charts, there are the values obtained for the 48 core deployments
on 3 nodes, 12 nodes and 27 nodes. It is evident that the energy
consumption of IMe is always equal to or higher than ScaLAPACK.
The trend of energy consumption seems to be exponential, it in-
creases faster with the linear progression of the matrix dimensions,
for both the algorithms. From these charts 4 is possible to note the
dependency between the energy consumption and the duration,
which clearly follows the same course for all the ranks deployments.

Total Energy consumption and time for different matrices dimen-
sions. These charts 5 compare the power consumption of the three
different node configurations for a given matrix size. In particular,
in these charts, there are the values obtained for the 48 core deploy-
ments on 3 nodes, 12 nodes and 27 nodes. In this case, there is not
a clear pattern for the energy values. On one hand, ScaLAPACK
tends to assume a linear trend, whereas IMe values do not follow
a specific trend. However, these charts clearly display the strong
scalability behaviour of the problem for both algorithms. In fact, the
time duration decreases with the increase of the number of ranks
on which is deployed the algorithm. The course of the duration is
inversely proportional. As far as a comparison between IMe and
ScaLAPACK is concerned, it is clear that ScaLAPACK is faster in
the more dense computations, whilst IMe is faster than ScaLAPACK
in more distributed computations, like for 576 and 1296 ranks for
matrix dimensions 8640 and 17280.

Total energy consumption and power for different ranks. These
charts 6 compare the power consumption and the energy consump-
tion of the three different rank configurations, by varying thematrix
dimension. Since the power consumption is obtained by dividing
the energy in Joules, with the duration of the execution, the result
is a constant almost horizontal line between the various matrix
sizes. As a matter of fact, power values, represented by the lines,
reveal the actual difference between IMe and ScaLAPACK per sec-
ond. With reference to the values of the secondary vertical axis, the
power values of IMe and ScaLAPACK differ by 12% to 18%.

Total energy consumption and power for different matrices dimen-
sions. The charts in 7 show the trend of the energy and power
consumption by varying the number of ranks for a fixed matrix
dimension. The energy consumption, in this case, does not show
a clear trend. However, it is clear the dependency of power from
the deployed number of ranks. The values of power consumption
of IMe and ScaLAPACK are similar for the different rank values
and strongly follow a directly proportional course. Hence, it can
be noticed that the power values enhance the real trend of energy
consumption.

1845

SC-W 2023, November 12–17, 2023, Denver, CO, USA Montebugnoli, et al.

Figure 4: IMe and ScaLAPACK energy and time at fixed ranks size

Figure 5: IMe and ScaLAPACK energy and time at fixed matrix size

Figure 6: Energy and power consumption of IMe and ScaLAPACK at fixed ranks size

Figure 7: Energy and power consumption of IMe and ScaLAPACK at fixed matrix size

5.3 General Observations
The data pertaining to the general execution and the computation
phase of the algorithm do not exhibit significant differences. In some
cases, the execution of the algorithm alone consumes even more
energy than the entire execution process. This discrepancy could be
attributed to variations in the processors used for each execution,
thereby limiting the precision of such comparisons. To enhance
measurement accuracy, working consistently on the same nodes

and controlling other parameters of the surrounding environment
would have been beneficial. Surprisingly, the energy values for
the general monitoring and the computational phase pertaining to
the allocation and deallocation of matrices (which heavily impact
DRAMs) do not demonstrate a marked difference.

Computations performed on 48 cores are more energy-efficient
compared to the execution with 24 cores per node. The anticipated

1846

Energy consumption comparison of parallel linear systems solver algorithms on HPC infrastructure SC-W 2023, November 12–17, 2023, Denver, CO, USA

increase in computation time for 48 cores per node due to interac-
tions among multiple tasks sharing the same resources is evident
only in the case of IMe for the 34560x34560 matrix in the 144 ranks
deployment. However, the data in other scenarios do not consis-
tently corroborate this behaviour; at times, the energy values for 48
cores computations are similar to those for 24 cores deployments.
Nonetheless, in most cases, working with a full load per node proves
more energy-efficient than half load per node deployment.

Unexpectedly, the behaviour of deployments on one socket or
two sockets for the 24 cores solutions is quite similar, with insignifi-
cant variations. While the one-socket deployment utilizes only one
package of the processor, the energy consumption of the second
socket was expected to be low. However, this is not the case, and
instead, the energy consumption of one socket is 50-60% lower
than the other. This observation raises some doubts about the ef-
fectiveness of the Slurm directives. Additionally, the energy values
for package 0 and package 1 in the 12 cores per socket solution
were expected to be similar and significantly less than the energy
consumption of package 0 in the one-socket deployment.

5.4 Summary Comparison between IMe and
ScaLAPACK

Regarding the duration, the values for IMe and ScaLAPACK are
heavily influenced by the number of ranks. When the matrix is
distributed across many ranks, with each receiving a small part
of the problem, IMe performs better than ScaLAPACK. However,
if each task on each rank has a larger dimension, ScaLAPACK
outperforms IMe.

In terms of total energy consumption, ScaLAPACK consumes
less energy than IMe, with a consistent gap of 50% to 60%, except for
a few cases where the values are quite similar. The gap tends to de-
crease with an increase in the number of ranks and a decrease in the
matrix dimension, but the overall trend indicates that ScaLAPACK
is more energy-efficient.

Notably, the gap in power consumption between the DRAMs of
IMe and ScaLAPACK is even more significant, ranging from 12% to
18%. ScaLAPACK appears to respond better to deployments with
fewer ranks. For instance, with ranks set to 144, the gap in DRAM
power consumption between IMe and ScaLAPACK reaches 42%. In
the 24 cores deployments, both with one and two sockets, the gap
is around 33

Both algorithms demonstrate a considerable gap between pack-
age 0 and package 1 energy consumption in configurations involv-
ing 24 cores deployments. While this behavior affects ScaLAPACK
only in terms of packages, IMe experiences a similar impact on
both packages and DRAMs. Nonetheless, the difference in energy
consumption between package 0 and package 1 is approximately
50

In summary, IMe exhibits higher energy consumption compared
to ScaLAPACK, which can be partly attributed to its longer execu-
tion duration. However, the computation of power consumption
confirms the gap between the two, albeit at a reduced margin of
around 12% to 18%.

6 CONCLUSION
The primary objective of this research was to measure and ana-
lyze the energy consumption of parallel linear systems solvers on
HPC systems. This goal has been achieved by developing a testing
framework based on the PAPI library that has allowed us to obtain
experimental data about the energy consumption of two linear
system solver algorithms, IMe and ScaLAPACK, during execution
on HPC systems. The study aimed to identify the algorithm with
better energy efficiency and explore the influence of factors such as
the number of ranks, nodes, and sockets on energy consumption.

The proposed solution grants observability of the energy val-
ues, ensures portability, accommodates the white-box approach
and maintains modularity. It prioritizes efficiency to minimize the
overhead caused by monitoring libraries, while a testing framework
collects and stores results automatically for analysis. The solution
designates a single rank per node for monitoring, employing MPI
communicators to group ranks and synchronize measurements.
The approach follows the white-box paradigm, injecting the mon-
itoring component into specific ranks. Despite a slight overhead
compromise due to synchronization, this design permits accurate
measurements. In this way we can obtain valuable insights into
energy efficiency and algorithm behaviour, thanks to a robust mon-
itoring framework for comprehensive evaluations.

The results revealed unexpected behaviours of the energy val-
ues, as the energy consumption during the execution phase and
the entire algorithm, including matrix allocation and deallocation,
exhibited minimal differences. Deployments on fully loaded proces-
sors consistently proved less energy-consuming than half-loaded
ones, particularly evident in DRAM energy values. However, pat-
terns in the distribution of ranks on half-loaded processors (one
socket or two sockets) were less pronounced, with the first socket
generally consuming more energy than the second. Duration-wise,
fully loaded deployments were quicker for smaller matrices, while
larger matrices favoured half-loaded configurations due to reduced
data interactions and more distributed computations.

In terms of energy consumption, ScaLAPACK generally outper-
formed IMe, especially in lower-rank deployments. The total energy
consumption gap between the two algorithms was significant due
to longer IMe executions, but when comparing power consumption,
the gap was reduced.

This research effectively highlights the differences between IMe
and ScaLAPACK in various configurations. However, it raises con-
cerns regarding experiment repeatability, as the tests depend on the
specific architecture and nodes used, which change for each test.
While substantial differences and clear trends are evident, caution
should be exercised when interpreting mild differences, and further
research should investigate such cases.

The next phase of this work could involve the application of
power caps to restrict power consumption during execution, aim-
ing to achieve more efficient computations and investigate the
behaviour of IMe and ScaLAPACK under different power configura-
tions. Moreover, since we are aware that the accuracy of PAPI mea-
surements is less than those we could obtain with external power
meters we plan to integrate our analysis with external "ground
truth" measurements [12].

1847

SC-W 2023, November 12–17, 2023, Denver, CO, USA Montebugnoli, et al.

ACKNOWLEDGMENTS
This work was supported by the project “Foundations of Trust-
worthy AI – Integrating Reasoning, Learning and Optimization –
TAILOR”, funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 952215. The
authors want to acknowledge also the CINECA Consortium for
the availability of the HPC resources and the technical support
provided in the framework of the IscraC project En-FRLS. The au-
thors wish to thank Dr. Daniela Loreti for helpful discussions on
measurements of HPC software energy consumption.

REFERENCES
[1] [n. d.]. https://www.top500.org/lists/green500/2023/06/
[2] [n. d.]. Top500. https://www.top500.org/lists/top500/. https://www.top500.org/

lists/top500/
[3] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia Lefantzi,

Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson. 2015. Toward Rapid
Understanding of Production HPC Applications and Systems. In 2015 IEEE In-
ternational Conference on Cluster Computing. 464–473. https://doi.org/10.1109/
CLUSTER.2015.71

[4] Pedro Alonso, Rosa M. Badia, Jesus Labarta, Maria Barreda, Manuel F. Dolz,
Rafael Mayo, Enrique S. Quintana-Ortí, and Ruym’n Reyes. 2012. Tools for
Power-Energy Modelling and Analysis of Parallel Scientific Applications. In 2012
41st International Conference on Parallel Processing. 420–429. https://doi.org/10.
1109/ICPP.2012.57

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users’
Guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA.

[6] Marcello Artioli and F. Filippetti. 2001. IME: a general method to analyse linear
systems and electric circuits. In Transactions on Engineering Sciences vol 31, WIT
Press, 2001. https://www.witpress.com/Secure/elibrary/papers/ES01/ES01014FU.
pdf

[7] Marcello Artioli, Daniela Loreti, and Anna Ciampolini. 2019. Fault tolerant high
performance solver for Linear Equation Systems. 2019 38th Symposium on Reliable
Distributed Systems (SRDS) (2019). https://doi.org/10.1109/srds47363.2019.00022

[8] Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi, Daniele
Gregori, Simone Tinti, Cosimo Gianfreda, and Piero Altoè. 2018. The DAVIDE
big-data-powered fine-grain power and performance monitoring support. In
Proceedings of the 15th ACM International Conference on Computing Frontiers.
303–308.

[9] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. 2000. A portable pro-
gramming interface for performance evaluation on modern processors. The
International Journal of High Performance Computing Applications 14, 3 (2000),
189–204. https://doi.org/10.1177/109434200001400303

[10] Filippo Ciampolini. 1063. Un metodo di soluzione dei circuiti lineari,”. In
L’Elettrotecnica, vol. L, no. 10, 1963. https://doi.org/10.1007/978-3-642-30829-1_15

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. Proceeding
of the 38th annual international symposium on Computer architecture - ISCA ’11
(2011). https://doi.org/10.1145/2000064.2000108

[12] Muhammad Fahad, Arsalan Shahid, Ravi Reddy Manumachu, and Alexey Las-
tovetsky. 2019. A Comparative Study of Methods for Measurement of Energy of
Computing. Energies 12, 11 (2019). https://doi.org/10.3390/en12112204

[13] S. Hemmert. 2010. Green HPC: From Nice to Necessity. Computing in Science &;
Engineering 12, 06 (nov 2010), 8–10. https://doi.org/10.1109/MCSE.2010.134

[14] Joel Hruska. 2012. The death of CPU scaling: From one core to many - and why
we’re still stuck - page 3 of 3. https://www.extremetech.com/computing/116561-
the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-
stuck/3. https://www.extremetech.com/computing/116561-the-death-of-cpu-
scaling-from-one-core-to-many-and-why-were-still-stuck/3

[15] Daniela Loreti, Marcello Artioli, and Anna Ciampolini. 2020. Solving Linear
Systems on High Performance Hardware with Resilience to Multiple Hard Faults.
In 2020 International Symposium on Reliable Distributed Systems (SRDS). IEEE,
266–275.

[16] Heike McCraw, James Ralph, Anthony Danalis, and Jack Dongarra. 2014. Power
monitoring with PAPI for extreme scale architectures and dataflow-based pro-
gramming models. In 2014 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 385–391.

[17] Ilya Meignan et al. 2022. Bridging the gap between profiling and monitoring in
HPC systems with dynamically reconfigurable fine-grain data collection. Ph. D.
Dissertation. Université Grenoble Alpes.

[18] Sofia Montebugnoli. 2022. IMe vs ScaLAPACK: an energy monitoring framework.
https://github.com/sofiamontebugnoli/monitoring-ime-master-PAPI_MPI.git.

[19] Mohammad Rashti, Gerald Sabin, David Vansickle, and Boyana Norris. 2015.
WattProf: A flexible platform for fine-grained HPC power profiling. In 2015 IEEE
International Conference on Cluster Computing. IEEE, 698–705.

[20] Elda Rossi. 2016. Ug3.1: Marconi UserGuide. https://wiki.u-gov.it/confluence/
display/SCAIUS/UG3.1%3A+MARCONI+UserGuide. https://wiki.u-gov.it/
confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide

[21] Li Tan, Shashank Kothapalli, Longxiang Chen, Omar Hussaini, Ryan Bissiri, and
Zizhong Chen. 2014. A survey of power and energy efficient techniques for high
performance numerical linear algebra operations. Parallel Comput. 40, 10 (2014),
559–573. https://doi.org/10.1016/j.parco.2014.09.001

1848

https://www.top500.org/lists/green500/2023/06/
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://doi.org/10.1109/CLUSTER.2015.71
https://doi.org/10.1109/CLUSTER.2015.71
https://doi.org/10.1109/ICPP.2012.57
https://doi.org/10.1109/ICPP.2012.57
https://www.witpress.com/Secure/elibrary/papers/ES01/ES01014FU.pdf
https://www.witpress.com/Secure/elibrary/papers/ES01/ES01014FU.pdf
https://doi.org/10.1109/srds47363.2019.00022
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.3390/en12112204
https://doi.org/10.1109/MCSE.2010.134
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://github.com/sofiamontebugnoli/monitoring-ime-master-PAPI_MPI.git
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://doi.org/10.1016/j.parco.2014.09.001

	Abstract
	1 Introduction
	2 Background
	2.1 Inhibition Method
	2.2 Gaussian Elimination by ScaLAPACK
	2.3 Tools and APIs for performance-energy power tracing

	3 Related works
	4 Our proposal
	5 Evaluation
	5.1 Tested parameters
	5.2 Test results
	5.3 General Observations
	5.4 Summary Comparison between IMe and ScaLAPACK

	6 Conclusion
	Acknowledgments
	References

