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Abstract

Degraded adhesion is observed extensively during the braking or
traction process. An accurate degraded adhesion law, on the other
hand, is difficult to acquire since it is characterized by a complicated
non-linear behaviour involving various surface phenomena. This work
provides a new local degraded adhesion model, its implementation
in a wheel-rail contact model, and its application in a multibody
railway vehicle model. The present degraded adhesion model takes
into account large sliding and adhesion recovery phenomena,
which are strictly related to the power dissipated at the contact
interface. Implementation of the current local degraded adhesion
model enhances Kalker's CONTACT algorithm. The application into
multibody dynamics simulation demonstrates the high accuracy of
computations. The model is validated by comparing it to experimental
findings obtained from on-field tests. Simulated results regarding the
tangential pressures, the slip velocity, and the dissipated power under
degraded adhesion and partial adherence conditions are reported.

Keywords
Adhesion recovery, Creep forces, Degraded adhesion, Multibody
modelling, Wheel-rail contact model
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Introduction

The evaluation of creep forces at the wheel-rail contact interface is
fundamental in railway system dynamics. The foundation work by
Kalker '~ on the modern wheel-rail rolling contact field is one of the most
notable modelling strategies to face rolling contact problems. Kalker’s
theories, including the Linear theory, the Exact theory, and the Simplified
theory, have been applied widely and improved gradually to face new
challenges. For example, the algorithms FASTSIM and CONTACT were
proposed to investigate railway vehicle simulations. A survey of different
implementations, comparisons, and innovative improvements based on
Kalker’s theories can be found in*®.

Degraded adhesion extensively exists in the wheel-rail contact interface,
especially during the braking or traction process of an operating train”-°.
Degraded adhesion can result from complex conditions in reality.
Experimental investigations have revealed that the adhesion coefficient
is related to several macroscopic factors such as the train speed, the
axle load, and the temperature”‘”, as well as various microscopic
factors including the surface roughness, the surface contaminated layer
parameters, the third body particle and others !¢

In degraded adhesion conditions, the relationship between creepage
and creep force shows high non-linearity. Assumptions based on one
small-creepage limitation, applied for the dry friction condition, limited
simulation accuracy for further investigations. Under the premise of
balancing the calculation efforts, revising this assumption can significantly
improve the accuracy of a wheel-rail contact model. Therefore, it has
attracted the attention of many researchers'’>!. For example, Polach?’
proposed an algorithm for modelling creep forces at large creepage
under low adhesion conditions, improving the simulation accuracy
and the computational effort remarkably. The Polach contact theory
has been further employed to assess the vehicle performance”. A
degraded adhesion model has been presented in recent years, taking into
consideration the power dissipation at the contact interface due to the large
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Z. Shi, et al. 3

sliding and the resulting cleaning effect. Previous research focused on
global degraded adhesion models'®?**> and a local degraded adhesion
model**® which directly connects local sliding/creepages inside the
contact area and local pressures using the modified Kalker’s FASTSIM
algorithm. The current work continues the path by presenting a local
degraded adhesion model based on the CONTACT algorithm, which
promises higher accuracy.

This model can be used in a general planar-contact situation and
has been validated through experiments, with a satisfying compromise
between accuracy and efficiency. The current paper is organized as
follows: the formulation, the algorithm, and the modelling methods are
firstly introduced in the next section. Then, the validation of the model
is detailed. The simulation results and discussion based on the proposed
model are shown, and finally, the conclusion is drawn.

Modelling

In this chapter, the physical model of the wheel-rail contact system will be
firstly defined. The planar mesh and the shape functions usually exploited
to discretize the physical rolling contact problem will be briefly introduced
next. Then, the local degraded adhesion model will be detailed. The
CONTACT algorithm?’ will next be introduced and extended. Finally,
the multibody system model will be presented. The following equations
1 to 13 have been published in?’. As the critical modelling parts, they are
referenced in this article for a complete introduction to the current model.
For more details about Kalker’s exact contact model, refer to?=!.

Physical model of contact bodies

Usually, in the multibody simulation of mechanical systems, the contact
bodies are considered globally rigid and locally deformable according to
the linear elasticity theory for homogenous isotropic bodies (the so-called
large displacement - small deformation approach)*.

The inputs and definitions For the contact model, the main inputs are the
kinematics of the bodies (position and velocities of the gravity centres Gy,
Gs, Va1, Ve, rotation matrices R;, Ry and angular velocities wy, wo),
the bodies geometries (volumes V), V5 and contact surfaces 57, S7) and
the bodies physical characteristics. All these inputs are provided by the
multibody vehicle model of the system, (see Figure 1(a)). Starting from

Prepared using sagej.cls



4 XXXXX X(X)

the inputs, the following geometric and physical quantities can be easily
calculated: the potential contact area A, (i.e. the area on the contact plane
where the rigid undeformed surfaces S, S, penetrate each other), the rigid
penetration ~ (how much the rigid undeformed surfaces 57, S5 penetrate
each other) and rigid local sliding ¢ = %! — %2.

Assuming the contact is planar, a common tangent plane containing the
contact area can be defined (Figure 1(b)); in such plane, the main contact
reference frame is placed (origin in the point C, z-axis orthogonal to
the contact plane and x-axis, y-axis on the plane). In the following, x!
x? will be the underformed positions of the corresponding points on the
undeformed contact surfaces S7, Sy (with outgoing unit normal vectors
n', n?) whereas x! + u!, x? + u? will be the related deformed positions
(see Figure 1(c)). As a consequence, the velocities of the undeformed
particles are defined as x!, x? (i.e. the velocities of the points x!, x>
rigidly connected to the contact bodies) and the velocities of the deformed
particles as v! = %! +ul, v = %! +ul.

The contact constraint Basing on the definitions of the rigid penetration
h, the elastic penetration e, the contact pressures pr, and the mean contact
position x, we have the following inequalities (see Figure 2(a)):

e(x) >0: either a gap or contact
pn(x) > 0 : either no or a compressive normal traction

)

where py and pp are the normal and tangential components of the contact
pressures pr. This formulation leads to the subdivision of the potential
contact areas A, into two disjointed regions: the real contact area C' where

= 0 and the normal pressures py may be positive and the non-contact
area E where e > 0 and py = 0. The contact constraint can be formulated
as:

e-py =0 2)

The friction model The classic Coulomb-like friction law can be stated
as:

Ipr| < g(pzy[sr]s-- ) 3)

if ’ST| 7é 0 = Pr= _957/ |ST‘ (4)
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Figure 1. Modelling of wheel-rail contact (a) general architecture, (b) contact bodies, and (c)
the distance

Prepared using sagej.cls



6 XXXXX X(X)

where p,, s, are the generic components of p and s respectively (here
T=2x,Y), p. = pn (according to the choice of the contact reference
system in Figure 1(b)) and g is a general friction limit function assuming
usually the following shape:

gz |8y ) = (s, ) ps (5)

in which p is the friction characteristics. The Coulomb-like frictions
model leads again to a subdivision of the contact areas C' into two
disjointed regions: the sliding contact area S where |s,|# 0 and
pr = —gS;/ |s-| and the adhesion area H where |s;| =0 and |p,| <

g (P2, |s+],...) (see Figure 2(a)).
The elasticity equations According to Navier’s elasticity equations for
homogeneous, isotropic, linear elastic bodies *:

045 = Oy and Oij,5 = 0 (6)

where the classic Hooke’s law connects the stress tensor o;; to the strain
tensor e;; in the case of an isotropic material:

1+v v
= ———0ij — 0ij0kk, Oij

E E

Eeij E(Sijekk

“Thy T arva-z) O

eij =

in which 7,57 =1,2,3, E is the Young’s elasticity modulus and v is
the Poisson’s coefficient. Such model has been exploited in this work
to describe both body 1 and body 2. Under the working hypotheses of
non-conformal contact, planar contact and half-space contact, the Navier’s
elasticity equations can be analytically solved?’. More precisely, it is
possible to explicitly write the unknown elastic deformations u as a
function of the pressures on the contact area p through suitable shape
functions A (x,y):

w@%=/ Aie(x,y)pe(y)dS(y) (8)
ov

where A;(x,y) can be determined analytically according to the
Bossinesq-Cerruti solution. The derivations can be found in”’.
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The contact problem formulation Eq. (9) summarizes the contact model
described above:

inC:e=0, py=>0

mE:p=0, e>0

CUE=A., CNnNE=g

in A : si| =0, |pi| <g

inS: lsf| #0, pr=—gsi/l|si|

SUH=C, SNnH=0

where the first three rows represent the normal contact problem

(calculation of the normal contact pressures py and of the shapes of A¢,
C and FE) whereas the second three rows the tangential contact problem
(calculation of the tangential contact pressures and local slidings p,, s,
with p, = z, y and of the shapes of S and A).

)

Planar mesh and shape functions

A planar quadrilateral mesh is used to discretize A, as shown in Figure
2(b). Define x; = (zr, yr,0), where [ identifies the specific element. The
discrete values of the elastic deformation u on the mesh nodes at the
present time step ¢ and at the past time step ¢’ will be:

u; = (up) = (ur,vr,wy)  at  (xyq,t)

10
W= () = (o) at Gaavt—t) ). 0
For the contact pressures p:
Ps = (psj) = (Pes,Dys,0-0) at  (xs,t) (11
Py = (pilj) = (Do PyysPey) At (xg+v(t—=1),t).
The discretized displacements u;:
N 3
U = Z Z ArigipJ;
J=1 j=1
N ]3 (12)
up; = Z Z CIiij{]j
J=1 j=1

where
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Figure 2. Contact area: (a) subdivision and (b) discretization

Arigj = Brigj (X1)

, 13
C[ijj:B]iJj(X[+V(t_t)> ( )

and By, ; are the discrete shape functions of the problem that describe
the effect of a contact pressure p; applied to the element J on the
displacement u; of the node I. The shape function By, ;; depends usually
on the problem geometry and the characteristics of the materials (Young’s
modulus £, shear modulus G and Poisson’s coefficient v). See” for
derivations.
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Local degraded adhesion model

In general, sliding occurs under degraded adhesion conditions and it
is responsible for the material removal at the contact interface in a
contaminated environment. This cleaning effect leads to an increase in the
adhesion coefficient. This is mostly due to the dissipated power during
the sliding process. When the dissipated power, W,, is minimal, the
cleaning effect is non-existent, the contamination level 4 remains constant,
and the friction coefficient ;. remains constant.As W, accumulates, the
cleaning effect increases, the contamination level A thins, and the friction
coefficient rises. Eventually, the sustained recovery process ends with
the removal of all contaminants, and the friction coefficient x attains its
maximum value p,.. If W, diminishes, the opposite process happens.

Figure 3 approximately illustrates x as a function of slip velocity, which
includes (a) a general situation and (b) in the presence of dissipated power
W, where 1, and . are the static and the kinematic friction coefficients;
1q and g, are the friction coefficients in degraded adhesion and adhesion
recovery conditions; fi.q and .. are the kinematic values corresponding
to the static p4 and p,. values.

Adhesion
T Recovery

Energy

Energy w ‘ H Degraded
Decrease P Adhesion

(a) (b)

Figure 3. The friction coefficient n as function of slip velocity s: (a) standard and (b) in
presence of dissipated power W, at the contact interface *®

We propose the following equation for p to recreate the quantitative
trend in Figure 3(b):

n= [1 - )‘(WSP)]/Ld + A (Wsp) Moy (14)
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where A\(W,) is a transition function of the dissipated power Wj,,
between degraded adhesion and adhesion recovery. A(W/;,) must meet the
conditions of being both positive and monotonous rising, and satisfy the
following boundary conditions:

\0) =0
{)\(—f—o)o) —1 (15)

For \(W,), we use the following expression:
AWy) =1 — e TWel (16)

where 7 is a parameter to be adjusted based on experimental data. The
value of 7 is found usually between 4 x 10~ and 3 x 10~8, with the unit
m?2 /W, given reference in”’).

Combining Egs. (16) and (14), for a point (x;, y;) in the discretized area,
the following equations for determining its friction coefficient x through
1tq and g, can be written as

{Md(ﬂﬁl, yr) = (52 — pea)e™* v 4 g (17)
ﬂr(xb yI) - (% - ,ucr)e_s(zl’yl)% + Her
wxryr) = (1 — Npa(zr, yr) + Ae(xr, yr) (18)
A=1— e Wl

where s = ||s||, Ay and A, are the ratios between the kinetic and the static
friction coefficients, and -y, and -, are the friction decrease rates. Wy, is
calculated as follows:

Wep(zr,y1) = Pr(2r,y1) - s(xr, yr) (19)

According to Coulomb’s law, tangential contact pressures pr and local
sliding s, are represented as follows:
if (l’], y[) in H

|S<x17y1)’ - 0 (20)
‘pT(.%], y[>| < M(x],yl) . pN(xI, y])
if (v7,yr)in S
|S<I]7y1)‘ ?’é 0
s(z 21
{pT (zr,yr) = —u(xr,vr) - pn(Tr, yr) |S((£EII’Z’II)| D
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Modified CONTACT algorithm

The inputs of the CONTACT algorithm? are the potential contact area
A, the rigid penetration h and the rigid local sliding c. With the inputs,
the NORM algorithm determines real contact area C, non-contact area
E, normal contact pressures py. With the results from NORM algorithm,
the TANG algorithm then calculates sliding area S, adhesion area H,
tangential contact pressures pr and local sliding s. The results of the
TANG algorithm are then passed back to NORM algorithm to correct and
improve the evaluation of the normal pressures py. At each time step, the
contact pressures py, pr are stored to be used at the following time step
to estimate the time derivatives of the elastic deformation u involved in
the calculation of the local sliding s.

This Chapter presents the modified CONTACT algorithm. The NORM
algorithm is retained while the TANG algorithm is improved. In the
modified TANG algorithm, the local adhesion model is inserted.

The NORM algorithm According to the considered discretization
procedure, at each node xp, the elastic penetration e is

6[2h1+w1 (22)

whereas the normal part of the contact constraint becomes

pr- >0, wr>0, prwr=0. (23)

The algorithm to calculate the normal contact pressure py and, at the
same time, to build the real contact area C' and the non-contact area F
inside the potential contact area A, can be summarized in the following
steps:

[a—

. set h? =h;+ ZJ,T Ap3gpys, Yoy € Az

set p;., = 0 VJ; clear all normal tractions;

3. initially, the non-contact area £/ = (), and the real contact area
C=0; F and C are modified until they correspond to the
solution;

4. during the procedure, e; =0 Vr;e€ Cip;, =0 Vr; € FE;

these are N¢ linear equations in the No unknowns pj, in the

nodes of C;

N
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5. are all pressures p;, > 0 in C? If ’no”, go to Point 6; if “’yes”,
go to Point 7;

6. if p,. <0, element J is placed in the non-contact zone £, and
P 18 set equal to zero; go to Point 4;

7. are all elastic penetrations e; > 0 in £? If ’yes”, END; if ’no”,
place all elements with elastic penetrations < 0 in C'; go to Point
4.

The TANG algorithm As in the previous case, the main physical
quantities involved into the tangential contact problem can be calculated
on the mesh nodes xj. The tangential components of the elastic
displacements both at current and at the past time steps (¢ and ¢') become

ur = ZJ Zj Anipi; (24)
vr =), ;Arsps at (xr,t)

Z ZcflepJ]
UI_ZZCIQJJPJ at (X]+V(t—t,),t/).

On the other hand, the local sliding s can be discretized by properly
approximating the time derivative of the elastic deformation 11:

(25)

(uy — uj)
Sr=cCy+ ﬁ (26)

The general friction limit function takes the following form:

g1 = iPr1z (27)

whereas the p; is expressed in Eq. (18), and the Coulomb-like friction
model can be further expressed as follows (i.e. the tangential part of the
contact constraint):

\(pr1,pr2)| < g1
if the inequality holds: (s;1, $s72) =0 . (28)

if the equality holds: (s;1, s12) = — |(s11, 812)| (P11, P12) /91
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The algorithm to calculate the tangential contact pressures pr and local
sliding s and, at the same time, to build the adhesion area H and the sliding
area S inside the real contact area C' can be summarized in the following
steps:

1. set (pr1, pr2) = (0,0); clear the tangential contact pressures;

2. initially, S = 0, H = C'; during the procedure, H U S = C until
they correspond to the solution;

3. solve:
(s11, 812) = 0, these are 2Ny linear equations on the nodes of the
adhesion area H in the 2Ny unknowns;
(s11,512) = — (811, 512)| (P11, pr2) /ppr.; these are 2Ng non-
linear equations on the nodes of the sliding area S in the 2/Ng
unknowns (pr1, pr2);
note that y; is a function of (s;1,$52) and (pp,pr2), and
can be calculated according to Eqgs. 17 - 21, by coupling
such equations to the original tangential pressure equations
(s11,812) = — |(511, 512)| (P11, P12) [ 01D125

4. if |pr1, pra| > g1, for every node in H, place element [ in the
sliding area S, if this has happened at least once, go back to Point
95

5. if the slip (s/1, s72) is in the same sense as the tangential traction
(pr1, pr2) rather than opposite as it should be in the sliding area,
then place element [ in the adhesion area H;
if this has happened at least once, go back to Point 3, else END.

The local degraded adhesion model based on modified CONTACT
algorithm is implemented in Fortran and interacted with SIMPACK by
generating new routines. Figure 4 shows an architecture of the modified
CONTACT model. We use the tolerance on the absolute value of main
quantities (e.g. the shape of the contact area) as the criterion. Once the
convergence is reached, the final values of normal and tangential pressures
pn, Pr are available. Finally, the contact forces and torques exchanged
by the contact bodies are determined by simple numerical integration and
sent back to the time integrator to carry on the simulation of the multibody
system.
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[ uforce20.£ (SIMPACK) |

!

CONTACT routines
[ read_common_par.f ] [ callcoiltact.f ]
[ read_data SX/DX.f ] { callcontact_sx.f ]4—0[ contact.f ]
[ read physical par.f ] lr callcontact_dx.f ]<—>[ contact.f ]
[ contact.f ] External packages
[ NORM _algo f } mealnglCaéo vers: J
! 4
)| Nonlinear system solbvers:
(_maNGaor ] NITSOL/PANDSR
\ L
no
[ system_sliding_adhesion ]
yes
[ exit ] [ traction bound ]

Figure 4. Modified CONTACT model

Multibody system model

The multibody vehicle model is developed according to the UIC-
Z1 vehicle**. The 50-degree-of-freedoms multibody vehicle model is
generated, which includes 1 carbody, 2 bogie frames, 4 wheelsets and
8 axle boxes. The Wheel Slide Protection (WSP) system of the railway
vehicle UIC-Z1 has been modelled to better investigate the vehicle
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behaviour during the braking under degraded adhesion conditions. The
wheel thread and rail profile are ORE S 1002 and UIC 60.
Table 1 lists the main parameters of the railway vehicle for MBS

simulation.

Table 1. Main parameters of the railway vehicle

Description Unit Value
Carbody mass kg 29000
Carbody rotary inertias Roll kg -m? 76400
Pitch kg -m? 1494400
Yaw kg-m? 1467160
Bogie frame mass kg 3000
Bogie frame rotary inertias Roll kg - m? 2400
Pitch kg - m? 1900
Yaw kg -m? 4000
Wheelset mass kg 1300
Wheelset rotary inertias Roll kg -m? 800
Pitch kg -m? 160
Yaw kg - m? 800
Axlebox mass kg 200
Wheelset rotary inertias Roll kg -m? 3
Pitch kg -m? 12
Yaw kg - m? 12
Wheelset spacing m 2.56
Bogie spacing m 19
Wheel diameter m 0.89

Validation

Even though the validation of an adhesion model regarding contact
pressures would be direct, the difficulty makes the measurements
almost impossible. As an alternative, we compare experimental and
simulated results regarding velocities, forces, and global sliding so as
a good compromise to get a preliminary validation. The data for the
validation of the extended CONTACT model are from the experimental
campaign performed by Trenitalia in Velim, Czech Republic, with the
vehicle UIC-Z1, following the UIC 541-05 regulations**. The vehicle
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under consideration is equipped with a fully-working WSP system that
modulates the braking force, in order to control the slip value. The
experimental tests have been carried out on a straight railway track without
turnouts, and the profiles did not present relevant amount of wear after the
braking.

In Table 2, the main contact characteristics are reported. The Young
modulus, shear modulus, and the Poisson coefficient for the wheel
material and the rail material are considered the same. The contact
damping constant is a parameter that allows to calculate the part of the
normal force proportional to the penetration velocity, according to the
Hertz theory®. The kinetic friction coefficient under degraded adhesion
conditions .y depends on the test from the track (see'®®). The kinetic
friction coefficient under full adhesion recovery y., depends on the wheel
and rail material and represents the kinetic friction coefficient under dry
conditions.

Table 2. Main contact characteristics

Parameters Unit Value
Young modulus Pa 2.1 x 101
Shear modulus Pa 8 x 1010
Poisson coefficient - 0.3
Contact damping constant N-s/m 1x10°
Kinetic friction coefficient j.q - 0.06
Kinetic friction coefficient tt.. - 0.28
Friction ratio Ay - 0.4
Friction ratio A, - 04
Friction decrease rate vy s/m 0.2
Friction decrease rate -, s/m 0.6

The experimental data used to calculate the wheel-rail adhesion
coefficient are derived from a set of 27 braking tests, 11 of which were
performed with a single vehicle. During the experiments, the following
physical quantities were measured:

the longitudinal vehicle velocity v;?;
the rotation velocities of all the wheels w
the vertical loads N,;; on the wheels;
the traction or braking torques C'”: applied to the wheels.

wj

Ssp .
wyg?
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Figure 5(a) exhibits the results on comparing the time histories of
the velocities v;™, v;? (simulated and experimental of the vehicle,
respectively), and rw}, rw,” (simulated and experimental of the first
wheelset, respectively). Degraded adhesion phenomenon is revealed by
the difference between the vehicle velocity and the wheel velocity. Two
groups of velocities v3™ and vF, rw:7 and rw; are well matched. During
the braking, there is a significant difference between the slopes before
and after the instant t=25 s. The change of slope in the second part of
the simulation depicts the braking maneuver’s adhesion recovery. Figure
5(a) shows the difference between the vehicle velocity and the wheel
velocity during the braking process. The difference reaches maximum
at near t = 17s, exceeding 5m/s. This is seen due to the fact that the
severely degraded adhesion phenomenon occurred at the current instant.
Figure 5(d) shows a significant difference between the measured and
the simulated values in the time histories. This is because the sliding
velocity cannot be locally compared to each other. Because a realistic
railway system includes non-linear elements (like WSP), bringing out high
complexity, which restricts the possibility of measuring corresponding
quantities.

In Figures 5(b), 5(c) and 5(d), the trends of the experimental and
simulated adhesion coefficient, the longitudinal contact forces, and the
sliding are shown. The experimental and simulated adhesion coefficient is
calculated by f;* = T77 /N7, fi™ = Tz /N5, where T, and T35 are
approximately estimated as [ ;m/ P o?fUT/ b :CZ?/ P T;fjn/ °P".r. In Figure
5(d), the slip velocity of the simulated and the experimental ones are
calculated by 55 = vJ™ — rwy and 57" = v;P — rw,’;. We can see that
Figures 5(b) and 5(c) both emphasise the adhesion recovery that occurs
during the second part of the braking. Two groups of adhesion coefficients

and longitudinal contact forces are also well matched.

For the sliding in Figure 5(d), in the first part of the simulation, there is
an obvious difference between the simulated and experimental values. It
can be due to the imperfect coincident time of application of the braking
torque and particularly to the difficulty to predicting the moment of the
first loss of adherence of the wheels.
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Figure 5. Comparison between experimental and simulated results of (a) velocity, (b)
adhesion coefficient, (c) longitudinal contact force, and (d) sliding velocity

Numerical results and discussion

This section presents simulated results on several contact variables.
Two simulation instants are considered: one at 12s (when lower sliding
occurs and partial adherence is present) and one at 27s (when higher
sliding occurs and degraded adhesion conditions exist). Results are
corresponding to the left wheel of the first wheelset. The longitudinal
and lateral components of the tangential contact pressures p; under a
partial adherence condition (PAC) and a pure sliding condition (PSC) are
presented in Figure 6. Note that, under the pure sliding condition, the
lateral tangential stress is at a low level, compared to the longitudinal
tangential stress. As the value of tangential stress is affected by the
creepages (longitudinal, lateral and spin creepages), the longitudinal
creepage is much larger than the lateral and spin creepages. When the
spin creepage is in a certain range, both positive and negative components
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Figure 6. Comparison of the tangential pressures for partial adherence condition and pure
sliding condition

will be generated for the lateral tangential stress. Therefore, Figure 6(d)
shows both positive and negative values of the lateral tangential stress.

Similarly, Figure 7 depicts the longitudinal and lateral components of
the local sliding 5 at 12s and 27s. Figure 8 plots the dissipated power Wy,
inside the contact patch under two different contact conditions.

It can be seen that as the W, is directly connected with the sliding,
the value of W, reaches the maximum in a pure sliding condition, while
it is zero in the presence of adherence. To combine Figures 6 to 8§,
regarding the contact patch, we do not notice a visible change in the
two different instants chosen because one of the main parameters that
influences the shape is the lateral displacement, and the case of straight
line simulations is of current concern. When partial adherence is present,
both adhesion area and slip area are present in Figures 6(a), 6(c), 7(a)
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Figure 8. Comparison of the dissipated power for partial adherence condition and pure
sliding condition
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and 7(c). The tangential pressures p;, and sliding s, in Figures 6(b), 6(d),
7(b) and 7(d) clearly highlights the presence of the only slip area inside
the contact patch. Dissipated power W, is consistent with p; and s: the
power dissipation is concentrated in the slip area and higher sliding leads
to higher dissipated power.

Conclusions and future work

In this paper, the authors established a degraded adhesion model for
creep force calculation. The new model has extended the CONTACT
algorithm, by considering the adhesion law in a more general situation.
The tangential contact pressure is determined locally while accounting for
large sliding and adhesion recovery phenomena. The integration of the
modified CONTACT algorithm developed in a Fortran environment with
the general vehicle multibody models as well as the local adhesion model
is thoroughly presented. Experimental tests have been performed on a
straight railway track with a vehicle equipped on every wheelset with a
WSP system. The comparison between experimental and simulated results
on adhesion coefficient, longitudinal contact force and sliding validate the
model. Finally, tangential pressures, slip velocity, and dissipated power
under degraded adhesion and partial adherence conditions are reported.

Future developments may include the investigation into conformal
contact behaviour, as well as its experimental validation, which will
require a consideration of non-planar conditions. Furthermore, the authors
would comprehensively compare the differences, pros, and cons of the
current model with the global degraded adhesion model, and the local
degraded adhesion model based on FASTSIM that has been proposed in
previous publications.
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