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ANALYSIS OF THE TRUNCATED CONJUGATE GRADIENT
METHOD FOR LINEAR MATRIX EQUATIONS\ast 

VALERIA SIMONCINI\dagger AND YUE HAO\ddagger 

Abstract. The matrix-oriented version of the conjugate gradient (CG) method can be used to
approximate the solution to certain linear matrix equations. To limit memory consumption, low-
rank reduction of the factored iterates is often employed, possibly leading to disruption of the regular
convergence behavior. We analyze the properties of the method in the matrix regime and identify
the quantities that are responsible for early termination, usually stagnation, when truncation is in
effect. Moreover, we illustrate relations between CG and a projection technique directly applied to
the same matrix equation.

Key words. conjugate gradients, linear matrix equations, truncation strategies, low-rank
methods
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1. Introduction. Multiterm matrix equations

(1.1) A1XB1 +A2XB2 + \cdot \cdot \cdot +AlXBl =C,

where Ai \in \BbbR n\times n, Bi \in \BbbR m\times m, and C \in \BbbR n\times m, of low rank r < min\{ m,n\} have re-
cently arisen as a natural algebraic formulation of an increasing number of application
problems, such as the discretization of partial differential equations in two or more
space variables and also possibly involving time or stochastic variables, the control of
discretized dynamical systems (see, e.g., [1], [3], [4], [13], and [32] for more examples of
these applications), but also image processing, statistics, and inverse problems in gen-
eral; see, e.g., [38], [22]. The occurrence of more than two terms, that is l > 2, makes
the numerical solution particularly challenging, and this led authors to abandon this
formulation in the early days [2] or to approach the matrix equation (1.1) mainly from
a purely theoretical view point [20]. In the past decade, numerical methods specifi-
cally tailored to the solution of (1.1) have successfully emerged, principally following
two distinct directions. One class of methods aims to adapt vector approaches to the
matrix setting, trying to exploit possible rank structure of the data: these are Krylov
subspace methods (see, e.g., [17], [18], [34], [28], and their references), fixed point
type iterations [6], [19], low-rank updates [16], etc. In the other direction, reduction
techniques have been designed specifically for (1.1) that try to generalize successful
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360 VALERIA SIMONCINI AND YUE HAO

methods recently developed for the case l = 2; see, e.g., [1], [32]. Approaches that
mix these two categories have also been explored; see, e.g., [4], [24], [31]. A con-
venient hypothesis when aiming at developing a structure-driven method is the fact
that C is low rank. Krylov solvers can exploit low rank by including rank constraints.
Though methods relying on fixed rank constraints have been developed [36], most
solvers impose these constraints dynamically, as the iterations proceed, by applying
a truncation procedure to control rank growth.

A convergence analysis of problem (1.1) has only recently been tackled (see, e.g.,
[15] in the symmetric case). Unfortunately, in its full generality, the theoretical treat-
ment of problem (1.1) is still out of reach. Rank truncation immediately destroys
mathematical properties such as global minimization and orthogonality relations. The
amount of this damage depends on the type and strictness of the truncation criterion
used. If truncation is based on some error norm associated with a specific tolerance, a
practical rule of thumb consists in relating this tolerance to the final desired accuracy.
However, the whole convergence history can be affected by truncation, especially when
the properties of the original methods are not imposed explicitly, as is the case with
the conjugate gradient (CG) method. For this algorithm, in exact arithmetic certain
orthogonality properties among all generated vectors are satisfied once orthogonality
is enforced only locally. Truncation destroys this orthogonality irreparably, eventually
leading to stagnation of the whole process (we refer to this low-rank version of CG
as ``truncated CG"" (TCG)). We aim to analyze this striking behavior. Indeed, for a
perturbed problem one would expect convergence delay, whereas complete stagnation
seems to occur. To be able to analyze in greater detail all quantities involved and
have a better handling of the generated spaces, we consider the particular case of (1.1)
given by

(1.2) AX +XA+MXM =C, C = c1c
\top 
1 ,

with A, M, and C symmetric. Nonetheless, many of the presented results are applica-
ble to (1.1) and to linear tensor equations; see, e.g., [17]. To simplify the presentation
we will focus on the case when c1 is a column vector, so that C has rank one.1 The
whole analysis can be generalized to C of (low) rank larger than one. Occasionally we
will refer to the case M = 0, that is, to the Sylvester equation, to emphasize the new
challenges associated with the setting M \not = 0. Our theoretical analysis is intended to
be a first step towards a better understanding of the performance of iterative methods
for solving the general problem in (1.1).

Classically, the problem has been treated by resorting to its Kronecker formula-
tion, giving rise to a standard (vector) linear system. Let \scrA =\scrA 0 +\scrM , where

\scrA 0 =A\otimes I + I \otimes A, \scrM =M \otimes M.(1.3)

Then, (1.2) is equivalent to

(1.4) \scrA x= c, c =vec(C).

The vec operator stacks the columns of C one after the other into a single long vector,
while for given matricesH = (hij)i=1,...,nH ,j=1,...,mH

, and B \in \BbbR nB\times mB , the Kronecker
product is defined as [14]

1We work with the generic nonzero symmetric case and excluding the trivial settings A = I or
M = I.
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 361

H \otimes B =

\left[     
h11B h12B \cdot \cdot \cdot h1mH

B
h21B h22B \cdot \cdot \cdot h2mH

B
...

...
hnH1B hnH2B \cdot \cdot \cdot hnHmH

B

\right]     \in \BbbR nHnB\times mHmB .(1.5)

Throughout the paper we assume that A and M are such that \scrA is symmetric and
positive definite. In the following we denote with X \star the exact solution to (1.2) and
x \star =vec(X \star ) the exact solution to (1.4), and we refer to the left-hand side operator as
\scrL (X) =AX+XA+MXM , where \scrL :\BbbR n\times n\rightarrow \BbbR n\times n. Though the vector formulation
(1.4) can take advantage of a large number of solution strategies, it is now recognized
that this form may be unable to preserve some important structural properties of the
original matrix equation. Indeed, in addition to possibly large memory requirements,
the vector-oriented formulation does not take into account features of the solution
matrix X \star such as numerical low rank2 and symmetry. These crucial arguments have
motivated the large recent interest in developing tailored procedures that can control
memory allocations while preserving structural features. This can be achieved by
working directly with data in their original context, so that X is treated as a matrix
throughout the computation, possibly in factored form.

For M = 0 well-established solution methods exist; see [32] for both the large and
small scale problems. In particular, for modest matrix dimensions, the solution can
be obtained in closed form using a Schur decomposition of A without resorting to
the Kronecker formulation. Adding the term MXM with M \not = 0 to the matrix equa-
tion makes the solution extremely challenging. Except for special cases, no methods
exist in the current literature that generalize Schur-based decompositions. Iterative
methods thus gain a central role.

Little is known even on the properties of the solution X \star . For instance, the
rank of the symmetric solution matrix X \star is not known a priori. Estimates can be
obtained on the decay of the singular values of X \star , that is, of the absolute values of
its eigenvalues. Let \lambda i, i = 1, . . . , n, be the eigenvalues of X \star , decreasingly ordered
in absolute value. Thanks to the properties of the spectral norm, if \widetilde X is a rank-m
symmetric approximation to X \star , it follows that

(1.6) | \lambda m+1| = min
X\in \BbbR n\times n

rank(X)=m

\| X \star  - X\| \leq \| X \star  - \widetilde X\| ,
where \| \cdot \| is the matrix norm induced by the Euclidean vector norm, namely for
A \in \BbbR n\times m, \| A\| = maxx\in \BbbR m,\| x\| =1 \| Ax\| . In the following, the symbol \| \cdot \| with
no subscript stands for the Euclidean norm for vectors, and for the corresponding
induced norm for matrices; additional norms will be defined in the next section. The
relations in (1.6) say that the error norm \| X \star  - \widetilde X\| provides a, not necessarily sharp,
upper bound for the (m+ 1)st singular value of X \star . The bound in (1.6) was used in
[30] together with classical convergence results for the solution X(k) obtained after k
iterations of the ADI method (see, e.g., [37]) to derive upper bounds for the spectral
decay behavior of X \star . On the other way around, given a rank-m matrix \widetilde X, (1.6)
indicates that the error norm \| X \star  - \widetilde X\| cannot go below | \lambda m+1| , the best \widetilde X being
the one whose spectral decomposition matches that of the first m eigenpairs of X \star .
In the following we assume that X \star can be well approximated by a low-rank matrix.

2The numerical rank of a matrix is the number of singular values that are above the unit round-off
of the considered computational environment.
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362 VALERIA SIMONCINI AND YUE HAO

The existence of such low-rank approximation has been analyzed, for instance, in [1],
under various hypotheses on the data.

Taking into account our previous discussion and assuming \scrA is symmetric and
positive definite, a matrix-oriented version of the CG method can be considered [18].
The approach minimizes the error X \star  - \widetilde X in a suitable norm, where vec( \widetilde X) belongs
to a Krylov subspace of growing dimension. This constrained minimization tries
to comply with (1.6), though the approximate solution is not designed to have a
prescribed numerical rank. In fact, for a zero initial guess it has been observed
(see, e.g., [15]) that the numerical rank of the CG approximate solution \widetilde X tends to
increase, as the iterations proceed, and then to decrease to the final numerical rank
as convergence takes place. Hence, how CG behaves as a ``matrix-oriented"" algorithm
provides a new, different perspective, compared to well-established results for the
vector setting [21].

Our first aim is to deepen our understanding of the numerical rank evolution of the
CG approximate solution \widetilde X, and to characterize the approximation spaces where \widetilde X
lives. In particular, this analysis is relevant in the understanding of truncation strate-
gies applied to matrix-oriented CG, in which all matrix iterates are explicitly kept low
rank, thus stored in factored form, by truncating the terms that would lead to the
rank increase. Moreover, we study loss of orthogonality among computed quantities
such as residuals: we derive an inverse proportionality relation between the (per-
turbed) orthogonality angle and the current residual norm at each iteration, showing
that stagnation will occur as soon as the residuals lose their linear independence.

Our second aim is to compare the matrix-oriented CG (without truncation) for
(1.2) with a method that explicitly and iteratively builds a low-rank matrix, of in-
creasing rank, and minimizes the error norm in some approximation space by means
of a Galerkin condition. We show that a specific choice of approximation space al-
lows one to relate this approximation problem with that of CG, highlighting the
(dis)advantages of either approach.

We illustrate our findings with tailored small matrices, whose structures highlight
the problems we discuss. We point to the previously cited recent literature for rich
experimental evidence with large dimensional equations stemming from various ap-
plications. Nonetheless, we stress that even a modest value of n, say a few hundreds,
will lead to a vector problem of square the dimension---thus already quite sizable.

1.1. Notation and main definitions. In the following real matrices will be
used, and A\top will denote the transpose of a matrix A. The Frobenius norm of an
n\times m real matrix, \| A\| 2F =

\sum n
i=1

\sum m
j=1A

2
i,j , will be used, together with the matrix

norm induced by the Euclidean vector norm, \| A\| = maxx\in \BbbR m,\| x\| =1 \| Ax\| , already
introduced in the previous section. Given a symmetric and positive definite n \times n
matrix A, the A-norm or energy norm is defined as \| x\| 2A = x\top Ax, where 0 \not = x\in \BbbR n.
An operator-based energy norm will also be introduced. Exact arithmetic will be
assumed throughout.

We will continuously rely on the correspondence between matrix-matrix and
vector operations, obtained via the Kronecker product and vec operator. We will
freely make use of properties of the Kronecker product, as reported for instance
in [14]. We also define the matrix inner product of two matrices Y,Z \in \BbbR n\times m as
\langle Y,Z\rangle = trace(Y \top Z), and we observe that this corresponds to the vector inner prod-
uct, that is, \langle Y,Z\rangle = vec(Y )\top vec(Z). In case the two matrices have low rank (here
n=m), that is, Y = UY V

\top 
Y , Z = UZV

\top 
Z with UY , VY \in \BbbR n\times kY , and UZ , VZ \in \BbbR n\times kZ ,

this inner product can be computed by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 363

(1.7) trace
\bigl( 
Y \top Z

\bigr) 
= trace

\bigl( 
VY U

\top 
Y UZV

\top 
Z

\bigr) 
= trace

\bigl( 
(U\top 

Y UZ)(V
\top 
Z VY )

\bigr) 
.

In the following, := means that the quantity on the left of the equality is defined
by the quantity on the right. Correspondingly, =: means that the quantity on the
right of the equality is defined by the quantity on the left.

We end this section with a note on the matrix problem we have chosen to analyze.
Problem (1.2) is strictly related to the following form:

A1ZB1 +A2ZB2 +Z = F,(1.8)

with Ai,Bi, i = 1,2, symmetric. Indeed, for M nonsingular and positive definite,
(1.2) can be brought to this form for A1 = M - 1/2AM - 1/2 = B2, B1 = M - 1 = A2,
F = M - 1/2CM - 1/2, and Z = M1/2XM1/2. However, the seemingly harmless shift
term makes the problem very different from the well-known generalized Sylvester
equation A1ZB1 + A2ZB2 = F . This form does not seem to provide more insight
than the form we consider; hence unless explicitly stated we will focus on (1.2).

2. Matrix-oriented CG method. The matrix-oriented CG method simply
transforms all vector computations associated with (1.4) into matrix operations, using
the vec and Kronecker operators. So, for instance, for the classical approximate
solution update (see, e.g., [7, section 10.2] for the vector CG algorithm), it holds that

x(k+1) = x(k) + \alpha kp
(k) \leftrightarrow X(k+1) =X(k) + \alpha kP

(k),

where x(k) =vec(X(k)), p(k) =vec(P (k)), and

\alpha k =

\bigl( 
r(k)

\bigr) \top 
p(k)\bigl( 

p(k)
\bigr) \top \scrA p(k) =

trace
\Bigl( \bigl( 

R(k)
\bigr) \top 

P (k)
\Bigr) 

trace
\Bigl( \bigl( 

P (k)
\bigr) \top \scrL \bigl( P (k)

\bigr) \Bigr) , r(k) =vec
\Bigl( 
R(k)

\Bigr) 
;

here \{ p(k)\} k\geq 0 is the sequence of direction vectors determined during the CG recur-
sion, and r(k) = c  - \scrA x(k) is the residual vector associated with x(k). A complete
description of the algorithm is postponed to section 3.

The vector and matrix formulations are mathematically equivalent, though some
care in the implementation of the matrix inner product is required to avoid unneces-
sary operations. In particular, formula (1.7) should be used whenever the matrices are
kept in factored form. There may be some computational advantages in the matrix
iteration in a high performance computing environment; however, the main reason
for pursuing a matrix-oriented version is to maintain the possible low-rank structure
of the iterates, by using a factorized form. For instance, if X(k) =X

(k)
1 (X

(k)
1 )\top with

X
(k)
1 low rank, and similarly for P (k), then

X(k+1) =X
(k)
1 (X

(k)
1 )\top + \alpha kP

(k)
1 (P

(k)
1 )\top ,

which is also low rank, with a rank that is in general larger than that of X(k); a
more precise structure will be given in subsection 2.2. In case the rank is forced
to remain low, truncation can be implemented by taking the best approximation to
[X

(k)
1 , P

(k)
1 ] of fixed rank, for instance. Clearly, the factored form is meaningful only

if the right-hand side C either is low rank or can be well approximated by a low-
rank matrix. Indeed, even assuming a zero initial approximation X(0), the residual
R(0) =C  - \scrL (X(0)) will only be low rank if C is. To appreciate the cost relevance of
CG applied to (1.2), we notice that without truncation, each multiplication with \scrA 
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364 VALERIA SIMONCINI AND YUE HAO

entails 2n multiplications with either A or M . The low-rank matrix implementation
of CG that takes into account the symmetry of the iteration matrices allows one to
significantly reduce this computation, as long as low rank in the iterates is maintained
(e.g., r multiplications by A if the symmetric iterate is kept in factored form of rank r).
On the other hand, truncation is not without side effects; we refer the reader to [17],
[18], [15], [34], [28] for implementation considerations and computational evidence.

To better understand the impact of truncation, we first need to linger over the
analysis of the space generated during the matrix recurrence. More precisely, we iden-
tify redundant information, which can be purged with no harm, and important vector
elements whose elimination determines a degradation of the method performance.

2.1. Analysis of the error matrix. As TCG iterations proceed, that is, as
k increases, two facts have been experimentally observed in the literature (see, e.g.,
[15]):

(i) Singular triplets of X(k) seem to converge in an orderly fashion to those of X.
(ii) The numerical rank of X(k) increases up to some point; then it decreases.
In the following we analyze the CG optimality properties in the matrix context,

and how they influence the above two phenomena. We start by recalling that the
direction vectors \{ pk\} k\geq 0 determined during the CG recursion iteratively generate
the following Krylov subspace (assuming x(0) = 0):

\BbbK k = span\{ c,\scrA c, . . . ,\scrA k - 1c\} .(2.1)

The same space is spanned by the residuals, \{ r(k)\} k\geq 0. Moreover, the error norm is
minimized in the energy norm associated with the coefficient matrix, that is,

\| x \star  - x(k)\| \scrA = min
x\in \BbbK k

\| x \star  - x\| \scrA ,(2.2)

so that a nonincreasing energy norm of the error is ensured [7, section 10.2].
In matrix terms, we first write the norm equivalence

(2.3) \| X\| 2\scrL := trace
\bigl( 
X\top \scrL (X)

\bigr) 
= \| x\| 2\scrA ,

where \scrL (X) =AX+XA+MXM , \scrA is as defined in (1.4) and the energy norm \| x\| \scrA 
is as defined in subsection 1.1. Setting E(k) =X \star  - X(k) we can write

\| E(k)\| 2\scrL = \| x \star  - x(k)\| 2\scrA \geq \lambda min(\scrA )\| x \star  - x(k)\| 2 = \lambda min(\scrA )\| E(k)\| 2F .

Therefore,

\lambda max(\scrA ) - 
1
2 min
x\in \BbbK k - 1

\| x \star  - x\| \scrA \leq \| E(k)\| F \leq \lambda min(\scrA ) - 
1
2 min
x\in \BbbK k - 1

\| x \star  - x\| \scrA .

Although this inequality does not imply that the quantity \| E(k)\| F is minimized, it is
clear that as k increases, we expect this Frobenius norm to decrease, eventually going
towards zero in exact arithmetic. In light of (1.6) and the fact that \| E(k)\| \leq \| E(k)\| F ,
this explains that the approximation of X(k) to the matrix X occurs in terms of
singular values. As convergence takes place the norm of X  - X(k) decreases, that is,
the leading singular values of X(k) tend to match those of X. On the other hand,
below the level of the error norm the singular values of the two matrices X and X(k)

can vary significantly. We next formalize this argument.
Let X \star = U\Sigma W\top and X(k) = \~U \~\Sigma \~W\top be the singular value decompositions

(SVDs) of the given matrices.3 Consider the partitionings

3Since X \star and X(k) are symmetric but not necessarily semidefinite, we shall work with singular
values rather than eigenvalues.
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 365

X \star = [U1,U2]

\biggl[ 
\Sigma 1

\Sigma 2

\biggr] \biggl[ 
W\top 

1

W\top 
2

\biggr] 
, X(k) = [ \~U1, \~U2]

\biggl[ 
\~\Sigma 1

\~\Sigma 2

\biggr] \biggl[ 
\~W\top 
1

\~W\top 
2

\biggr] 
,

with \Sigma 1, and \~\Sigma 1 of size \ell \times \ell . Then E(k) =X \star  - \~U1
\~\Sigma 1

\~W\top 
1  - \~U2

\~\Sigma 2
\~W\top 
2 , so that

(2.4)
\bigm| \bigm| \bigm| \| X \star  - \~U1

\~\Sigma 1
\~W\top 
1 \|  - \| \~U2

\~\Sigma 2
\~W\top 
2 \| 

\bigm| \bigm| \bigm| \leq \| E(k)\| .

Therefore, the distance between the leading singular triplets of X(k) and those of
X \star is not larger than \| E(k)\| from \| \~\Sigma 2\| . We stress here that the SVD of X(k) is
computable, so that one can monitor \| \~\Sigma 2\| . Moreover, X(k) is not assumed to be
of rank \ell ; therefore, the analysis based on this partitioning can also be used for
increasing rank of X(k). If the partitioning is selected so that \| \~\Sigma 2\| \ll \| E(k)\| , then
the inequality above shows that the approximation of the leading triplets of X(k) must
be of the order of \| E(k)\| . We next formalize this intuition by using a result of Wedin
(see, e.g., [33, Theorem V.4.4]). To this end, let \rho r,k = \| X \star \~W1  - \~U1

\~\Sigma 1\| and \rho l,k =
\| X \star \~U1  - \~W1

\~\Sigma 1\| . Clearly, \rho r,k = \| E(k) \~W1\| \leq \| E(k)\| and \rho l,k = \| E(k) \~U1\| \leq \| E(k)\| ;
hence, both quantities decrease as the error norm does.

Theorem 2.1. [33, Theorem V.4.4]. If there exist \delta ,\alpha > 0 such that max\sigma (\Sigma 2)\leq 
\alpha and min\sigma (\~\Sigma 1)\geq \delta + \alpha , then

max\{ \| sin\Phi \| ,\| sin\Theta \| \} \leq max\{ \rho r,k, \rho l,k\} 
\delta 

,

where \Phi and \Theta are the matrices of canonical angles between range(U1) and range( \~U1),
and between range(W1) and range( \~W1), respectively.

Clearly, in our setting \Phi =\Theta . The quantity \delta measures how the gap between the
converging singular values and the remaining ones influences the actual convergence.
This result explains the orderly convergence to the singular triplets of X \star in item (i)
above, as \| E(k)\| decreases.

Example 2.2. Let c1 be the vector of all ones normalized to have unit norm, and
let A = \ttt \ttr \tti \ttd \tti \tta \ttg ( - 1,2, - 1) \in \BbbR n\times n, M = \ttp \tte \ttn \ttt \tta \ttd \tti \tta \ttg ( - 0.5, - 0.5,2.5, - 0.5, - 0.5) \in 
\BbbR n\times n, and n = 25. Matrix-oriented preconditioned CG is employed, with M \otimes M
as preconditioner, so that the Kronecker structure of the preconditioned problem is
maintained. For each of the first 12 iterations, Figure 1 displays the singular values
of X \star and of X(k), and also the level corresponding to \| E(k)\| . As expected, the
singular values of X(k) above the error norm level tend to match the corresponding
singular values of X \star . What is more noteworthy is that below the error norm level,
the discrepancy between the singular values of X(k) and of X \star is significant, and in
practice, clusters of slowly varying singular values can occur for X(k). Below the error
level we do not expect the approximate singular values to have the same decay as the
exact ones. In fact, since the rank of the iterates may significantly increase at each
iteration, the number of nonzero singular values quickly increases, and the singular
values have sizable magnitude until \| E(k)\| is sufficiently small.

The previous example illustrates the phenomenon in the item (ii) above. Nu-
merous singular values with magnitude below the error threshold but above the unit
round-off emerge as iterations proceed, so that the numerical rank of X(k) grows. As
more and more singular values of small magnitude converge, the remaining smaller
singular values are necessarily constrained to go towards zero, so that the numerical
rank of X(k) decreases towards its final value.
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Fig. 1. Example 2.2. Singular values of X \star and of X(k) and error threshold for each of the
first 12 iterations.

2.2. The CG matrix approximation space. In this section we characterize
the matrix approximation space, that is, the vector space containing range(X(k)),
associated with the matrix-oriented CG method.

Had we M = 0 the analysis would simplify, as the following result holds.

Proposition 2.3. Assume M = 0 and let q \in \BbbK k. For some \alpha 0, . . . , \alpha k \in \BbbR ,

q=

k\sum 
i=0

\alpha i

i\sum 
j=0

\biggl( 
i

j

\biggr) 
(Aj \otimes Ai - j)c =

\sum 
0\leq j\leq i\leq k

\alpha i

\biggl( 
i

j

\biggr) 
(Aj \otimes Ai - j)c.

Proof. Let \scrA = I \otimes A+A\otimes I =:\scrA 1 +\scrA 2 with \scrA 1,\scrA 2 commuting. We have that
q =

\sum k
i=0\alpha i\scrA ic. It holds that \scrA i = (\scrA 1 +\scrA 2)

i =
\sum i

j=0

\bigl( 
i
j

\bigr) 
\scrA i - j

1 \scrA 
j
2, with \scrA 

i - j
1 \scrA 

j
2 =

(I \otimes A)i - j(A\otimes I)j = (I \otimes Ai - j)(Aj \otimes I). The result follows.

For general nonzero symmetric M the description is more complex. In the follow-
ing we consider the generic case, where M is full rank and its norm is large enough
to make the contribution of the term MXM relevant for the discussion. The matrix
\scrA in (1.4) can be written as \scrA =\scrA 1 +\scrA 2 +\scrM with\scrM =M \otimes M . Clearly,\scrM does
not commute with either other matrix, except in special circumstances.

Assume that X(0) = 0 := X
(0)
1 X

(0)
1

\top 
, R(0) := R

(0)
1 R

(0)
1

\top 
with R

(0)
1 = c1, and

R(0) = P (0) =: P
(0)
1 P

(0)
1

\top 
, and that at the kth iteration X(k), R(k), and P (k) can be

written as X(k) =X
(k)
1 G(k)X

(k)
1

\top 
, R(k) =R

(k)
1 S(k)R

(k)
1

\top 
, and P (k) = P

(k)
1 D(k)P

(k)
1

\top 
,

respectively. Then for the (k + 1)th iteration, there hold (see, e.g., [1] for similar
expressions)
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 367

(2.5)

X(k+1) = X(k) + \alpha kP
(k) = X

(k)
1 G(k)X

(k)
1

\top 
+ \alpha kP

(k)
1 D(k)P

(k)
1

\top 

= [X
(k)
1 P

(k)
1 ]

\biggl[ 
G(k) 0
0 \alpha kD

(k)

\biggr] 
[X

(k)
1 P

(k)
1 ]\top =: X

(k+1)
1 G(k+1)X

(k+1)
1

\top 
;
,

(2.6)

R(k+1) = C  - \scrL (X(k+1))

= c1c
\top 
1  - AX

(k+1)
1 G(k+1)X

(k+1)
1

\top 
 - X

(k+1)
1 G(k+1)X

(k+1)
1

\top 
A\top 

 - MX
(k+1)
1 G(k+1)X

(k+1)
1

\top 
M\top 

= [c1 AX
(k+1)
1 X

(k+1)
1 MX

(k+1)
1 ]

\left[    
I 0 0 0
0 0  - G(k+1) 0
0  - G(k+1) 0 0
0 0 0  - G(k+1)

\right]    
\cdot [c1 AX

(k+1)
1 X

(k+1)
1 MX

(k+1)
1 ]\top =: R

(k+1)
1 S(k+1)R

(k+1)
1

\top 
;

(2.7)

P (k+1) = R(k+1) + \beta kP
(k)

= [R
(k+1)
1 P

(k)
1 ]

\biggl[ 
S(k+1) 0

0 \beta kD
(k)

\biggr] 
[R

(k+1)
1 P

(k)
1 ]\top =: P

(k+1)
1 D(k+1)P

(k+1)
1

\top 
.
,

By replacing the factors in the recurrence, we obtain4

X(k+1) = [X
(k - 1)
1 P

(k - 1)
1 R

(k)
1 P

(k - 1)
1 ]blkdiag(G(k - 1), \alpha k - 1D

(k - 1), \alpha kS
(k), \beta k - 1\alpha kD

(k - 1))

\cdot [X(k - 1)
1 P

(k - 1)
1 R

(k)
1 P

(k - 1)
1 ]\top ,

which shows that X(k+1), and thus, X
(k+1)
1 , is naturally rank-deficient in this form.

Similarly, we obtain that P
(k+1)
1 is also naturally rank-deficient. Moreover, we have

X
(1)
1 =

\Bigl[ 
X

(0)
1 P

(0)
1

\Bigr] 
= c1,

R
(1)
1 =

\Bigl[ 
c1 AX

(1)
1 X

(1)
1 MX

(1)
1

\Bigr] 
= [c1 Ac1 c1 Mc1],

P
(1)
1 =

\Bigl[ 
R

(1)
1 P

(0)
1

\Bigr] 
= [c1 Ac1 c1 Mc1 c1],

X
(2)
1 =

\Bigl[ 
X

(1)
1 P

(1)
1

\Bigr] 
= [c1 c1 Ac1 c1 Mc1 c1],

so that range(R
(1)
1 ), range(P

(1)
1 ), range(X

(2)
1 )\subseteq span\{ c1 Ac1 Mc1\} , and

R
(2)
1 =

\Bigl[ 
c1 AX

(2)
1 X

(2)
1 MX

(2)
1

\Bigr] 
, P

(2)
1 =

\Bigl[ 
R

(2)
1 P

(1)
1

\Bigr] 
=
\Bigl[ 
R

(2)
1 c1 Ac1 c1 Mc1 c1

\Bigr] 
,

so that range(R
(2)
1 ), range(P

(2)
1 ) \subseteq span\{ c1 Ac1 Mc1 A2c1 AMc1 MAc1 M2c1\} . By

induction, we can see that the rank of X
(k+1)
1 is the same as that of P

(k)
1 , and the rank

of P
(k)
1 is the same as that of R

(k)
1 . The relations above also show that R

(1)
1 , P

(1)
1 , and

X
(2)
1 are all rank deficient. In other words, although the number of columns grows in

4blkdiag defines a block diagonal matrix with input arguments as the diagonal blocks.
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368 VALERIA SIMONCINI AND YUE HAO

the block, the actual rank of the block is lower than the number of computed columns
in this form.

Let Q(1) = [c1], and define the matrix sequence

Q(k+1) =
\Bigl[ 
Q(k),AQ(k),MQ(k)

\Bigr] 
,

so that Q(2) = [c1,Ac1,Mc1] and Q(3) = [c1,Ac1,Mc1,A
2c1,AMc1,MAc1,M

2c1].

Hence, R
(k)
1 , P

(k)
1 \in range(Q(k+1)). As k increases, the columns of Q(k) increasingly

build the space5

\BbbQ =span
\bigl\{ 
c1,Ac1,Mc1\underbrace{}  \underbrace{}  ,A2c1,AMc1,MAc1,M

2c1\underbrace{}  \underbrace{}  ,
A3c1,A

2Mc1,AMAc1,AM2c1,MA2c1,MAMc1,M
2Ac1,M

3c1\underbrace{}  \underbrace{}  , \cdot \cdot \cdot \bigr\} ,(2.8)

and we denote with \BbbQ k the smallest subspace of \BbbQ containing the range of Q(k). Thus,
we have (dim(\BbbQ k+1) denotes the space dimension of \BbbQ k+1)

dim(\BbbQ k+1)\leq dim(\BbbQ k) + 2k,

that is, the space dimension may grow exponentially, up to its maximum dimension
n2. Let the columns of Q(k) span \BbbQ k. Then we can write X

(k)
1 = Q(k) \~G(k) for some

\~G(k), so that

(2.9) X(k) =Q(k) \~G(k)G(k)
\Bigl( 
\~G(k)

\Bigr) \top 
(Q(k))\top =:Q(k)G (k)

\Bigl( 
Q(k)

\Bigr) \top 
.

This decomposition provides the most genuine low-rank approximation from the gen-
erated space. However, it should be stressed that X(k) is not any linear combination
of the columns of Q(k). Indeed, for instance, the product \scrA c yields a special linear
combination of \{ c1,Ac1,Mc1\} , enforcing a constraint on the approximation. This ar-
gument generalizes what we have seen for the vector q in Proposition 2.3 to the case
of M \not = 0. In other words, X

(k)
1 belongs to a proper subspace of Q(k), with a possibly

much smaller dimension.
We also mention that the CG iteration is unable to capture the underlying matrix

Q(k), so that any truncation strategy directly performed on the next iterate X(k+1)

or its factor X
(k+1)
1 in (2.5) is bound to lose part of the information contained in \BbbQ k.

The important role played by Q(k) leads one to consider ways to exploit this
matrix in a more effective way, without the redundancy created by \BbbQ k. This is possible
by using approximation methods directly applied to the original matrix equation,
which consists of projecting the solution matrix onto an appropriate subspace. In
section 4 we show that an appropriate space is indeed the one generated by Q(k).

The effect of preconditioning . To speed up convergence, the system \scrA x = c is
usually preconditioned; this was done in Example 2.2, for instance. Hence, a ma-
trix/operator \scrP is selected and the problem \scrP  - 1\scrA x = \scrP  - 1c solved; see, e.g., [7,
section 10.3] for a symmetry preserving implementation in the vector case. The oper-
ation performed to obtain (1.8) corresponds to preconditioning by \scrP =\scrM =M \otimes M .
For instance, if M is positive definite, the matrix sequence becomes

Q(1) =
\Bigl[ 
M - 1

2 c1

\Bigr] 
, Q(k+1) =

\Bigl[ 
Q(k),M - 1

2AM - 1
2Q(k),M - 1

2Q(k)
\Bigr] 
, k= 0,1, . . . .

5Brackets indicate the block of (independent) newly added vectors at each iteration.
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 369

Our analysis still holds as long as the preconditioning operator maintains the
Kronecker structure in the preconditioned matrix \scrP  - 1\scrA . Following corresponding
analyses performed for fixed point iterations (see, e.g., [4]), a natural preconditioned
problem is given as

X +\scrL  - 1
A (MXM) =\scrL  - 1

A (C), \scrL A =AX +XA.

This procedure is clearly equivalent to the preconditioned problem \scrA  - 1
0 \scrA x = \scrA  - 1

0 c
with \scrA  - 1

0 \scrA = I +\scrA  - 1
0 \scrM , where \scrA 0 and\scrM are as in (1.3).

3. The truncated CG method. In this section, we analyze TCG for solving
the matrix equation (1.2). The formal algorithm with truncation, already presented
in [18, Alg. 2], is reported in Algorithm 3.1, where \scrT is the truncation operator. Trun-
cation is performed at lines 5 and 8, whereas for the residual and operator products
they are optional. We did not adopt this option in our numerical experiments, to
ensure the accurate computation of the residual and the application of the coefficient
matrices. Following the discussion in the previous section, matrices are kept in fac-
tored form, so that truncation is performed by reducing the rank of the factors X

(k+1)
1

and P
(k+1)
1 , respectively.

It is experimentally evident that the final attainable accuracy, in terms of relative
residual norm, is strictly related to the truncation tolerance; see, e.g., various plots
reported in [17]. It particular, it may well occur that the method stagnates at a level
above the desirable accuracy. For these reasons, stopping criteria in addition to the
relative residual norm should be considered, such as maximum number of iterations
and maximum approximation rank.

Low-rank truncation. Different ways to truncate the factorized representation
of a matrix Y = Y1Y

\top 
2 can be considered. A simple strategy amounts to fixing a

maximum rank equal to k. In this case, the most relevant subspace of dimension k
spanned by the columns of Y1 and Y2 will be kept. This, however, may dramatically
deteriorate the approximation (see section 2.1), unless the sought after solution can
be well approximated by a rank-k matrix.

Algorithm 3.1 TCG algorithm for the matrix equation (1.2).
Input: Matrix function \scrL : \BbbR n\times n\rightarrow \BbbR n\times n, right-hand side C \in \BbbR n\times n in low-rank

format. Truncation operator \scrT .
Output: Matrix X \in \BbbR n\times n approximating exact X\ast .
1: X(0) = 0, R(0) =C, P (0) =R(0), J (0) =\scrL (P (0))
2: \xi 0 = \langle P (0), J (0)\rangle , k= 0
3: while | | R(k)| | F > tol do do
4: \alpha k = \langle R(k), P (k)\rangle /\xi k
5: X(k+1) =X(k) + \alpha kP

(k), X(k+1)\leftarrow \scrT (X(k+1))
6: R(k+1) =C  - \scrL (X(k+1)), Optionally: R(k+1)\leftarrow \scrT (R(k+1))
7: \beta k = - \langle R(k+1), J (k)\rangle /\xi k
8: P (k+1) =R(k+1) + \beta kP

(k), P (k+1)\leftarrow \scrT (P (k+1))
9: J (k+1) =\scrL (P (k+1)), Optionally: J (k+1)\leftarrow \scrT (J (k+1))
10: \xi k+1 = \langle P (k+1), J (k+1)\rangle 
11: k= k+ 1
12: end while
13: X =X(k)
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370 VALERIA SIMONCINI AND YUE HAO

An error-aware truncation strategy consists of selecting Y \prime = Y \prime 
1(Y

\prime 
2)

\top , with
Y \prime 
1 , Y

\prime 
2 \in \BbbR n\times r such that the error matrix Y  - Y \prime is smaller than a threshold, in

some relative norm. Nonetheless, a maximum rank value can also be included, so as
to limit memory consumption. Let \sigma 1, . . . , \sigma r be the singular values of Y . The trun-
cation rank \widetilde r \leq r is the smallest integer satisfying a specified truncation criterion.
The following standard criterion based on singular values can be considered:\bigl( 

\sigma 2\widetilde r+1 + \cdot \cdot \cdot + \sigma 2
r

\bigr) 1
2 \leq \epsilon trunc

\bigl( 
\sigma 2
1 + \cdot \cdot \cdot + \sigma 2

r

\bigr) 1
2 .

To determine the singular values and the new factors, we first compute the reduced
(skinny) QR factorization of Y1 and Y2, that is, such that Y1 =Q1R1, Y2 =Q2R2 with
upper triangular matrices R1,R2 \in \BbbR r\times r. Then the SVD

R1R
\top 
2 =Udiag(\sigma 1, . . . , \sigma r)V

\top 

is computed. Let \Sigma \widetilde r =diag(\sigma 1, . . . , \sigma \widetilde r). Using MATLAB notation, we then set

Y \prime 
1 =Q1U:,1:\widetilde r\Sigma 1

2\widetilde r , Y \prime 
2 =Q2V:,1:\widetilde r\Sigma 1

2\widetilde r ,
and then we obtain the compressed low-rank matrix Y = Y \prime 

1(Y
\prime 
2)

\top . Denoting by X
(k)
ex ,

P
(k)
ex the (exact, in exact arithmetic) matrices before truncation, we can write

X(k) = \scrT 
\Bigl( 
X(k)

ex

\Bigr) 
=X(k)

ex +E
(k)
X , P (k) = \scrT (P (k)

ex ) = P (k)
ex +E

(k)
P ,

where, by using, for instance, the first truncation strategy, we obtain

(3.1)
| | E(k)

X | | F
| | X(k)| | F

< \epsilon trun and
| | E(k)

P | | F
| | P (k)| | F

< \epsilon trun.

Moreover, in the following we assume that the residual is computed explicitly and not
by a recurrence, and that it is not truncated, so that the following holds:

R(k) =C  - \scrL 
\Bigl( 
X(k)

\Bigr) 
=C  - \scrL 

\Bigl( 
X(k - 1) + \alpha k - 1P

(k - 1) +E
(k)
X

\Bigr) 
=R(k - 1)  - \alpha k - 1\scrL 

\Bigl( 
P (k - 1)

\Bigr) 
 - \scrL 

\Bigl( 
E

(k)
X

\Bigr) 
.

In the following section we deepen our understanding of this loss of orthogonality
and provide insight into how the convergence of the truncated version of the method
can behave in practice.

Finally, we observe that the truncation strategy may be viewed as a way to
reduce the approximation space \BbbQ k associated with the space in (2.8). However, this
truncation strategy is not based on spectral information typically employed in classical
subspace enhancements associated with the standard Krylov subspace, such as those
in [5], [26], for instance. By specifically focusing on the use of this space, it may be
possible to derive more effective truncation strategies; we leave this topic to future
investigation.

3.1. Effects of truncation in the CG recurrence. In this section we analyze
the effect of truncation on the iterates of the CG recurrence, at each iteration k. We
are able to identify the quantities involved in the determination of the final attainable
residual norm of the method. For the sake of the presentation, we are going to switch
to the vector formulation, which in addition makes the derivation more familiar to
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MATRIX-ORIENTED TRUNCATED CONJUGATE GRADIENTS 371

anyone who has seen the standard properties of CG. We also stress that the results of
this section apply to the more general equation (1.1) and to tensor linear equations,
as only references to the whole matrix \scrA are made.

We start by introducing some notation. Let r
(k)
ex = c  - \scrA x(k)

ex be the residual
computed by the exact (untruncated) solution iterate x

(k)
ex , and r(k) = c - \scrA x(k) be the

residual computed by the truncated iterate. Here and in the following, the subscript
``ex"" denotes vectors before (or without) truncation. At iteration k, the exact vector
CG recurrences are given by

x(k+1)
ex = x(k) + \alpha kp

(k), \alpha k =
\Bigl( 
r(k)

\Bigr) \top 
p(k)/

\Bigl( 
(p(k))\top \scrA p(k)

\Bigr) 
,

p(k+1)
ex = r(k+1) + \beta kp

(k), \beta k = - 
\Bigl( 
r(k+1)

\Bigr) \top 
\scrA p(k)/

\Bigl( 
(p(k))\top \scrA p(k)

\Bigr) 
.

Then,

x(k+1) = x(k+1)
ex + \bfite 

(k+1)
X , p(k+1) = p(k+1)

ex + \bfite 
(k+1)
P ,(3.2)

with \| \bfite (k+1)
X \| ,\| \bfite (k+1)

P \| \leq \epsilon (k+1). The error vector corresponds to the matrix trunca-

tion X(k+1) =X
(k+1)
ex +E

(k+1)
X described in the previous section; analogously for the

recurrence in p(k+1). With this notation, r(k+1) = r
(k+1)
ex  - \scrA \bfite (k+1)

X .
The CG exact iterate minimizes the convex function

(3.3) f(x) =
1

2
x\top \scrA x - c\top x

in the generated Krylov subspace. At each iteration k the coefficient \alpha k is determined
so as to minimize the function f along the direction determined by p(k). The corre-
sponding value is obtained by imposing that df

d\alpha (x
(k) +\alpha p(k)) = 0. This minimization

property is destroyed by the truncation strategy. The iterate x(k+1) = x
(k+1)
ex +\bfite 

(k)
X is

such that

df

d\alpha 
(x(k+1)) =

\Bigl( 
x(k+1)
ex + \bfite 

(k+1)
X

\Bigr) \top 
\scrA p(k)  - c\top p(k) =

\Bigl( 
\bfite 
(k+1)
X

\Bigr) \top 
\scrA p(k),\bigm| \bigm| \bigm| \bigm| dfd\alpha (x(k+1))

\bigm| \bigm| \bigm| \bigm| \leq \epsilon (k+1) \| \scrA \| \| p(k)\| .

The relation shows that at least locally, loss of minimization is controlled by the
truncation tolerance. Analogously, without truncation the computation of \beta k ensures
that (p

(k+1)
ex )\top \scrA p(k) = 0, whereas for the truncated vector p(k+1) it holds that\Bigl( 
p(k+1)

\Bigr) \top 
\scrA p(k) =

\Bigl( 
\bfite 
(k+1)
P

\Bigr) \top 
\scrA p(k), | 

\Bigl( 
p(k+1)

\Bigr) \top 
\scrA p(k)| \leq \epsilon (k+1)\| \scrA \| \| p(k)\| .

Hence, at first sight, local \scrA -orthogonality seems to be controlled by the truncation
tolerance. However, what matters when discussing loss of orthogonality is the angle
between the two vectors, not just the magnitude of the inner product. Indeed, this and
related quantities are more severely affected by truncation, and the angles between
these vectors (directions and residuals) play a crucial role. For the iterates with no

truncation at iteration k (that is, \bfite 
(k+1)
X = 0= \bfite 

(k+1)
P in (3.2)), the following properties

hold:
(i) (p(k))\top r

(k+1)
ex = 0, enforced by the choice of \alpha k;

(ii) (p
(k+1)
ex )\top \nabla f(x(k+1)

ex )(= - (p(k+1)
ex )\top r

(k+1)
ex ) = - \| r(k+1)

ex \| 2 < 0, that is, the new
direction is a descent direction;
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372 VALERIA SIMONCINI AND YUE HAO

(iii) assuming no truncation for all k's, \beta k =
(r(k+1)

ex )\top r(k+1)
ex

(r
(k)
ex )\top r

(k)
ex

and \beta k > 0, that is,

the next p
(k+1)
ex moves along the (positive) direction of p

(k)
ex .

Property (i) ensures that the space keeps growing. None of these relations contin-

ues to hold after truncation of x
(k+1)
ex and p

(k+1)
ex . In particular, the positivity of \beta k is

crucial for convergence. We stress that this setting is different from what is observed
in finite precision analysis, where local orthogonality can be preserved.

We start by making more explicit the influence of the truncation in the vector
recurrences.

Lemma 3.1. After k iterations of the truncated CG, it holds that
(i) (p(k))\top r(k+1) = - (p(k))\top \scrA \bfite (k+1)

X ;

(ii) (p(k+1))\top r(k+1) = \| r(k+1)\| 2  - \beta k(p
(k))\top \scrA \bfite (k+1)

X + (\bfite 
(k+1)
P )\top r(k+1);

(iii)
\Bigl( 
r(k+1)

\Bigr) \top 
r(k) =

\Bigl( 
 - p(k) + \beta k - 1p

(k - 1)
\Bigr) \top 
\scrA \bfite (k+1)

X + \beta k - 1

\Bigl( 
p(k - 1)

\Bigr) \top 
\scrA \bfite (k)X

+
\Bigl( 
\bfite 
(k)
P )\top (\beta k - 1\alpha k\scrA p(k - 1)  - r(k+1)

\Bigr) 
.

Proof. To obtain (i), we recall that the definition of \alpha k ensures that (p(k))\top r
(k+1)
ex =

(p(k))\top (r(k) - \alpha k\scrA p(k)) = 0. On the other hand, the residual r(k+1) = r
(k+1)
ex  - \scrA \bfite (k+1)

X

satisfies

(3.4) (p(k))\top r(k+1) = 0 - (p(k))\top \scrA \bfite (k+1)
X .

To prove (ii), we write\Bigl( 
p(k+1)

\Bigr) \top 
r(k+1) =

\Bigl( 
r(k+1) + \beta kp

(k) + \bfite 
(k+1)
P

\Bigr) \top 
r(k+1)

= (r(k+1))\top r(k+1)  - \beta k(p
(k))\top \scrA \bfite (k+1)

X +
\Bigl( 
\bfite 
(k+1)
P

\Bigr) \top 
r(k+1),

where we used the relation (p(k))\top r
(k+1)
ex = 0.

The proof of (iii) is a little more elaborate. Indeed,\Bigl( 
r(k+1)

\Bigr) \top 
r(k) =

\Bigl( 
r(k+1)

\Bigr) \top \Bigl( 
p(k)  - \beta k - 1p

(k - 1)  - \bfite 
(k)
P

\Bigr) 
=

\Bigl( 
r(k+1)

\Bigr) \top 
p(k)  - \beta k - 1

\Bigl( 
r(k+1)

\Bigr) \top 
p(k - 1)  - 

\Bigl( 
r(k+1)

\Bigr) \top 
\bfite 
(k)
P

=  - 
\Bigl( 
p(k)

\Bigr) \top 
\scrA \bfite (k+1)

X  - \beta k - 1

\Bigl( 
r(k+1)
ex  - \scrA \bfite (k+1)

X

\Bigr) \top 
p(k - 1) - 

\Bigl( 
r(k+1)

\Bigr) \top 
\bfite 
(k)
P

(3.4)
=  - 

\Bigl( 
p(k)

\Bigr) \top 
\scrA \bfite (k+1)

X  - \beta k - 1

\Bigl( 
r(k)  - \alpha k\scrA p(k)

\Bigr) \top 
p(k - 1)

+\beta k - 1

\Bigl( 
\scrA \bfite (k+1)

X

\Bigr) \top 
p(k - 1)  - 

\Bigl( 
r(k+1)

\Bigr) \top 
\bfite 
(k)
P

Now,\Bigl( 
r(k)

\Bigr) \top 
p(k - 1) = - 

\Bigl( 
p(k - 1)

\Bigr) \top 
\scrA \bfite (k)X ,

\Bigl( 
\scrA p(k)

\Bigr) \top 
p(k - 1) =

\Bigl( 
\scrA \bfite (k)P

\Bigr) \top 
p(k - 1),

so that\Bigl( 
r(k+1)

\Bigr) \top 
r(k) = - 

\Bigl( 
p(k)

\Bigr) \top 
\scrA \bfite (k+1)

X + \beta k - 1

\Bigl( 
p(k - 1)

\Bigr) \top 
\scrA \bfite (k)X

+\beta k - 1\alpha k

\Bigl( 
\scrA \bfite (k)P

\Bigr) \top 
p(k - 1)+\beta k - 1

\Bigl( 
\scrA \bfite (k+1)

X

\Bigr) \top 
p(k - 1) - 

\Bigl( 
r(k+1)

\Bigr) \top 
\bfite 
(k)
P .
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Theorem 3.2. Let \Delta k = max\{ \| \bfite (k)P \| ,\| \bfite 
(k)
X \| ,\| \bfite 

(k+1)
P \| ,\| \bfite (k+1)

X \| \} and also \delta k =

min\{ \| \bfite (k)P \| ,\| \bfite 
(k)
X \| ,\| \bfite 

(k+1)
P \| ,\| \bfite (k+1)

X \| \} , where we assume \delta k > 0, that is, truncation
occurs. Then

\eta k
1

\| \scrA  - 1\| 
\delta k

\| r(k+1)\| 
\leq | (r

(k+1))\top p(k)| 
\| r(k+1)\| \| p(k)\| 

\leq \| \scrA \| \Delta k

\| r(k+1)\| 
,

with \eta k =
| (\scrA p(k))\top \bfite 

(k+1)
X | 

\| \scrA p(k)\| \| \bfite (k+1)
X \| 

\in [0,1], and

\beta k = - 
(r

(k+1)
ex )\top \scrA p(k)  - (\scrA \bfite (k+1)

X )\top \scrA p(k)

(p(k))\top \scrA p(k)
.

Moreover, for \gamma = (\| \scrA p(k)\| + (2| \beta k - 1| + | \beta k - 1\alpha k| )\| \scrA p(k - 1)\| + \| r(k+1)\| )/\| r(k)\| , it
holds that

| (r(k+1))\top r(k)| 
\| r(k+1)\| \| r(k)\| 

\leq \gamma 
\Delta k

\| r(k+1)\| 
.

Proof. The first upper bound is a direct consequence of Lemma 3.1(i). For the
lower bound,

| (p(k))\top r(k+1)| 
\| p(k)\| \| r(k+1)\| 

=
| (p(k))\top \scrA \bfite (k+1)

X | 
\| p(k)\| \| r(k+1)\| 

\geq 
| (p(k))\top \scrA \bfite (k+1)

X | 
\| \scrA  - 1\| \| \scrA p(k)\| \| r(k+1)\| 

=
| (\scrA p(k))\top \bfite (k+1)

X | 
\| \scrA p(k)\| \| \bfite (k+1)

X \| 
\| \bfite (k+1)

X \| 
\| \scrA  - 1\| \| r(k+1)\| 

\geq \eta k
1

\| \scrA  - 1\| 
\delta k

\| r(k+1)\| 
.

Recalling the definition of \beta k, that is, \beta k = - (r(k+1))\top \scrA p(k)/((p(k))\top \scrA p(k)), the
equality for \beta k simply follows from substituting r(k+1) = r

(k+1)
ex  - A\bfite 

(k+1)
X into the

numerator.
Finally, using Lemma 3.1(iii) we obtain

| (r(k+1))\top r(k)| 
\leq \| (\scrA p(k))\| \| \bfite (k+1)

X \| + | \beta k - 1| \| \scrA p(k - 1)\| \| \bfite (k)X \| + | \beta k - 1\alpha k| \| \scrA p(k - 1)\| \| \bfite (k)P \| 
+| \beta k - 1| \| \bfite (k+1)

X \| \| \scrA p(k - 1)\| + \| r(k+1)\| \| \bfite (k)P \| 

\leq 
\biggl( 
\| (\scrA p(k))\| + | \beta k - 1| \| \scrA p(k - 1)\| + | \beta k - 1\alpha k| \| \scrA p(k - 1)\| 

+| \beta k - 1| \| \scrA p(k - 1)\| + \| r(k+1)\| 
\biggr) 
\Delta k,

from which the value of \gamma and the final bound follow.

The theorem above shows that the cosine of the angle between the direction
vector and the next residual grows in a way that is inversely proportional to the
current residual norm. The same property holds for the cosine of the angle between
two consecutive residuals, with the caveat for \gamma not to be much greater than \scrO (1). We
emphasize that with no truncation, both inner products should be zero, as the vectors
in both pairs are orthogonal to each other. Whenever the cosine of the angle reaches a
value close to one, the next residual vector is almost parallel to the previous direction
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374 VALERIA SIMONCINI AND YUE HAO

vector and is thus unlikely to contribute to the expansion of the approximation space.
As a result, stagnation of the whole process occurs (see Example 3.3). In addition,
and for any number of iterations, for large enough truncation tolerance, the residual
and direction vectors build significantly different subspaces.

The expression for \beta k shows that for a small residual r
(k+1)
ex , the second term at

the numerator may become significant, and if the sign of the two terms is the same,
the coefficient \beta k may become negative. As soon as \beta k becomes negative, the whole
CG framework breaks down, with the next direction vector continuing in the previous
direction but backwards. Apparently, the procedure is unable to recover (see the
example below), leading to overall residual norm stagnation. In fact, from then on
the sign of \beta k starts to alternate, according to small corresponding modifications in
the value of the residual norm; see Example 3.3.

Example 3.3. Let A \in \BbbR n\times n, A = T \otimes I + I \otimes T , T = tridiag( - 1,2, - 1), and
M = pentadiag( - 0.5, - 1,3.2, - 1, - 0.5) \in \BbbR n\times n with n = 100 and C = c1c

\top 
1 with c1

having random entries (from the MATLAB uniform distribution rand [23]). Figure 2
reports the convergence history of the TCG residual norm (dashed thick line) for
different values of the truncation threshold (solid thin straight line). Also included

are the angle cosines | (r(k+1))\top p(k)| 
\| r(k+1)\| \| p(k)\| (solid thick line) and | (r(k+1))\top r(k)| 

\| r(k+1)\| \| r(k)\| (dashed thin-

ner line). All plots show the inverse correspondence between the residual norm and
the two angle cosines. The agreement of the iteration at which the two final plateau
values are reached is striking. Figure 3 reports the value of \beta k during the whole con-
vergence history, for the same truncation tolerances as in Figure 2. We highlight the
oscillation of \beta k around zero in correspondence with stagnation, as opposed to the
strictly positive values obtained in the untruncated case. For completeness, in Figure 4
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Fig. 2. Example 3.3. Convergence history of truncated CG residual norm (dashed thick black
line) for different values of truncation parameter (thin solid line). Loss of orthogonality (cosine of
the angles) between consecutive residuals and residual and directions is also reported.
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Fig. 3. Example 3.3. Values of the computed \beta k as the iterations proceed, for different values
of truncation tolerance in the runs of Figure 2.
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Fig. 4. Example 3.3. Rank of approximate solution X(k) = X
(k)
1 (X

(k)
2 )\top as the iterations

proceed, for different values of the truncation parameter, in the runs of Figure 2.

we also report the approximate solution rank after truncation as the iterations pro-
ceed. The rank growth is consistent with the discussion of section 2.1, as long as the
truncation threshold does not affect the action of the error norm decay. Finally, for
a selection of truncation tolerance values, Figure 5 shows the singular values of the
final basis generated by the residual vectors [r(0), . . . , r(k)] (normalized to have unit
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Fig. 5. Example 3.3. Singular values of the matrix [r(0)/\| r(0)\| , r(1)/\| r(1)\| , . . . , r(k)/\| r(k)\| ],
for a selection of truncation tolerance values in the runs of Figure 2.

Euclidean norm). For the largest truncation tolerance, these plots illustrate that as
the cosine of the angle gets close to one (cf. Figure 2), the residual vectors become
linearly dependent, and not only nonorthogonal, leading to a large loss of rank in the
approximation space generated by the residual vectors.

The previous experiments illustrate that as long as the residual vectors remain
independent, the space keeps growing, and convergence may continue to improve in
a way similar to what occurs without truncation. More precisely, preserved local
orthogonality seems to be sufficient for the method to advance the approximation
with linear convergence; we expect superlinear convergence to be lost, as it occurs
in finite precision CG; see, e.g., [25] and references therein. The importance of local
orthogonality has been stressed in the past to enhance convergence properties of
inexact preconditioned CG; see, e.g., [8], [27], [9], and their references. Similar pictures
can also be observed in analyzing round-off effects in the GMRES orthonormal basis,
constructed with the modified Gram--Schmidt algorithm, in which the residual norm
stagnates at the level where all linear independence is lost [11].

The following example partially taken from [25] shows that the eigenvalue distri-
bution can in fact play a role in the convergence when truncation is applied. Although
of a theoretical nature, this example shows that the convergence of the truncated ver-
sion of CG may significantly differ from the expected convergence of the untruncated
method, and that the convergence curve may diverge from the untruncated one much
before the level of the truncation threshold.

Example 3.4. For n= 100, we consider A=diag(\lambda 1, . . . , \lambda n) with

\lambda i = \lambda 1 +
(i - 1)

(n - 1)
(\lambda n  - \lambda 1)\rho 

n - i, \lambda 1 = 0.1, \lambda n = 100, \rho \in \{ 0.4,0.8\} .

The matrix A is well known to be a challenging case for CG and it has been extensively
used in the literature to analyze the convergence behavior of CG; see [35], and also
[21] for a more recent account. Matrix M is taken to be the diagonal matrix with
elements logarithmically distributed in the interval [10 - 2,100], and c1 with all equal
components. This choice of M allows us to maintain the specific properties of the
matrix A, which classically provide insights into the behavior of CG in finite precision
arithmetic observed in the literature for the given distribution of eigenvalues of A
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Fig. 6. Example 3.4. Convergence history of TCG for \rho = 0.4 (left) and \rho = 0.8 (right) for
different truncation tolerances tol.

[35]. The value of \rho influences the eigenvalue distribution---but not the conditioning
of A---with more evenly distributed eigenvalues for larger values of \rho . The plots in
Figure 6 show the convergence history of TCG for two truncation tolerances, with
\rho = 0.4 (left) and \rho = 0.8 (right). We can appreciate that a more severe truncation
influences the convergence curve well above the truncation tolerance level. Though the
observed delay is not dramatic, this experiment illustrates that different truncation
tolerances not only influence the final stagnation level but may also influence the
whole convergence history; see [18] for other examples where convergence is affected
before stagnation level.

An intuitive explanation of the modification in the convergence history is that
the approximation space changes as soon as truncation takes place. Our analysis does
not provide a rigorous description of this convergence delay, which can perhaps be
analyzed by borrowing tools from finite precision arithmetic analysis (see, e.g., [10],
[21]); though the type of inexactness is structurally different, the inaccuracy threshold
is at a much larger order of magnitude, and the expectation in the achieved accuracy
is rather dissimilar. This fascinating connection deserves further study.

4. The Galerkin method. In this section we make a tight connection between
the matrix-oriented CG method (with no truncation) and projection methods on
(1.2) by showing that they work with the same approximation spaces. Following well-
established procedures for the Lyapunov and Sylvester equations [32], it is possible
to directly attack (1.2), thus bypassing the Kronecker formulation. An approximate
solution in the form Xk = VkYkV

\top 
k is sought, where the orthonormal columns of Vk

span a specifically selected approximation space of low dimension, and Yk is a small
size matrix, determined by imposing some conditions on the approximations. The
space is expanded if the approximation is not good enough; the parameter k accounts
for the number of iterations. Let Rk = C  - (AXk +XkA+MXkM) be the residual
matrix. To determine Yk a Galerkin condition is imposed, requiring that the residual
matrix be orthogonal to the generated space in a matrix sense, that is,

V T
k RkVk = 0.

Substituting the symmetric form Xk = VkY V T
k for some Y , we obtain

(V T
k AVk)Y + Y (V T

k AVk) + (V T
k MVk)Y (V T

k MVk) = V T
k CVk.(4.1)
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378 VALERIA SIMONCINI AND YUE HAO

Therefore, Yk can be obtained as the solution to the (reduced) matrix equation above,
which has the same structure as the original problem, but much smaller dimensions.
We refer the reader to, e.g., [13], [12, sec.7] for successful applications of this procedure.

The fundamental step for the effectiveness of this Galerkin procedure is the choice
of the approximation space. For M = 0, a particularly effective choice is given by the
rational Krylov subspace, defined as span\{ c1, (A+\sigma 1I)

 - 1c1, . . . ,
\prod k

j=1(A+\sigma jI)
 - 1c1\} ,

where the parameters \sigma j , j = 1, . . . , k, can be selected beforehand or adaptively during
the space generation; see, e.g., [32] and references therein. As for TCG, an important
hypothesis is that the solution X can be well approximated by a low-rank matrix;
if this is not the case, an excessively large approximation space and a large reduced
problem (4.1) may arise.

Consider the space \scrK k = range(Vk) generated as V0 = c1, Vk = [Vk - 1,Avk,Mvk],
k= 1,2, . . . , where vk is the kth vector of Vk - 1, that is,

6 V0 = c1 =: v1,

V1 = [V0,Av1,Mv1] =: [v1, v2, v3],

V2 = [V1,Av2,Mv2] =: [v1, v2, v3, v4, v5],

V3 = [V2,Av3,Mv3] =: [v1, v2, v3, v4, v5, v6, v7], etc.

Assuming full rank of the computed matrix, the generated subspace has dimension
dim(range(Vk)) = 2k + 1, k = 0,1, . . .. Without orthogonalization, the matrix gener-
ated by this procedure grows as

V\infty = [c1,Ac1,Mc1,A
2c1,MAc1,AMc1,M

2c1,A
3c1,MA2c1,AMAc1,M

2Ac1, . . .].

Recalling the definition of \BbbQ k in section 2.2, the following relation holds:

(4.2) \BbbQ k = range(V2k - 1).

As a consequence, as the iterations proceed the dimension of the approximation space
grows significantly less in the Galerkin case. However, note that in CG, the subspace
actually employed is a constrained subset of \BbbQ k (see section 2.2).

After k iterations of the Galerkin method Vk appears to contain all terms of
(A +M)jc1, with j \leq k. However, the space is richer than the space generated by
powers of A+M . In other words, there exist vectors p \in range(Vk) that cannot be
written as p=

\sum k
j=0\alpha j(A+M)jc1. For instance, p= \gamma 0c1+\gamma 1Ac1+\gamma 2Mc1 with \gamma 1 \not =

\gamma 2 cannot be written using only powers of (A+M). The following proposition gives
an explicit representation of vectors in range(Vk). Its proof follows from observing
that for any i\leq k, the vector 0 \not =w= \varphi i(A,M)c1 is a linear combination of elements
in range(Vk) of exact degree i in at least A or M .

Proposition 4.1. Let p \in range(Vk). Then there exist \gamma i, \alpha i,\ell , and \beta i,\ell such

that p =
\sum k

i=0 \gamma i
\prod i

\ell =0(\alpha i,\ell A + \beta i,\ell M)c1. In a more compact way, letting \varphi i(\xi , \eta ) =\prod i
\ell =0(\alpha i,\ell \xi + \beta i,\ell \eta ) be the bivariate polynomial of degree not greater than i, it holds

that p=
\sum k

i=0 \gamma i\varphi i(A,M)c1.

We stress that the coefficients \gamma s, \alpha s and \beta s are not necessarily independent.
The discussion associated with item (i) of section 2.1 carries over to the low-

rank matrix Xk = VkYkV
T
k obtained by the Galerkin method. The rank of Xk is

at most equal to the dimension of Yk, and it can thus be monitored. Since the
energy norm of the error X \star  - Xk is minimized (see [29]), convergence is focused on

6The vector used to expand the space in the next iteration is underlined.
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Fig. 7. Example 4.2. Number of matrix-vector multiplies with A and M as iteratios proceed
for the Galerkin method and for TCG, using different truncation tolerances.

matching the leading singular values, while the rank remains under control. Another
immediate choice of space is Vk = [Vk - 1,M

 - 1Avk,M
 - 1vk], which corresponds to a

premultiplication by M - 1 of both sides of problem (1.2); see also (1.8). This is the
space constructed in the next example.

Example 4.2. The matrix A stems from the centered finite difference discretization
of the operator ( - exp( - xy)ux)x - (exp(xy)uy)y in the unit square with homogeneous
Dirichlet boundary conditions. The discretization leads to a matrix A of dimension
n= 400. Here M = tridiag( - 1,2.1, - 1) and c1 has random entries uniformly distrib-
uted in (0,1). The equation is multiplied from the left and from the right by M - 1.
In CG this corresponds to using M \otimes M as preconditioner.

The Galerkin method requires a subspace of dimension 131 to reach a relative
residual norm less than 10 - 3. TCG with a truncation tolerance 10 - 6 requires 80 iter-
ations to reach the same residual tolerance, with the final X1, P1 having, respectively,
92 and 219 columns, though during the iteration matrices X

(k)
1 , P

(k)
1 with up to n

columns were generated. TCG with a truncation tolerance 10 - 4 did not reach the
requested accuracy, stagnating much earlier. Figure 7 reports the number of matrix-
vector multiplies with A and M as iterations proceed, for all methods, illustrating the
superiority of the Galerkin procedure also with this cost measure.

In the previous experiment we have used an approximation space that is related
to that generated by CG to illustrate the previous arguments. Results are not always
in favor of the Galerkin method when this space is employed. Other more effective
approximation spaces for the given problem can be considered; see, e.g., [3], [13].

5. Conclusions. The matrix version of CG provides a new theoretical and com-
putational framework for the iterative solution of linear matrix equations via Krylov
subspaces. We have described some of the relations that influence the actual behavior
of the method. In particular, we have characterized how convergence takes place, in
terms of the error matrix, and in which way loss of orthogonality plays a role when
rank truncation is in action. In addition, a tight connection to Galerkin methods ap-
plied to the original problem has been devised. Our analysis can provide new insights
for possible future improvements over the basic implementation of TCG, such as local
orthogonality imposition and truncation criterion selection.
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