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Title: Scale mismatches between predictor and response variables in species distribution modelling: 

a review of practices for appropriate grain selection

Abstract

There is a lack of guidance on the choice of the spatial grain of predictor and response variables in species  

distribution models (SDM). This review summarises the current state of the art with regard to the following 

points: (i) the effects of changing the resolution of predictor and response variables on model performance; 

(ii) the effect of conducting multi-grain vs single-grain analysis on model performance; and (iii) the role of 

land cover type and spatial autocorrelation in selecting the appropriate grain size. In the reviewed literature,  

we  found  that  coarsening  the  resolution  of  the  response  variable  typically  leads  to  declining  model 

performance. Therefore, we recommend aiming for finer resolutions unless there is a reason to do otherwise  

(e.g.,  expert  knowledge of  the  ecological  scale).  We also found that  so far,  the  improvements  in  model  

performance reported for multi-grain models have been relatively low and that  useful  predictions can be  

generated even from single-scale models. In addition, the use of high-resolution predictors improves model  

performance;  however,  there  is  only  limited  evidence  on  whether  this  applies  to  models  with  coarser-

resolution response variables (e.g. 100 km2 and coarser). Low-resolution predictors are usually sufficient for 

species  associated with fairly  common environmental  conditions  but  not  for  species  associated with less 

common ones (e.g., common vs rare land cover category). This is because coarsening the resolution reduces 

variability within heterogeneous predictors and leads to underrepresentation of rare environments, which can 

lead to  a decrease in  model  performance.  Thus,  assessing the spatial  autocorrelation of  the  predictors  at 

multiple grains can provide insights into the impacts of coarsening their resolution on model performance.  

Overall, we observed a lack of studies examining the simultaneous manipulation of the resolution of predictor  

and response variables. We stress the need to explicitly report the resolution of all predictor and response  

variables.  

Keywords: Environmental niche modelling, Grain, Land cover, Predictor, Resolution, Scale, SDM, Variable
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1. Introduction

Species distribution models (SDMs) are widely used to assess species–environment relationships and to make 

predictions of species distributions in both space and time (Elith and Leathwick, 2009; Ferrier et al., 2017; 

Wiersma et al., 2011). To this end, SDMs relate a biodiversity-related response variable (e.g., the geographic 

distribution of one or more species) to explanatory variables (i.e.,  predictors,  covariates, or features).  The  

strength of these relationships infere species’ niches, and can be used to predict a species’ occurrence in  

unsurveyed locations. Although SDMs are a fundamental tool for answering many ecological, evolutionary, 

and  conservation-related  questions,  some  methodological  issues  remain  unresolved  (Araújo  et  al.,  2019; 

Moudrý et al., 2017; Rocchini et al., 2011; Santini et al., 2021).

One such issue is the choice of spatial resolution, or grain, of the input data (Dungan et al., 2002). It has been 

hypothesized that organisms respond to their environment more strongly at some grains than at others; these 

grains have been referred to as ‘ecological scales’ (Lecours et al., 2015), ‘characteristic scales’ (Holland et al., 

2004),  ‘intrinsic  scales’  (Wu and Li,  2006) and ‘response grains’  (Mertes  and Jetz,  2018).  This  concept 

implies that for every species, there are one or more grains that best capture the scales at which organisms 

most strongly respond to specific environmental variables. For example, it is assumed that climate constrains  

species distributions at broader spatial scales (e.g., at the extent of a whole continent, with phenomena that  

can be measured at a coarse resolution like > 100 km2). At successively finer resolutions and over smaller 

geographic extents, topography or biotic interactions may be the dominant variables in controlling species  

distribution,  whereas  at  even  finer  resolutions,  microclimate,  vegetation  structure,  or  the  presence  of  

individual land cover categories such as water bodies might drive local species distribution (Austin and Van 

Niel, 2011; Field et al., 2009; Pearson and Dawson, 2003; Wiens, 1989). However, previous studies have 

suggested that some of the abovementioned variables may shape species distribution across multiple grains 

(e.g.,  Alexander et al., 2015; Bütikofer et al., 2020; Wisz et al., 2013). Consequently, the choice of grain 

adopted  in  models  can  strongly  influence  our  ability  to  detect  and  measure  species’  response  to  the 

environment (de Knegt et al., 2010; Huston, 2002; Levin, 1992; Soberón, 2007; Cord et al. 2014). 
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Ideally,  both  species  occurrence  data  and  predictor  variables  are  available  at  relatively  fine  resolutions,  

allowing the researchers to coarsen the resolutions iteratively to find the best match between the predictor and 

response variables. While the response data should preferably be available at resolutions at which the species  

are  expected  to  respond  to  the  environment,  predictor  variables  should  be  detailed  enough  to  allow 

distinguishing important features of the environment that are hypothesized to affect species distribution (e.g.,  

a  certain habitat  type or  specific microclimatic conditions).  However,  this  is  not  always the case  due to  

limitations in data availability. Usually, the original spatial resolution of different datasets that need to be  

integrated for modelling purposes varies significantly, and thus finding an optimal match remains a significant  

challenge.

It is a common practice to modify the resolution of the input data so that it matches the resolution at which the 

study is intended, for example, by averaging environmental variables within field plots. Both continuous (e.g., 

bioclimatic variables, terrain characteristics such as slope) and categorical (e.g., land cover) predictors are 

often aggregated or resampled to match the resolution of the response variable (Grohmann, 2015; Moudrý et 

al., 2019). While not commonly implemented, an alternative approach consists of retaining the discrepancy 

between the grain sizes of the response and predictor variables through hierarchical modelling. This allows  

modelling species distribution using fine-grain species data and coarse-grain environmental data (McInerny 

and Purves, 2011), coarse-grain species data using fine-grain environmental data (Keil et al., 2013, 2014), or 

modelling the grain-dependency of the species-environment relationships. The latter can be done using an 

extra parameter in the model to quantify the relationship across a continuum of spatial scales (Keil & Chase, 

2019).

Any end user should know how changing the spatial resolution of predictor and response variables can affect  

SDM performance and which data characteristics play a role in how profound the effect of changing the 

resolution  will  be.  Therefore,  here  we  review methodological  issues  related  to  the  choice  of  the  spatial  

resolution of predictor and response variables in SDM. In particular, we focus on the following issues: (i) the  

effects of changing the resolution of predictor and response variables on model performance, (ii) the effect of  

conducting multi-grain vs single-grain analysis on model performance, and (iii) the role of land cover type  

and spatial  autocorrelation in  the  selection  of  appropriate  grain sizes.  Accordingly,  we aim at  providing 

recommendations for the critical assessment of the input data. 
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2. Effects of changing the resolution of predictor and response 

variables on model performance

Numerous studies examined the grain dependence of species-environment relationships (see the review by 

Moudrý and Šímová, 2012).  Some authors  coarsened the resolution of the response variable (section 2.1), 

others coarsened the resolution of predictor variables so that the resulting predictor was coarser than the  

response variable (section 2.2). Finally, in some studies the resolution of predictor variables was coarsened so 

that the resulting predictor was finer than the response variable (section 2.3). These three scenarios are shown 

in Figure 1. The distinction between these three approaches is often not made in the respective studies, and the 

effect of changing any resolution can be mistakenly understood as a single problem.  We found no studies 

manipulating the resolution of predictors from finer to coarser resolution compared to the response variable,  

nor did we find studies manipulating the resolution of both the predictors and the response simultaneously  

(but see Tobalske, 2002).  

2.1  How  the  resolution  of  the  response  variable  affects  model 

performance 

The availability of species data at a much coarser resolution than commonly used environmental variables 

(e.g., species occurrence locations only available aggregated at a municipal or county level;  Cheng et al., 

2021; Jetz et al., 2012) can significantly limit our ability to model species-environment relationships. Studies 

using species data at such coarse resolutions are not uncommon, especially for less studied taxa. As examples  

of such data, we can name gridded atlases (Jalas and Suominen, 1988; Šťastný et al., 2021), the resolutions of 

which can range from hundreds of meters to tens of kilometres. However, monitoring programs collecting 

atlas data are organizationally and financially demanding. The choice of grid resolution then becomes a trade-

off  between the level of detail  and the feasibility of fieldwork.  It  is increasingly common to supplement  
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atlases with maps generated with SDMs (e.g.,  Flousek et al., 2015; Šťastný et al., 2021). As field data may 

nowadays be gathered with the knowledge that they will also be used for modelling, it is important to know 

how the resolution of the response affects model performance. 

In  studies specifically  examining the effect  of  grain size of  the  response variable  on SDM performance,  

response grain ranges from a few metres to hundreds of kilometres, depending on the predictors tested (Figure 

1a; Table 1; see  review by Miguet et al., 2015). These studies typically  ask: at what scale(s) is the species 

distribution most driven or constrained by specific environmental conditions? At finer resolutions, studies 

typically concentrate on the role of landscape structure (composition and configuration) in driving species 

distribution (Heikkinen et al.,  2007; Holland et al.,  2004; Tobalske,  2002).  With  coarser response grains, 

studies often include (bio)climatic variables (Chauvier et al., 2022; Kaliontzopoulou et al., 2008; Seo et al., 

2009). Typically, such studies report declining model performance with the coarsening of the resolution of the 

response variable (Chauvier et al., 2022; Gábor et al., 2022a; Heikkinen et al., 2007; Kaliontzopoulou et al.,  

2008; Seo et al., 2009; Zarzo-Arias et al., 2022), suggesting that modelling species at coarser resolutions is not 

optimal. However, these studies typically focus on the general performance of the models and do not report 

the effect of changing the response grain on the variables’ importance, which may provide valuable insights  

into which variables  shape  species  distributions  at  individual  grain  sizes  (but  see  Chauvier  et  al.,  2022; 

Hanberry, 2013). 

2.2  How  the  resolution  of  the  predictor  variable  (coarser  than  the 

response variable) affects model performance?

Instead of coarsening the resolution of the response variable, some studies have coarsened the resolution of  

predictor variables, so that the resulting predictor is coarser than the response variable (Figure 1b; Table 2). 

They came to different conclusions. Ferrier and Watson (1997) concluded that coarse environmental data lead 

to poorer model performance. Graf et al. (2005) found that the predictive power was highest at resolutions of 

about 1 and 2 km2. In contrast, Guisan et al. (2007) and Pradervand et al. (2014) concluded that coarsening the 

predictor variables'  resolution did not  substantially change model  performance,  meaning that  refining the  

resolution may not be sufficient to improve the models. 
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2.3 How the resolution of the predictor variable (finer than the 

response variable) affects model performance?

Studies that manipulate the resolution of predictor variables, so that the resulting predictor was finer than the  

response variable (Figure 1c; Table 3), are mostly concerned with the importance of fine-scale habitat features 

for analyzing species-environment relationships (e.g.,  Gottschalk et  al.,  2011;  Šímová et  al.,  2019).  They 

combine response variables at a coarse resolution with predictor variables at a fine resolution. These studies  

typically  ask:  do  we  need fine-resolution predictors  to  explain  species  distribution  at  a  relatively  coarse  

resolution?

High-resolution predictor variables suitable  for  modelling at  multiple levels  of  detail  may not  be readily 

available for the particular study area, their acquisition may be prohibitively expensive (especially for studies  

conducted over large extents), and their use may require excessive data processing and significantly increase 

computational time (Kissling et al. 2022; Moudrý et al. 2022). Hence, researchers face trade-offs between data 

detail  and  availability,  data  processing,  and  analytical  optimization.  Several  studies  have  examined  the 

importance  of  fine-grain  habitat  features  for  the  analysis  of  species-environment  relationships  using  a  

relatively coarse-grained response variable (Figure 1c; Table 3). In this  type of study, authors typically use 

predictor variables of various origins, collected, for example,  by remote sensing (Leitão & Santos 2019), 

fieldwork, or crowd-sourcing (Šímová et al., 2019; Thomas et al., 2002; Venier et al., 2004). Others have 

coarsened  the  grain  of  the  original  predictors  to  examine  the  grain  dependency  of  species-environment 

relationships (e.g. Gottschalk et al., 2011). 

Thomas et al. (2002) found that field-collected fine-grain predictors and predictor variables derived from a 30 

m digital elevation model lead to the same model performance at a 1 km resolution.  Seoane et al. (2004) 

found that models derived from land cover at a 250 m resolution are comparable to those based on the same  

variables  derived  from  satellite  images  at  a  30  m  resolution,  in  agreement  with  Venier  et  al.  (2004). 

Consequently, it is commonly assumed that coarse-resolution habitat predictors at continental (e.g., CORINE 

Land cover;  Büttner et al.,  2004) or global (e.g.,  Global Consensus Land cover;  Tuanmu and Jetz, 2014) 

geographic extents are sufficient for use in combination with coarse-resolution responses.
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However, it is essential to know if a given spatial resolution of a predictor variable captures the details that are 

important for explaining the distribution of the species of interest.  Gottschalk et al. (2011) concluded that a 

higher spatial resolution of predictors could be essential for accurate predictions. In addition, they attributed 

the improvement in models using detailed land cover maps to the high level of detail in the species response  

variable  (2  km diameter  around survey points).  This  contrasts  with  results  by  Šímová et  al.  (2019) that 

demonstrated improvement in model performance when using high–resolution land cover data despite the 

coarse resolution of species data (12 x 11.2 km).  They showed that the area and perimeter of water bodies 

derived from high–resolution land cover datasets (raster  data at  30 m resolution) explain distributions of  

waterbirds better than predictors derived from coarser 1 km data. In line with these findings, it  has been  

recently recommended to first coarsen the resolution of the predictors to match the resolution of the assumed 

ecological  scale  before  calculating prediction metrics  (e.g.,  standard deviation,  Shannon-Wiener  diversity  

index, or Rao’s Q) at the resolution of a response variable (Graham et al., 2019). In this context, the recent 

finding by Gábor et al. (2022b), who showed that in the case of species inhabiting rare habitats, using simple 

binary predictors (i.e. presence/absence of the habitat) might be sufficient, is of particular interest.

In  conclusion,  coarse–resolution  land  cover  or  terrain  predictors  may  lack  details  to  capture  potentially 

suitable habitats such as wetlands or cliffs. Thus, using high-resolution data could benefit models utilizing 

coarser-resolution species data (e.g. from gridded atlases). The question of whether the need for fine-scale 

predictors is somehow related to the resolution of the response variable or whether it  can be generalized  

should be further explored for different taxa and sets of predictors.

3. Single-grain versus multi-grain analysis

Up  to  this  point,  we  have  neglected  discussing  the  possibility  of  considering  species-environment  

relationships at multiple grains in a single model. Typically, experimental studies use a single grain for the  

response  variable.  Therefore,  they  implicitly  assume the  existence  of  a  common ecological  scale  for  all  

predictor variables.  However, it has been shown that the ecological scale is variable-specific since species 

often respond to different environmental variables at different spatial scales, and sometimes even respond 

differently to a single environmental variable at multiple grains (Leitão et al.  2010; Lecours et al.,  2020; 
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Miguet  et  al.,  2016;  Roilo  et  al.  2022).  However,  despite  theoretical  concepts  and  extensive  empirical 

evidence that species respond to their environment at different spatial grains (e.g. Bergman et al., 2012; Graf 

et al., 2005; Holland et al., 2004; Stuber and Fontaine, 2019; Zweifel-Schielly et al., 2009), the appropriate 

approach to select  the grain of response variable remains unclear (Jackson and Fahrig, 2015; Martin and 

Fahrig, 2012; Stuber and Gruber, 2020). For example,  Mertes et al. (2020) recognized two primary spatial 

grains at which species typically respond to their environment: they denoted the term “occupancy grain” for  

the grain equivalent to a species’ typical home range and the term “response grain” for the grain at which an  

individual  uses  an  environmental  resource.  They  also  developed  an  optimization  procedure  for  their  

identification. However, studies usually use grains of response variables coarser than the assumed occupancy 

and response grain, and it is unclear how to incorporate occupancy and response grains in such studies (but 

see Graham et al., 2019).

In theory, species distributions are driven by environmental variables at a range of scales (Levin, 1992), and 

there is no single “correct” spatial grain at which to characterize species-environment associations (Mitchell et 

al., 2001; Wiens, 1989). Therefore, models using multiple grains should, in theory, outperform models that 

assume a common ecological scale for all variables. However, scale-sensitive applications that aim to align 

the grain of the response variable (or predictor variables; see Graham et al., 2019) with the ecological scale 

are rare (McGarigal et al., 2016). In addition, studies have come up with different conclusions.  Some have 

suggested that the performance of models using multiple response variable grains is better than that of single-

grain models  (Mertes et  al.,  2020),  while others have not  drawn similar  conclusions (Martin and Fahrig, 

2012). Of note is that the improvements reported for multi-grain models were often relatively low, in the order  

of  hundredths  of  the  area  under  the  receiver  operating  characteristic  curve  (AUC)  values  (Boscolo  and 

Metzger, 2009; Graf et al., 2005; Kuhn et al., 2011; Mateo Sánchez et al., 2014). In other words, valuable 

predictions can still  be generated from models using a single arbitrarily selected scale. Hence, it  remains  

unclear whether the increased complexity caused by the use of multiple grains is beneficial, particularly in the  

case of SDMs used for the projection of species distributions under future climate conditions,  which are 

generally uncertain (e.g. Sinclair et al., 2010). 
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4. Land cover types and spatial autocorrelation 

In an early study on the effect of spatial resolution on the performance of species-habitat relationships,  Karl et 

al.  (2000) suggested  that  the  effects  of  coarsening  the  resolution  depend  on  the  heterogeneity  of  the 

environment. The difference in land cover types used in different analyses might, therefore, explain some 

contrasting findings. For example, Seoane et al. (2004) and Venier et al. (2004) observed no improvement in 

models when using finer-grain land cover data,  while  Gottschalk et  al.  (2011) and  Šímová et  al.  (2019) 

observed a significant improvement. Both Seoane et al. (2004) and Venier et al. (2004) used data on common 

land  cover  types,  such  as  the  proportion  of  forests  within  mapping  units.  For  homogeneous  landscapes  

displaying strong spatial autocorrelation (e.g., large blocks of forests), land cover information does not change 

much when spatially aggregated to coarser resolutions. In contrast,  Šímová et al. (2019)  focused on water 

bodies,  a  land  cover  category  that  can  become  virtually  invisible  at  coarser  resolutions;  coarsening  the 

resolution often leads to a bias and underrepresentation of rare environments such as (especially linear) water  

bodies in certain landscapes. Similarly, Seoane et al. (2004) observed considerable improvement in models for 

riparian species when finer-resolutions predictors were used. This may be one of the reasons why Tuanmu and 

Jetz  (2014) found  that  the  Global  Consensus  Land  Cover  that  has  a  spatial  resolution  of  1  km 2 

(https://www.earthenv.org/landcover;  see  Table  2)  performed  worse  for  predicting  aquatic  species  than 

species inhabiting other environments. Similarly,  Cord et al. (2014) showed for 30 tree species that SDM 

performance was significantly positively correlated with the species-specific degree of association between  

the focal species and different land cover types.

Environmental variables are typically spatially autocorrelated (i.e., values between two locations are more  

similar the closer the locations are in space;  Legendre, 1993). This spatial autocorrelation can be quantified 

using an empirical variogram that can be used to calculate the characteristic distance within which spatial  

autocorrelation  operates  (i.e.,  the  ‘range’  of  an  empirical  variogram).  Recently,  Mertes  and  Jetz  (2018) 

highlighted the importance of considering environmental autocorrelation for the ability of SDMs to estimate  

species-environment associations. Similar results were obtained by  Kühn (2006) for species richness. More 

recently,  Smith  and Santos  (2020)  explored  the  effect  of  the  resolution  of  predictor  variables  and their 
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autocorrelation  on  estimates  of  their  importance.  This  body  of  literature  shows  that  using  coarser 

environmental  data  in  SDMs  without  consideration  of  the  autocorrelation  can  mischaracterize  species-

environment  relationships  (see  Miller,  2012, for  review).  This  is  particularly true for  variables  that  vary 

rapidly over space; i.e. heterogeneous landscapes characterized by spatial autocorrelation with relatively small  

range values (Mertes and Jetz, 2018). Aggregating heterogeneous landscapes to a coarser resolution results in 

the loss of a portion of that heterogeneity (Graham et al., 2019; Karl et al., 2000; Mertes and Jetz, 2018). 

Lower  autocorrelation  means  higher  randomness;  hence,  very  distinct  values  are  aggregated  together.  In  

contrast, if there is strong autocorrelation, aggregating over a larger area does not change the value much  

because the values were similar even in the finer resolutions. 

Importantly, the inherent spatial autocorrelation of both species occurrences and predictor variables can result  

in models that may inadvertently capture the spatial structure rather than true functional relationships ( Bahn 

and McGill,  2007).  Indeed,  it  has  been  shown that  spatial  autocorrelation  can  lead  to  SDMs with  high 

discrimination  ability  even when  there  is  no  relationship  between species  occurrence  and environmental  

variables  (Chapman,  2010;  Fourcade  et  al.,  2018)  and  that  many  SDMs,  despite  a  good  fit,  are  not 

significantly better than null models (Osborne et al., 2022). Therefore, it is a question of whether the loss of 

explanatory power accompanying the coarsening of the resolution is due to the use of an inappropriate scale  

(e.g. due to the lack of detail of potentially suitable environmental conditions) or due to changes in the spatial  

structure; hence, this loss of power should be further explored for different resolutions and predictors. In any 

case, selecting a relevant set of environmental predictors based on the known ecology of the species of interest  

is essential to ensure fitting SDMs with an appropriate ecological interpretation (Fourcade et al., 2018). In 

addition, it is necessary to carefully inspect whether SDMs estimated from the observed data perform better 

than those generated from the null  occurrence distributions, for  example by using the recently-developed 

“fauxcurrence” R package (Osborne et al., 2022). 

5. The ratio between the resolution of response and predictor variables

A recently  proposed  standard  protocol  (Zurell  et  al.,  2020)  recommends  reporting  information  on  data, 

modelling techniques, validation, and underlying questions (Araújo et al., 2019; Michener and Jones, 2012; 
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Rocchini and Neteler, 2012). However, many studies still lack it (see Feng et al., 2019 for a review). When 

evaluating the effect of changing the resolution of predictor variables, it is also important to consider the  

resolution of the response variable (i.e., species occurrences). The opposite is also true: when evaluating the 

role of the resolution of the response variable, one should be aware of the resolution of predictor variables.  

Although this may seem like a trivial recommendation, it remains infrequent that studies evaluating the effects 

of changing resolutions discuss their results with respect to the ratio between the resolutions of the response  

variable and predictor variables (but see Moudrý and Šímová, 2012). The ratio between the resolution of the 

response and the resolution(s) of the predictor variables differs among studies and might be the reason for 

reported contradicting results (Figure 1). For example, in studies evaluating the importance of finer–resolution  

predictors  to  explain  species  distributions,  response  grains  can  differ  considerably  (Table  4).  It  can  be 

expected that for small ratios, coarsening of the resolution of predictor variables will have a minimal effect on 

model performance (e.g.  Seoane et al.  2004; Venier et al.  2004), while for high ratios (indicating a high 

difference  between  the  resolutions  of  the  response  and  predictor  variables),  considerable  effects  can  be 

expected due to the aggregation of highly different values (e.g.  Gottschalk et al. 2011; Šímová et al. 2019). 

Practices could be improved by reporting the resolution of predictor variables as well as that of the response 

variable. 

6. Conclusions 

Spatial scale is one of the most critical issues in ecology and associated disciplines (Levin, 1992). Species 

respond to their  environment  at  different  scales,  and processes  controlling species  distribution operate  at  

various spatial scales. Unsurprisingly, the studies we reviewed found various optimal resolutions, depending 

on the species and ecosystems analyzed. Besides, most studies analyzing multiple species usually report only 

a general trend in models’ behaviour with respect to changing resolution, and there are always some models 

that do not conform to the general pattern (e.g.,  Guisan et al., 2007; Pradervand et al., 2014). Our review 

highlights  that  within  the  typically  used  resolutions  (0.01  –  100  km2)  finer-resolution  models  generally 

perform better.  Besides, the use of coarse-resolution response variables has implications for the predicted  

distribution range (Kunin, 1998). When the resolution of the response variable is too coarse, there is a risk of  
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overestimating the occupied area (Connor et al., 2018; Hu and Jiang, 2010; Lauzeral et al., 2013; Seo et al., 

2009). Moreover, Gábor et al. (2022a) recently showed that coarsening the resolution does not compensate for 

positional error in species occurrence data. Therefore, we recommend basing the choice of the resolution of  

the response variable on practical aspects, such as aiming for finer resolutions unless there is a reason to do 

otherwise (e.g., expert knowledge of the ecological scale of the species under study).

Coarsening the resolution of predictor variables has been shown to negatively affect model performance as it  

obscures  fine-scale  heterogeneity  in  environmental  variables.  Therefore,  we  recommend  (1)  using  finer-

resolution environmental variables when modelling species associated with rare environmental entities (e.g., a 

rare habitat type), even when using species occurrence data at a coarse resolution (Šímová et al., 2019). When 

species are associated with widespread environmental conditions, using low–resolution predictors is likely  

sufficient. However, we recommend (2) assessing spatial autocorrelation or thematic resolution of predictors  

at multiple grains to estimate the potential impacts of coarsening their resolution on model performance (i.e.  

to ensure that they preserve enough detail to distinguish environmental features that affect species distribution  

at  a  given resolution).  Thirdly,  (3)  studies  may benefit  from considering multiple  grains  of the  response 

variable within a single model, even though the improvements reported for multi-grain models have so far 

been relatively low, and we recognize that useful predictions can still be generated from single-scale models.  

Finally, (4) studies should explicitly report the resolutions of the predictor and response variables, following 

the standard ODMAP protocol recently proposed by Zurell et al. (2020).
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