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A B S T R A C T   

Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances compa
rability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, 
storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization 
methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate 
their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when 
comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better 
results in terms of the number of proteins identified and quantified as well as in identifying statistically sig
nificant up or down-regulated proteins. However, when three or more datasets are compared at the same time 
the differences are found to be negligible.   

1. Introduction 

Some analytical chemists encounter significant challenges in 
analyzing large-scale proteomics data using bioinformatics tools, often 
because these topics are not sufficiently developed in undergraduate or 
post-graduate programs. As a result, analytical chemists may need to 
acquire additional skills and knowledge to effectively handle these types 
of data. From an analytical chemistry point of view, the so-called shot- 
gun-based proteomics workflows are characterized by multiple sources 
of variability, including sampling, sample handling, sample storage, 
sample treatment and mass spectrometry measurements [1,2]. For 
instance, analytical chemists know that large-scale and longitudinal 
studies often encounter a source of variation associated with the 

difference in storage time and ageing of the samples [2,3]. Samples are 
typically collected and prepared at different times during the study, 
introducing an environmental factor that may affect the data. This factor 
may be compounded by other variables, such as the collection of sam
ples in different centres or countries, which may be subjected to varying 
numbers of freeze-thaw cycles. In addition, the sample collection pro
tocol may be applied with different levels of attention by different op
erators, which can lead to unwanted differences in the samples. 
Furthermore, transporting the samples to the laboratory where they will 
be stored or analysed can also introduce noise into the data, as the 
transportation conditions may vary, potentially altering the samples 
differently. Finally, in a typical shot-gun proteomics workflow, samples 
are collected and treated in the analytical laboratory before being stored 
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or investigated using mass spectrometry. The samples are then cleaved 
with various enzymes depending on the experimental strategy, and the 
resulting cleavage proteome composed of thousands of peptides is sub
jected to chromatography-mass spectrometry analysis. The noise 
generated during the pipeline of work, from sampling to mass spec
trometry, makes shot-gun proteomics challenging to compare samples, 
extract meaningful information and derive accurate conclusions. The 
ultimate tools to overcome this challenge of variability in shotgun pro
teomics workflows are the so-called normalization methods [4–6]. 

Normalization is a method used to adjust the data obtained from 
different samples, platforms, or batches to remove unwanted variability 
and enhance comparability between the datasets. It involves applying a 
mathematical correction to the data to reduce the effects of systematic 
technical variation and other sources of bias. The choice of normaliza
tion method depends on the nature of the data and the research question 
at hand [7–9]. However, this choice is not as simple as it seems at first 
glance. The importance of selecting an appropriate normalization 
method is critical to obtain well-grounded results. Therefore, selecting 
the optimal way to normalize data has important implications, as it 
significantly impacts downstream analyses, delivering different results 
depending on the normalization method selected [1,10,11]. Although 
several studies have evaluated different proteome normalization ap
proaches, primarily focusing on their ability to enhance data repeat
ability, there is no consensus about which normalization method must 
be used, or whether the use is conditioned by the number of groups or 
the number of samples in each group [10,12–15]. 

There are several normalization methods, but the most popular ones 
include Z-score normalization, median divide normalization, and 

quantile normalization. 
The z-score normalization method creates an induced normal matrix 

by subtracting to each protein in each sample their respective median 
across all samples in the dataset and then dividing each protein value by 
the standard deviation of the respective protein across all samples. This 
process forces the dataset to follow a normal distribution, which can 
improve the accuracy of downstream statistical analyses. By normal
izing the data in this way, the z-score normalization method can address 
variations in the data, making it a valuable tool for data normalization in 
proteomic studies [10]. 

The median divide normalization approach involves dividing all 
results by the median, which reduces the impact of bias caused by 
equipment variations and makes the data more comparable to other 
assays. This method is particularly useful when dealing with large 
datasets that are collected over time and across different batches, as it 
reduces the variation in the data introduced by the technical aspects of 
the assay. The median divide normalization method is a reliable 
approach for comparing protein expression levels between different 
samples and provides an accurate representation of the overall distri
bution of the data. However, this method may not be appropriate for 
datasets with extreme values or when most values are close to zero [7]. 

The quantile normalization involves substituting the value of each 
data point in a sample with the mean of the corresponding quantile, 
thereby modifying the data distribution of each sample to be identical. 
This normalization method is particularly useful for comparing samples 
with different distributions. By standardizing the distribution of each 
sample, quantile normalization can improve the accuracy and repro
ducibility of downstream analyses, such as differential expression 

Fig. 1. Schematic representation of the data process applied to the proteomic data when comparing Neat Adjacent Tissue, NAT (control group) against multiple renal 
tumour types. A: Type and number of tumours (description of patients is given in Table SM1). B: Data treatment for the proteins quantified using the five datasets. C: 
Types of normalization made: Z-Score, median divide, Quantile and types of comparisons done: Volcano plots, Cluster analysis and Multisample Test Anova. 
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Fig. 2. Comparison of the numbers of proteins found statistically differentially expressed using each normalization method when comparing the near adjacent tissue 
(NAT) against each renal tumour type. Each column represents the volcano plots obtained using one normalization method: A: Z-score; B: Quantile; C: Median. Each 
row shows the comparison by pairs (Volcano plot, according to Student’s t-test, FDR 0.05 and S0 of 0.1, red dots: overexpressed proteins in NAT; blue dots over
expressed proteins in tumours). chRCC: chromophobe renal cell carcinoma; ccRCC: clear cell renal cell carcinoma; pRCC papillary renal cell carcinoma; RO: Renal 
oncocytoma. D: column summarizes the common and uncommon proteins found among pair comparisons for each normalization method. 
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analysis and pathway analysis [6,16,17]. 
In a previous work [18], we applied Z-Score normalization and the 

Total Protein Approach (TPA) to proteomic data derived from renal 
carcinoma solid biopsies. Thus, near adjacent tissue (NAT), Papillary 
Renal Cell Carcinoma (pRCC), Clear Cell Renal Carcinoma (ccRCC), 
Chromophobe Renal Cell Carcinoma (chRCC) and Renal Oncocytoma 
(RO), samples were interrogated with the main aim of obtaining new 
immunohistochemical markers for diagnosis and prognosis. The best 
biomarkers found via mass spectrometry, namely perilipin-2 (PLIN2), 
beta-tubulin III (TUBB3), lysosomal-associated membrane protein-1 
(LAMP1) and hexokinase-1 (HK1) were later successfully validated 
using tissue microarrays. 

In the present work, the complete mass spectrometry datasets ob
tained for the different types of renal carcinomas and NAT are interro
gated using bioinformatic pipelines differing only in the selected 
normalization methods, namely Z-score, median divide and quantal 
normalization. Selecting these specific tumour types allows for a 
comprehensive analytical assessment of the normalization methods in a 
clinically relevant context. Through this evaluation, we aim to provide 
insights into the selection process of appropriate normalization tech
niques that can enhance the accuracy and reproducibility of proteomic 
analyses in tumour research. The results obtained were compared with 
those previously validated using tissue microarrays. 

2. Methods 

2.1. Patients and sample collection 

The experimental workflow developed to interrogate the renal car
cinoma and the NAT tissue samples, along with the extended study 
design and patient sampling collection is described elsewhere [19], 
furthermore the validation of the biomarkers found using tissue micro
arrays is also described elsewhere [18] A brief patient summary is 
provided in Supplementary material Table SM1. 

2.2. Mass spectrometry raw data 

This study used frozen tissue biopsies of human renal tissues from 
four different tumour types (ccRCC, chRCC, pRCC, and RO) and a con
trol group (NAT). The samples were properly treated and analysed by 
mass spectrometry to identify and quantify the protein expression levels 
[19]. Mass spectrometry raw data was accessed in ProteomeXchange 
Consortium [20] using the Proteomics IDentications Database (PRIDE) 
[21] with the unique identifier PXD023296. 

2.3. Identification and quantification of proteins 

Protein identification and relative label-free quantification (LFQ) 
was newly performed used the previous described raw data using the 
precursor signal intensity method and delayed normalization, MaxLFQ, 
on MaxQuant software V2.0.3.0 [12]. The newly generated proteins 
group table containing protein identification and quantification can be 
found in Supplementary material 2. All raw files were processed in a 
single run with default parameters [22,23]. Database searches were 
performed using peptide search engine Andromeda against the human 
UniProt UP000005640_9606 and UniProt UP000005640_9606_addi
tional database [24]. Searches were configured with cysteine carbami
domethylation as a fixed modification and N-terminal acetylation and 
methionine oxidation as variable modifications. We set the false dis
covery rate (FDR) to 0.01 for protein and peptide levels with a minimum 
length of seven amino acids. The FDR was determined by searching a 
reverse database. Trypsin enzyme specificity was set as C-terminal to 
arginine and lysine with a maximum allowance of two missed cleavages. 

2.4. Bioinformatics data processing 

Bioinformatic data processing was conducted using Perseus V1.6.0 
[25,26] as explained in Fig. 1B. Briefly, the data processing can be 
roughly divided into stages: (i) Elimination of protein groups that were 
reversely identified or only identified by site from the list of proteins; (ii) 
Annotation of sample condition and technical replicates; (iii) Trans
formation of LFQ intensities into Log (2x) value to lessen the impact of 
outliers and to understand the protein changes proportional across the 
conditions; and finally (iv) Proteins were filtered so that they were at 
least present in 70% of the samples in at least one of the created groups 
and the remaining missing values were imputed according with the 
respective sample normal distribution with a width of 0.3 and down shift 
of 1.8. 

2.5. Bioinformatic data analysis and normalization comparisons 

Bioinformatic data analysis was carried out in Perseus V1.6.0 [25, 
26] as explained in Fig. 1C in which the analytical comparison of three 
different types of commonly used normalizations was conducted 
(Z-Score normalization, Median divide normalization and Quantile 
normalization). Z-Score and Median divide normalization were obtained 
using the standard tools in Perseus while Quantile normalization was 
acquired by using the R package limma add-on for Perseus [27,28]. To 
access the impact of normalization, the NAT (control group) data set of 
protein expression was compared with the renal tumours using the three 
different types of normalization. The number of proteins whose levels 
were found to be statistically different between the group comparison 
were accessed by using a volcano plot analysis (Student’s t-test, FDR 
0.05 and S0 of 0.1). Finally, all the datasets were compared together for 
each type of normalization using a Multisample Test ANOVA with a FDR 
of 0.05. All comparison resulting in statistically different proteins were 
used respectively in a hierarchical clustering analysis with an average 
linkage, no constraint, pre-processing with k-means, and Euclidean 
distance. The proteomic data was also processed (i) by comparing the 
NAT group of samples against two, three or four tumour types at the 
same time, as shown in Fig. 1 and (ii) by comparing each tumour con
dition and the control group at a time, as shown in Supplementary 
material Fig. SM1. This approach was adopted to ensure that the results 
would be consistent across different subtypes of renal tumour and would 
be useful for researchers focusing on precision medicine. 

These analytical approaches allowed for a comprehensive evaluation 
of the normalization methods in terms of their ability to accurately 
identify significant proteins and their impact on downstream analyses, 
such as differential expression analysis and pathway analysis. Enrich
ment pathways analysis was carried out using the software platform 
Cytoscape v3.9.1 [29] and the application StringApp [30] v2.0.0 for 
protein-protein analysis and biochemical pathway analysis. Different 
types of databases for enrichment pathway analysis (GO biological 
process [31], The Kyoto Encyclopedia of Genes and Genomes - KEGG 
[32], Reactome pathways [33]) were considered to access the impact of 
normalization on downstream analysis. 

3. Results 

The data pre-processing steps were standardized across all normali
zation methods. A detailed workflow of the pre-processing steps is 
illustrated in Fig. 1 and Supplementary material Fig. SM1. 

3.1. Comparing each type of renal carcinoma against NAT 

After comparing the datasets in pairs, we tested three normalization 
methods. Our findings revealed that both z-score normalization and 
quantile normalization produced similar results in terms of the number 
of statistically significant differentially expressed proteins throughout 
all comparisons, as shown in Fig. 2A–D. However, quantile 
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normalization consistently identified a slightly higher number of pro
teins, depending on the carcinoma compared against the near adjacent 
tissue, NAT. On the other hand, the median divide method consistently 
produced about 37% fewer differentially expressed proteins for all the 
pairs compared, as depicted in Fig. 2. This trend was also observed for 
the down- and upregulated proteins as shown in Fig. SM2. 

In a previous study utilizing the same raw data, our team employed 
mass spectrometry to identify four potential biomarkers: PLIN2, TUBB3, 
LAMP1, and HK1. The Z-score and Total Protein Approach (TPA) were 
utilized for this purpose, and these markers are depicted in Fig. SM2. 
TPA is a label-free mass spectrometry method developed by Wísniewski 
et al. [34,35] that enables the measurement of absolute expression levels 
of numerous proteins without the need for standards. 

Using TPA, we were able to highlight these potential biomarkers, and 
their validity was subsequently confirmed through immunohistochem
ical tissue arrays [18]. Interestingly, in our current study, we observed 
statistically significant differential expression for the same proteins 
across all three normalization methods employed, with similar p-values. 
This suggests that when a protein exhibits high significance, it will be 
consistently identified as significant regardless of the specific normali
zation method used. 

These findings emphasize the robustness and reliability of the iden
tified biomarkers and support the notion that they are biologically 
relevant. It further reinforces the notion that the choice of normalization 
method does not significantly impact the detection of highly significant 
proteins. 

Furthermore, we compared the top 100 proteins with the highest log 
P-values across the three normalization methods in all two-group com
parisons. We found that the z-score and quantile normalization methods 
had 94 proteins in common, while the median method shared 86 and 84 
proteins with the z-score and the quantile methods, respectively. These 

results suggest that the z-score and quantile normalization methods may 
be more consistent with each other in identifying highly differentially 
expressed proteins, while the median method may identify a slightly 
different set of proteins. 

3.2. Comparison of the two, three and four renal carcinomas at a time 
against NAT 

Our next step was to compare the tumours datasets in groups of 2, 3 
and 4 against NAT. Proteins for further processing were selected if they 
were found in any dataset in at least 70% of the replicates. 

Focusing on the results obtained comparing the four neoplasia’s 
datasets against NAT (Fig. 3A) it can be concluded that when the com
parison is not made in pairs, the numbers of proteins found to be sta
tistically different is almost the same (i.e., 1075, 1086 and 1034 for the 
Z-score, the quantile and the median divide, respectively). In addition, 
1008 of all the proteins were identified with any normalization method. 
The same patterns were repeated comparing three or two tumours 
against NAT, Fig. 3A respectively. 

These results suggest that the choice of normalization method did not 
have a substantial impact on the number of differentially expressed 
proteins identified when datasets are not compared in pairs, as 
explained in the previous section. This is due to the fact that the Max
Quant statistics varied differently, from comparing pairs to comparing 
three or more datasets, so the differences were not on the same scale as 
those observed when comparing datasets in pairs, as shown in the pre
vious section. 

To cluster the samples, we exploited the differentially expressed 
proteins identified by each normalization method using the five datasets 
(Supplementary Material 3). As noted in Fig. 3B, we found that three 
distinct clusters were formed regardless of the normalization method. 

Fig. 3. Proteins found statistically differentially expressed using the comparison of: A: 5 datasets: All tumours against NAT; 4 datasets chRCC, ccRCC and RO tumours 
against NAT and 3 datasets: ccRCC and RO against NAT. B: Hierarchical clusters were performed by using proteins that were found to be statistically different using 
each normalization method when comparing all tumours against NAT (average linkage, no constraint, pre-processing with k-means, and Euclidean distance, n = 25). 
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The tumours pCRR and ccRCC were grouped together in the first cluster, 
while RO and chRCC formed a distinct cluster in the second. The third 
one was NAT tissue. Notably, we observed that the proteomic expres
sions of RO and chRCC tumours were more similar to NAT than to pRCC 
and ccRCC. 

When the differentially expressed proteins were analysed to extract 
those whose levels make them unique for just one type of carcinoma, the 
number of proteins was 178, regardless of the normalization process, as 
depicted in Fig. 4A. Furthermore, we also found that 174 out of these 
178 biomarkers were present in our previous work [18], including the 

Fig. 4. Comparison of candidate biomarkers for each renal tumour subtype across all different type of data normalization. A: Biomarkers found in this work for each 
normalization method versus those found in our previous work [18]. B: Biomarkers proposed in our previous work (Fig. SM2) found with each normalization method 
in the present work. Note that for all of them the standard deviations of the normalized LFQ values overlap. 
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Fig. 5. Comparison of Top-10 pathways differentially expressed when chRCC is compared against NAT as per the proteins differentially expressed found with each 
normalization method. A: Z-score; B: Quantile; C: Median. Databases used for pathway enrichment analysis were Go biological processes, KEGG and Reactome. 
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four biomarkers validated by us using immunohistochemistry. These 
results suggest that the choice of normalization method has a negligible 
impact on the identification of specific biomarkers. 

3.3. Comparison of the best biomarkers for immunohistochemistry 

In a previous work we recommended several proteins as new po
tential biomarkers for immunohistochemistry (Supplementary material 
Fig. SM3). These proteins were first identified using mass spectrometry 
(LFQs) and then with TPA. Of these proteins, those represented in grey 
in Fig. 4B were selected in the previous work because the standard de
viations did not overlap. These proteins were later validated against 
tissue arrays [18]. 

When we used the levels obtained through each normalization 
method for each protein to identify statistically significant proteins, we 
obtained two interesting results. Firstly, the three normalization 
methods delivered almost the same results, but they differed substan
tially from those obtained using TPA as described above. As shown in 
Fig. 4B, proteins PLIN2, TUBB3, and HK1 would have never been 
identified as the best potential biomarkers because the standard de
viations overlap each other (Fig. 4). This unexpected result highlights 
the need to re-evaluate how data is treated and the importance of TPA in 
biomarker discovery. 

3.4. Exploring the impact of normalization methods on identifying main 
pathways affected in renal tumours 

To determine whether the identified dysregulated pathways changed 
as a function of the selected normalization method, we used the set of 
proteins found to be dysregulated when the five different datasets were 
compared. Then, through this data set, using an ANOVA test, we 
compared the proteins differentially expressed between NAT and 
chRCC. 

Fig. 5 shows the 10 most important (as per p-value) dysregulated 
pathways for (i) GO biological process, (ii) KEGG, and (iii) Reactome 
pathways. The results show that for the GO biological processes the first 
7 pathways affected are the same, with no variations nor in the p-value, 
neither in the number of proteins involved, thus showing no differences 
in the normalization methods. For the KEGG, the Z-score and the 
quantile normalizations were found more consistent between them than 
when compared to the median, as they have the same top-10 pathways. 
For the Reactome pathways, the three normalization methods were 
found to provide similar results. 

4. Conclusions 

When comparing two groups of datasets, such as healthy versus 
diseased samples, the Z-score normalization and the quantile methods 
tend to yield a higher number of differentially expressed proteins 
compared to the median normalization method. Thus, in these cases, we 
recommend using the Z-score normalization method. However, when 
comparing a larger number of datasets groups (3, 4, or 5), the differences 
in terms of proteins and biochemical pathways statistically different 
among the three normalization methods are negligible, and any can be 
selected. Interestingly, our findings show that four biomarkers, previ
ously identified using the z-score normalization (LFQs) in combination 
with the TPA approach, and later validated with immunohistochemistry 
[18], could not have been easily highlighted using any of the normali
zation methods assessed in this study. This discovery opens new avenues 
of research in biomarker discovery as it emphasises the TPA approach as 
a powerful tool in biomarker discovery. 
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