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We present a syntactical cut-elimination proof for an extended sequent calculus

covering the classical modal logics in the K, D, T, K4, D4 and S4 spectrum. We

design the systems uniformly since they all share the same set of rules. Different

logics are obtained by “tuning” a single parameter, namely a constraint on the
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show how to achieve a syntactical proof of the cut-elimination theorem that is
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implicitly show how small is the proof-theoretical distance between classical logic

and the systems under consideration.
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1. Introduction

In the thirties, Gentzen introduced the sequent calculus (and natural de-
duction) to prove Hilbert’s consistency assertion for pure logic and Peano
Arithmetic. Gentzen’s work marked the beginning of structural proof the-
ory, by sanctioning its role to understand the structure of mathematical
proofs and isolate and solve methodological problems in the foundations
of mathematics. Proof theory is a wide research area that provides tools,
methodologies, and solutions also to computer science and philosophical
logic. It still offers interesting open problems, especially if we move away
from classical and intuitionistic logic. Proof theory ofmodal logic, in partic-
ular, is subtle, since a uniform, technically elegant treatment of modalities
(□, ♢) is generally difficult.

During the last decades, many modal systems have been introduced.
Among these, some of the most interesting ones are the labeled systems [24,
26, 23], which extend ordinary calculi by explicitly mirroring in the de-
ductive apparatus the accessibility relation of Kripke models. While such
labeled frameworks provide a smart solution to represent structural proper-
ties, a more implicit representation of the semantical structure is sometimes
preferable, especially if one wants to reduce the formal iatus between clas-
sical proof theory and the modal one.

In this regards a number of calculi have been introduced, e.g. [23]
[4, 5, 7, 9, 15, 13, 18, 17, 16, 23, 21, 19, 22] (see section 5 for a detailed
comparison between our proposal and some related ones).

These systems have been defined by taking into account some basic
principles: analyticity (e.g., the subformula property), modularity (to be
able to capture an entire family of logics instead of only one), and, if
possible, an explicit syntactical cut elimination procedure.

Despite the number of calculi introduced and studied, syntactical cut
elimination remains a “precious” property—many papers claim its validity
but they do not exhibit detailed syntactical proofs (or do not prove it at
all).

Cut elimination is often obtained either by semantical methods or by
translation from other cut-free systems [14, 3]. We believe, on the contrary,
that an explicit cut elimination procedure—in the spirit of Gentzen’s orig-
inal ideas—is still an important asset for modal proof theory.

For this reason, the present paper focuses on a syntactical cut elimina-
tion theorem, proposing a modular system based on extended sequents (in
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the following, simply e–sequents)—which allow for a uniform cut elimina-
tion argument for all the modal logics in the spectrum K, D, T, K4, D4,
S4.

This paper is the natural companion of our [18], where we study a
natural deduction calculus for the same family of modal logics and we
prove a normalization theorems by a syntactical argument.

We pursue a strong form of modularity, since all systems share the same
set of rules. Differently from other proposals, to obtain a specific system
we do not add or drop characteristic axioms on a “kernel” calculus: we
simply set some constraints on the left rule for □, on the right rule for ♢,
and on the (eliminable) cut rules.

The main idea behind extended sequents is to equip formulas with a
position—a sequence of uninterpreted tokens—which adds a spatial dimen-
sion. Positions allow us to interpret sequents geometrically, thus permitting
a proof theoretical treatment of modalities as close as possible to that of
first-order quantifiers.

Here are the main features of our system:

• there is exactly one left and one right rule for each connective;

• the right rule for □, and its dual left rule for ♢, are formulated using
constraints on positions, with a strong analogy with the constraints
on the eigenvariable of the right ∀ rule (and ∃ left rule, respectively)
of standard first-order calculus;

• no direct formalization of the accessibility relation appears;

• only modal operators can change the spatial positions of formulas;

• all the logics share the same set of rules—different systems can be
obtained by “tuning” some constraints on the applicability of the cut
rule and on the (left and right, respectively) rules for □ and ♢.

The result is a parametric system, which we show proves the same theorems
of the standard (Hilbert-style) systems for the same logics.

In Section 2 we present extended sequents (e–sequents); Section 3 is
devoted to the syntactical proof of cut elimination; in Section 4 we show
that e–sequent calculi are equivalent (they prove the same theorems) to
the standard systems for the same modal logics. Comparison with related
proposals and review of the state of the art are in Section 5.
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2. Extended Sequent calculi

In this section we introduce extended sequents (briefly: e–sequents), an
extensions of the 2–Sequents originally introduced in [20, 19] and then
developed in [17, 16] (see section 5.1 for more on this approach).

To treat uniformly all the logics in the K, D, T, K4, D4 and S4 spectrum,
we introduce positions—sequences of uninterpreted tokens. We start with
basic notations and operations.

Definition 2.1. Given a set X, X∗ is the set of ordered finite sequences 
on X. With ⟨x1, ..., xn⟩ we denote a finite non-empty sequence such
that x1, . . . , xn ∈ X; ⟨ ⟩ is the empty sequence.

The (associative) concatenation of sequences ◦ : X∗ × X∗ → X∗ is
defined as

• ⟨x1, ..., xn⟩ ◦ ⟨z1, ..., zm⟩ = ⟨x1, ..., xn, z1, ..., zm⟩,

• s ◦ ⟨ ⟩ = ⟨ ⟩ ◦ s = s.

For s ∈ X∗ and x ∈ X, we sometimes write s◦x for s◦⟨x⟩; and x ∈ s as
a shorthand for ∃t, u ∈ X∗. s = t ◦ ⟨x⟩ ◦ u. On X∗ we define the successor
relation s ◁X t ⇔ ∃x ∈ X. t = s ◦ ⟨x⟩. In the following:

• ◁0X denotes the reflexive closure of ◁X ;

• ⊏X denotes the transitive closure of ◁X ;

• ⊑X denotes the reflexive and transitive closure of ◁X .

Given three sequences s, u, v ∈ X∗, the prefix replacement s[u ↱ v] is so
defined

s[u ↱ v] =

{
v ◦ t if s = u ◦ t
s otherwise.

When u and v have the same length, the replacement is called renaming
of u with v.

2.1. A class of normal modal systems

We introduce a class of systems for normal (i.e. extensions of system K)
modal logics.
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We first define the propositional modal language L which contains
countably infinite proposition symbols, p0, p1, . . .; the propositional connec-
tives ∨, ∧, →, ¬; the modal operators □, ♢; the parenthesis as auxiliary
symbols.

Definition 2.2. The set mf of propositional modal formulas of L is the
least set that contains the propositional symbols and is closed under ap-
plication of the propositional connectives →,∧,∨ (binary), ¬ (unary), and
the modal operators □, ♢ (unary).

In the following T denotes a denumerable set of tokens, ranged by meta-
variables x, y, z, possibly indexed. Let T ∗ be the sequences on T , called
positions; meta-variables α, β, γ, possibly indexed, range over T ∗.

Now, extended–sequents are tuples of finite sequences of position-for-
mulas, i.e. formulas labeled with positions.

Definition 2.3.

1. A position-formula (briefly: p-formula) is an expression of the form
Aα, where A is a modal formula and α ∈ T ∗; pf is the set of position
formulas.

2. An extended sequent (briefly: e–sequent) is an expression of the form
Γ ⊢ ∆, where Γ and ∆ are finite sequences of p–formulas.

Remark 2.4. An e–sequent is a linear notation for the so-called tree se-
quents, or with more modern terminology, nested sequents. All this will be
clarified in section 5.

Given a sequence Γ of p-formulas, with Init[Γ] we mean the set {β :
∃Aα ∈ Γ. β ⊑ α}.

We briefly recall the axiomatic (“Hilbert-style”) presentation of normal
modal systems. Let Z be a set of formulas. The normal modal logicM[Z] is
defined as the smallest set X of formulas verifying the following properties:

(i) Z ⊆ X

(ii) X contains all instances of the following schemas:

1. A → (B → A)

2. (A → (B → C)) → ((A → B) → (A → C))
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Axiom schema Logic

D □A → ♢A

T □A → A

4 □A → □□A

K = M[∅]
D = M[D]
T = M[T]
K4 = M[4]
S4 = M[T, 4]
D4 = M[D, 4]

Figure 1. Axioms for systems K, D, T, K4, D4 and S4

3. ((¬B → ¬A) → ((¬B → A) → B))

K. □(A → B) → (□A → □B)

MP If A,A → B ∈ X then B ∈ X;

NEC If A ∈ X then □A ∈ X.

We write ⊢M[Z] A for A ∈ M[Z]. If N1, .., Nk are names of schemas,
the sequence N1 . . . Nk denotes the set [N1] ∪ ... ∪ [N1], where [Ni] = {A :
A is an instance of the schema Ni}. Figure 1 lists the standard axioms for
the well-known modal systems K, D, T, K4, S4. We use M as generic name
for one of these systems.

2.2. The sequent calculi EK,ED,ET,EK4,ES4,ED4

We introduce a class of e–sequent calculi for the logics K, D, T, K4, and
S4. The system is presented only once (Figure 2) for S4: the other calculi
are obtained by imposing some constraints on the modal rules and the cut
(see Figure 3).

Observe that, as usual in sequent calculi presentations, sequences of
formulas (Γ, ∆), or positions (α, β) may be empty, except when explicitly
forbidden. The constraint on necessitation (rule ⊢ □, and its dual ♢ ⊢)
is formulated as a constraint on position occurrences in the context, anal-
ogously to the usual constraint on variable occurrences for ∀-introduction
(∃-elimination, respectively).

Systems for other logics are obtained by restricting the application of
some rules, exployting positions. In particular, rules □ ⊢ and ⊢ ♢ are
constrained for all the systems but ES4. Moreover, for EK4 and EK also the
cut rule is restricted. Figure 3 lists such constraints.
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Axiom and cut

Aα ⊢ Aα Ax
Γ1 ⊢ Aα,∆1 Γ2, A

α,⊢ ∆2
Cut

Γ1,Γ2 ⊢ ∆1,∆2

Structural rules

Γ ⊢ ∆
W ⊢

Γ, Aα ⊢ ∆

Γ ⊢ ∆
⊢ W

Γ ⊢ Aα,∆

Γ, Aα, Aα ⊢ ∆
C ⊢

Γ, Aα ⊢ ∆

Γ ⊢ Aα, Aα,∆
⊢ C

Γ ⊢ Aα,∆

Γ1, A
α, Bβ ,Γ2 ⊢ ∆

Exc ⊢
Γ1, B

β , Aα,Γ2 ⊢ ∆

Γ ⊢ ∆1, A
α, Bβ ,∆2

⊢ Exc
Γ ⊢ ∆1, B

β , Aα,∆2

Propositional rules

Γ ⊢ Aα,∆
¬ ⊢

Γ,¬Aα ⊢ ∆

Γ, Aα ⊢ ∆
⊢ ¬

Γ ⊢ ¬Aα,∆

Γ, Aα ⊢ ∆
∧1 ⊢

Γ, A ∧Bα ⊢ ∆

Γ, Bα ⊢ ∆
∧2 ⊢

Γ, A ∧Bα ⊢ ∆

Γ1 ⊢ Aα,∆1 Γ2 ⊢ Bα,∆2
⊢ ∧

Γ1,Γ2 ⊢ A ∧Bα,∆1,∆2

Γ1, A
α ⊢ ∆1 Γ2, B

α ⊢ ∆2
∨ ⊢

Γ1,Γ2, A ∨Bα ⊢ ∆1,∆2

Γ ⊢ Aα,∆
⊢ ∨1

Γ ⊢ A ∨Bα,∆

Γ ⊢ Bα,∆
⊢ ∨2

Γ ⊢ A ∨Bα,∆

Γ1, B
α ⊢ ∆1 Γ2 ⊢ Aα,∆2

→⊢
Γ1,Γ2, A → Bα ⊢ ∆1,∆2

Γ, Aα ⊢ Bα,∆
⊢→

Γ ⊢ A → Bα,∆

Figure 2. Rules for the System ES4
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Modal rules

Γ, Aα◦β ⊢ ∆
□ ⊢

Γ,□Aα ⊢ ∆

Γ ⊢ Aα◦x,∆
⊢ □

Γ ⊢ □Aα,∆

Γ, Aα◦x ⊢ ∆
♢ ⊢

Γ,♢Aα ⊢ ∆

Γ ⊢ Aα◦β ,∆
⊢ ♢

Γ ⊢ ♢Aα,∆

Constraints:
In rules ⊢ □ and ♢ ⊢, no position in Γ,∆ may start with α ◦ x; that is,
α ◦ x ̸∈ Init[Γ,∆].

Figure 2 (cont.). Rules for the System ES4

Note that both EK4 and EK, in addition to the constraint on the main
position β, have also constraints on the context: in the modal rules □ ⊢
and ⊢ ♢ there must be another formula occurrence Bα◦β◦η in either Γ or
∆ (of course, α and/or η may be empty). This prevents the derivation of
□A → ♢Aγ (the p-formula representing axiom D).

The notions of proof, provable sequent and height h(Π) of a proof Π
are standard.

Notation 2.5. In order to simplify the graphical representation of proofs,
we will use a double deduction line to indicate application of a rule preceded
or followed by a sequence of structural rules. So we will write

Γ ⊢ ∆
===== r
Σ ⊢ Θ

when the e–sequent Σ ⊢ Θ has been obtained from the e–sequent Γ ⊢ ∆ by
means of an application of rule r and of a finite number of structural rules.

Remark 2.6 (On the cut rule for EK, EK4).
The constraint is necessary for EK4 and EK, since it prevents the deriva-

tion of the unsound schema ♢(A → A)
⟨⟩

(remember that K and K4 do not
validate ♢true). Indeed, without the constraint we could construct the
proof-tree:
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Calculus Constraints on the rules □ ⊢ and ⊢ ♢
ES4 no constraints
ET β = ⟨ ⟩, or β is a singleton sequence ⟨z⟩
ED β is a singleton sequence ⟨z⟩
ED4 β is a non-empty sequence
EK4 β is a non-empty sequence;

there is at least a formula Bα◦β◦η in either Γ or ∆
EK β is a singleton sequence ⟨z⟩;

there is at least a formula Bα◦β◦η in either Γ or ∆

Constraints on the cut rule
ED, ET, ES4 ED4 no constraints

EK, EK4 α ∈ Init[Γ1,∆1 −Aα] or α ∈ Init[Γ2 −Aα,∆2]

Figure 3. Constraints

A⟨x⟩ ⊢ A⟨x⟩

⊢ A → A⟨x⟩

A → A⟨x⟩ ⊢ A → A⟨x⟩

A → A⟨x⟩ ⊢ ♢(A → A)
⟨⟩

⊢ ♢(A → A)
⟨⟩

Using the terminology we will introduce shortly in Definition 2.8, we will
say that, in order to be sound for EK or EK4, cut formulas must have a
sentinel. It is easy to see that modus ponens (from ⊢ A → Bα and ⊢ Aα,
obtain a derivation of ⊢ Bα) remains derivable also in presence of this
constraint.

Characteristic axioms of normal modal systems are easily derivable, as
shown in Section 4.

We introduce now some definitions. The position α ◦x in the rules ⊢ □
and ♢ ⊢ is the eigenposition of the rule, by analogy to first-order sequent
calculus. It is well known that in first order sequent calculus eigenvariables
should be considered as bound variables. In particular, any eigenvariable
in a derivation may always be substituted with a fresh one (that is, a vari-
able which does not occur in any other place in that derivation), without
affecting the provable end sequent (up to renaming of its bound variables).
Indeed, one may guarantee that each eigenvariable in a derivation is the
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eigenvariable of exactly one right ∀ or left ∃ rule (and, moreover, that vari-
able occurs in the derivation only above the rule of which it is eigenvariable,
and it never occurs as a bound variable.) We will show analogous prop-
erties for the eigenpositions of e–sequents, in order to define in a sound
way a notion of prefix replacement for proofs (that we defined at the end
of Section 2 for positions). We denote with Γ[α ↱ β] the obvious extension
of prefix replacement to a sequence Γ of p-formulas.

Fact 2.7. Let α ◦ z be an eigenposition. It is always possible to rename
the eigenposition as α ◦ z0, where z0 fresh token w.r.t the whole derivation
in which the eigenposition occurs.
This assumption ensures that, after a renaming, we cannot have e–sequents
Γ ⊢ ∆ containing both a formula Aα◦z0 with α ◦ z0 as eigenposition and
other formulas of the shape Bβ with β ∈ Init[α ◦ z0].

Definition 2.8. An occurrence of a formula Aα in an e–sequent Γ ⊢ ∆ is
said guarded if there exists in Γ ⊢ ∆ an occurrence of a formula Bα◦δ (δ
possibly empty) different from Aα. The formula Bα◦δ is the sentinel of Aα.

Proposition 2.9. Let Γ ⊢ ∆ be an e–sequent. If a formula Aα is guarded
in Γ ⊢ ∆, then, for any substitution [δ ◦ z ↱ δ ◦ τ ], the formula Aα[δ◦z↱δ◦τ ]

is guarded in Γ[δ ◦ z ↱ δ ◦ τ ] ⊢ ∆[δ ◦ z ↱ δ ◦ τ ].

Proof: Let Bβ a sentinel formula of Aα (so β = α ◦ γ). We distinguish
some cases:

1. Aα[δ◦z↱δ◦τ ] = Aα (the prefix of α is different from δ ◦ z) and then
Bα◦γ[δ◦z↱δ◦τ ] ≡ Bα◦γ . The are two subcases:

(a) if δ ◦ z ̸∈ Init[α ◦ γ] then Bα◦γ[δ◦z↱δ◦τ ] ≡ Bα◦γ .

(b) if δ ◦z ∈ Init[α◦γ], since α[δ ◦z ↱ δ ◦τ ] ≡ α, then α◦γ = αα′zγ′

where αα′ = δ. Then α ◦ γ[δ ◦ z ↱ δ ◦ τ ] = αα′τγ′ and Bαα′τγ′

is a supervisor of Aα.

2. α = δ ◦ z ◦ µ. In this case we have Aα[δ◦z↱δ◦τ ] = Aδ◦τ◦µ and
Bα◦γ[δ◦z↱δ◦τ ] = Bα◦τ◦µ◦γ and then Aδ◦τ◦µ is still guarded.

We now extend the notion of prefix replacement to proofs. The lemmas
are valid for all the systems (that is, in presence of the constraints) of
Figure 3.
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Lemma 2.10. Let Π be an e–sequent proof with conclusion Γ ⊢ ∆. Let δ ◦ z
be a position, and let b be a fresh token (that is, not occurring in either Π
or δ ◦ z). Then we may define the prefix replacement Π[δ ◦ z ↱ δ ◦ b], a
proof with conclusion Γ[δ ◦ z ↱ δ ◦ b] ⊢ ∆[δ ◦ z ↱ δ ◦ b].

Proof: If Π is an axiom Aα ⊢ Aα, than Π[δ ◦ z ↱ δ ◦ b] is Aα[δ◦z↱δ◦b] ⊢
Aα[δ◦z↱δ◦b].
All inductive cases are trivial, except the modal rules.

If the last rule of Π is

Γ ⊢ Aα◦x,∆
⊢ □

Γ ⊢ □Aα,∆

let Π′ be the subproof rooted at this rule. We have two cases, depending on
whether the position δ◦z is the eigenposition of the rule. (i) If α◦x = δ◦z,
obtain by induction the proof Π′[α ◦ x ↱ α ◦ b] with conclusion Γ ⊢ Aα◦b,∆
(remember that α ◦ x ̸∈ Init[Γ,∆]). Then Π[δ ◦ z ↱ δ ◦ b] is obtained from
Π′[α ◦ x ↱ α ◦ b] by an application of ⊢ □. (ii) If α ◦ x ̸= δ ◦ z, obtain
by induction the proof Π′[δ ◦ z ↱ δ ◦ b] with conclusion Γ[δ ◦ z ↱ δ ◦ b] ⊢
Aα[δ◦z↱δ◦b]◦x,∆[δ ◦ z ↱ δ ◦ b]. Observe now that α[δ ◦ z ↱ δ ◦ b] ◦x cannot be
an initial segment of a formula in Γ[δ ◦ z ↱ δ ◦ b],∆[δ ◦ z ↱ δ ◦ b]. Indeed,
if for some Bγ in Γ,∆ we had α[δ ◦ z ↱ δ ◦ b] ◦ x ⊑ γ[δ ◦ z ↱ δ ◦ b], since
b is fresh, this could only result from α ◦ x being a prefix of γ, which is
impossible. Therefore, we may conclude with an application of ⊢ □, since
its side-condition is satisfied.

If the last rule of Π is

Γ ⊢ Aα◦β ,∆
⊢ ♢

Γ ⊢ ♢Aα,∆

let, as before, Π′ be the subproof rooted at this rule and construct by
induction the proof Π′[δ ◦ z ↱ δ ◦ b] with conclusion Γ[δ ◦ z ↱ δ ◦ b] ⊢
Aα◦β[δ◦z↱δ◦b],∆[δ ◦ z ↱ δ ◦ b]. It is easy to verify that any side condition of
the ⊢ ♢ rule (which depends on the specific system, according to the table
above), is still verified after the prefix replacement. We may then conclude
with a ⊢ ♢ rule.

The left modal rules are analogous.

By repeatedly using the previous lemma, we obtain the following.
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Proposition 2.11 (Eigenposition renaming). Given a proof Π of an e–se-
quent Γ ⊢ ∆, we may always find a proof Π′ ending with Γ ⊢ ∆ where all
eigenpositions are distinct from one another.

Π′ differs from Π only for the names of positions. In practice we will
freely use such a renaming all the times it is necessary (or, in other words,
proofs are de facto equivalence classes modulo renaming of eigenpositions).
In a similar way to the previous lemmas we may obtain the following, which
allows the prefix replacement of arbitrary positions (once eigenpositions
are considered as bound variables, and renamed so that any confusion is
avoided). When we use prefix replacement for proofs we will always assume
that the premises of the following lemma are satisfied, implicitly calling for
eigenposition renaming if this is not the case.

Lemma 2.12 (Sequents Prefix Replacement). Let M be one of the modal
systems K, D, T, K4, D4, S4, and let β a position taken according to the
constraint for β of figure 3. Let δ ◦ z be a position, and let Π be an EM
proof of Γ ⊢ ∆, where all eigenpositions are distinct from one another,
and are different from δ ◦ z. Then we may define the prefix replacement
Π[δ ◦z ↱ δ ◦β], an EM proof with conclusion Γ[δ ◦z ↱ δ ◦β] ⊢ ∆[δ ◦z ↱ δ ◦β].

Proof: The proof proceeds by induction on the length of the proof and by
cases on the last rule. Propositional cases are trivial. We focus on modal
rules and in particular on the non-serial cases EK and EK4.

System EK: in this case β is a single token.

1. The last rule is ⊢ □. We have two cases:

(a) The proof has the structure

Π1

Γ ⊢ Aα◦z,∆

Γ ⊢ □Aα,∆

We can exclude this case by eigenposition renaming.

(b) The proof has the structure

Π1

Γ ⊢ Aα◦y,∆

Γ ⊢ □Aα,∆
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By inductive hypothesis, we have a proof

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦z[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]

Since α ◦ y ̸∈ Init[Γ,∆] and we can assume that the token
y ̸∈ Init[Γ,∆, β], we have Γ[δ◦z ↱ δ◦β] = Γ, ∆[δ◦z ↱ δ◦β] =
∆. If not, by renaming we can replace α ◦ y with α ◦ y0
with y0 fresh. Therefore we have that α ◦ y ̸∈ Init[Γ[δ ◦ z ↱
δ◦β],∆[δ◦z ↱ δ◦β]] (α◦y can not appear in the substitution).
We can conclude by applying the ⊢ □ rule:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦y[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]
⊢ □

Γ[δ ◦ z ↱ δ ◦ β] ⊢ □Aα[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]

There are no additional constraints to satisfy, so this case
is clearly sound for EK

2. The last rule is ♢ ⊢: symmetric to the previous case.

3. The last rule is ⊢ ♢, so we have a proof

Π1

Γ ⊢ Aα◦c,∆

Γ ⊢ ♢Aα,∆

where c is a token and there exists at least a formula Bα◦c◦µ

in either Γ or ∆. Notice that, since we are in EK the ⊢ ♢ rule
always modifies the position of the main formula Aα◦c (i.e. in
the conclusion we have the formula Aα).

By i.h., we apply the prefix replacement on the subproof Π1:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦c[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]
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We have some cases:

(a) δ ◦ z ̸∈ Init[α ◦ c], so α ◦ c[δ ◦ z ↱ δ ◦ β] = α ◦ c.
We apply the substitution:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦c[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]
Γ[δ ◦ z ↱ δ ◦ β] ⊢ ♢Aα,∆[δ ◦ z ↱ δ ◦ β]

By Proposition 2.9, derivation is sound for K.

(b) δ ◦ z ∈ Init[α ◦ c] and δ ◦ z ∈ Init[α], so α ◦ c[δ ◦ z ↱ δ ◦ β] =
α[δ ◦ z ↱ δ ◦ β] ◦ c.
Then

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα[δ◦z↱δ◦β]◦c,∆[δ ◦ z ↱ δ ◦ β]
Γ[δ ◦ z ↱ δ ◦ β] ⊢ ♢Aα[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]

The proof is sound for K thanks to Proposition 2.9.

(c) δ ◦ z ∈ Init[α ◦ c] and δ ◦ z ̸∈ Init[α]. We have α ◦ c = δ ◦ z
and α = δ and β = ⟨c⟩.
We apply the inductive hypothesis, and we obtain the fol-
lowing proof:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦c[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]
Γ[δ ◦ z ↱ δ ◦ β] ⊢ ♢Aα[δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]

since ♢Aδ = ♢Aα[δ◦z↱δ◦β] = ♢Aα

The last step of the derivation is sound for K, by means of
Proposition 2.9.

4. The last rule is □ ⊢: symmetric to the previous case.

5. The last rule is a cut. Let Aα be the cut-formula. In EK we have
the constraint α ∈ Init[Γ1,∆1 −Aα] or α ∈ Init[Γ2 −Aα,∆2].
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By i.h., we obtain the proofs

Π1[δ ◦ z ↱ δ ◦ β]

Γ1[δ ◦ z ↱ δ ◦ β] ⊢ Aα[δ◦z↱δ◦β],∆1[δ ◦ z ↱ δ ◦ β]

and

Π2[δ ◦ z ↱ δ ◦ β]

Γ2[δ ◦ z ↱ δ ◦ β], Aα[δ◦z↱δ◦β] ⊢ ∆2[δ ◦ z ↱ δ ◦ β]

And therefore we can conclude with a cut

Π1[δ ◦ z ↱ δ ◦ β]

S1

Π2[δ ◦ z ↱ δ ◦ β]

S2
================================= Cut

Γ ⊢ ∆

where:
S1 = Γ1[δ ◦ z ↱ δ ◦ β] ⊢ Aα[δ◦z↱δ◦β],∆1[δ ◦ z ↱ δ ◦ β] and S2 =
Γ2[δ ◦ z ↱ δ ◦ β], Aα[δ◦z↱δ◦β] ⊢ ∆2[δ ◦ z ↱ δ ◦ β].
Notice that the proof above is sound: the constraint on the
cut rule ensures that there is at least a formula Bα◦γ which is a
sentinel for Aα. This still holds after the replacement [δ◦z ↱ δ◦β]
by means of Proposition 2.9.

System EK4: in this case β is an arbitrary non void position.

1. The last rule is ⊢ □: as for EK, case 1.

2. The last rule is ♢ ⊢: as for EK, case 2.

3. The last rule is ⊢ ♢, so we have a proof

Π1

Γ ⊢ Aα◦τ ,∆

Γ ⊢ ♢Aα,∆

where τ is a non-empty sequence and there exists at least a
formula Bα◦τ◦µ in either Γ or ∆. Since we are in EK4, as in the
previous case the ⊢ ♢ rule always modifies the position of the
main formula Aα◦τ (i.e. in the conclusion we have the formula
Aα).
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By i.h., we apply the prefix replacement on the subproof Π1:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aα◦τ [δ◦z↱δ◦β],∆[δ ◦ z ↱ δ ◦ β]

We have some cases:

(a) δ ◦ z ̸∈ Init[α ◦ τ ], so α ◦ τ [δ ◦ z ↱ δ ◦ β] = α ◦ τ . As for
system EK case 3a.

(b) δ ◦ z ∈ Init[α ◦ τ ] and δ ◦ z ∈ Init[α], so α ◦ τ [δ ◦ z ↱ δ ◦ β] =
α[δ ◦ z ↱ δ ◦ β] ◦ τ . As for system EK case 3b.

(c) δ ◦ z ∈ Init[α ◦ τ ] and δ ◦ z ̸∈ Init[α].
The position α ◦ τ has the shape α ◦ τ = α ◦ τ1 ◦ z ◦ τ2 (so
α ◦ τ1 = δ) and α ◦ τ [δ ◦ z ↱ δ ◦ β] = α ◦ τ1 ◦ β ◦ τ2.
We apply the inductive hypothesis, and we obtain the fol-
lowing proof:

Π1[δ ◦ z ↱ δ ◦ β]

Γ[δ ◦ z ↱ δ ◦ β] ⊢ Aατ1◦β◦τ2 ,∆[δ ◦ z ↱ δ ◦ β]
Γ[δ ◦ z ↱ δ ◦ β] ⊢ ♢Aα,∆[δ ◦ z ↱ δ ◦ β]

We know that there exists at least a formulaBα◦τ◦µ in either
Γ or ∆ and thanks to Proposition 2.9 the formula Aατ1◦β◦τ2

is still guarded in Γ[δ ◦ z ↱ δ ◦ β] or ∆[δ ◦ z ↱ δ ◦ β] by some
Bα◦τ◦µ[δ ◦ z ↱ δ ◦ β]. Then the proof is sound.

4. The last rule is □ ⊢: as for system EK, case 4.

5. The last rule is a cut formula: as for system EK, case 5

3. The cut elimination theorem

We prove the cut-elimination theorem for the e–sequent systems, by adapt-
ing the standard techniques for the classical predicate calculus [11]. In
particular the reader could appreciate the strong similarity, in the proofs
of the mix lemmas, between positions in e–systems and first-order terms in
classical logic.

Thanks to the modularity of our proposal, we can prove the mix lemmas
only twice, once for serial systems and once for non-serial ones.
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We start with the usual notions of subformula and degree. Observe
that, as the set of first-order (Gentzen) subformulas of ∀xA(x) contain all
the term-instances of A(x), here the set of (position, modal) subformulas
of □Aα contain all the extensions of the position α in Aα.

Definition 3.1 (subformula). The set Sub(Aα) of subformulas of a for-
mula Aα is recursively defined as follows:

Sub(pα) = {pα} if p is a proposition symbol;

Sub(¬Aα) = {¬Aα} ∪ Sub(Aα);

Sub(A#Bα) = {A#Bα}∪Sub(Aα)∪Sub(Bα), when # ∈ {→,∨,∧};

Sub(#Aα) = {#Aα} ∪ {Sub(Aα◦β) : β ∈ P}, when # ∈ {□,♢}.

Definition 3.2 (degree). The degree of modal formulas, p-formulas, and
e–sequent proofs are defined as follows.

1. The degree of a modal formula A, dg(A), is recursively defined as:

(a) dg(p) = 0 if p is a proposition symbol;

(b) dg(¬A) = dg(□A) = dg(♢A) = dg(A) + 1;

(c) dg(A∧B) = dg(A∨B) = dg(A → B) = max{dg(A), dg(B)}+1.

2. The degree of a p-formula Aα, dg(Aα), is just dg(A).

3. The degree of a proof Π, δ[Π], is the natural number defined as fol-
lows:

δ[Π] =

{
0 if Π is cut-free;

sup{dg(Aα) + 1 : Aα is a cut formula in Π} otherwise.

Let Γ be a sequence of formulas. We denote by Γ−Aα the sequence
obtained by removing all occurrences of Aα in Γ.When writing Γ,Γ′−Aα we
actually mean Γ, (Γ′−Aα). In the sequel, ordered pairs of natural numbers
are intended to be lexicographically ordered. Hence one can make proofs
by induction on pairs of numbers. The height h(Π) of a proof Π is defined
in the usual way.

We will prove two different ”mix lemmas”, to take into account that
the cut-rule for the systems EK and EK4 have special constraints, which are
mirrored into the hypothesis of the lemma.
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Lemma 3.3 (Mix Lemma for ED, ET, ES4). Let S be one of the systems ED,
ET, ES4. Let n ∈ N and let Aα be a formula of degree n. Let now Π, Π′

be proofs of the e–sequents Γ ⊢ ∆ and Γ′ ⊢ ∆′, respectively, satisfying the
property δ[Π], δ[Π′] ≤ n. Then one can obtain in an effective way from Π
and Π′ a proof Mix(Π,Π′) of the e–sequent Γ,Γ′−Aα ⊢ ∆−Aα,∆′ satisfying
the property δ[Mix(Π,Π′)] ≤ n.

Proof: The proof proceeds in a standard way, by induction on the pair
⟨h(Π), h(Π′)⟩. We highlight only the main points. Let Π and Π′ be{

Πi

Γi ⊢ ∆i

}
i∈I r

Γ ⊢ ∆

and

{
Π′

j

Γ′
j ⊢ ∆′

j

}
j∈I′

r′
Γ′ ⊢ ∆′

respectively, where I and I ′ are ∅ (in case of an axiom), {1} or {1, 2}. We
proceed by cases.

1. r is Ax.

If Γ ⊢ ∆ is Aα ⊢ Aα, then one gets Mix(Π,Π′) from Π′ by means of
a suitable sequence of structural rules.

If Γ ⊢ ∆ is Bβ ⊢ Bβ , for B ̸= A or β ̸= α, then one gets Mix(Π,Π′)
from Π by a suitable sequence of structural rules.

2. r′ is Ax. This case is symmetric to case 1.

3. r is a structural rule. Apply the induction hypothesis to the pair
⟨Π1,Π

′⟩, then apply a suitable sequence of structural rules to get the
conclusion.

4. r′ is a structural rule. This case is symmetric to 3.

5. r is a cut or a logical rule not introducing Aα to the right.
Apply the induction hypothesis to each pair ⟨Πi,Π

′⟩, so obtaining the
proof Mix(Πi,Π

′), for i ∈ I. The proof Mix(Π,Π′) is then{
Mix(Πi,Π

′)

Γi,Γ
′−Aα ⊢ ∆i−Aα,∆′

}
i∈I

============================ r
Γ,Γ′−Aα ⊢ ∆−Aα,∆′
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6. r′ is a cut or a logical rule not introducing Aα to the left.
This case is symmetric to 5.

7. r is a logical rule introducing Aα to the right and r′ is a logical rule
introducing Aα to the left.

(a) r is a propositional rule. This subcase is treated as in the first
order case (see, for instance, [11] or [25]).

(b) A is □B. Let Π and Π′ be

Π1

Γ ⊢ Bα◦x,∆1

Γ ⊢ Aα,∆1

and

Π′
1

Γ′
1, B

α◦β ⊢ ∆′

Γ′
1, A

α ⊢ ∆′

respectively. Apply the induction hypothesis to the pairs of
proofs ⟨Π1[α◦x ↱ α◦β],Π′⟩ and ⟨Π,Π′

1⟩, obtainingMix(Π1[α◦x ↱
α ◦ β],Π′) and Mix(Π,Π′

1), respectively (both of degree less or
equal n). The proof Mix(Π,Π′) is then

Mix(Π1[α ◦ x ↱ α ◦ β],Π′)

Γ,Γ′
1−Aα ⊢ Bα◦β ,∆1−Aα,∆′

Mix(Π,Π′
1)

Γ,Γ′
1−Aα, Bα◦β ⊢ ∆1−Aα,∆′

Cut
Γ,Γ′

1−Aα,Γ,Γ′
1−Aα ⊢ ∆1−Aα,∆′,∆1−Aα,∆′

======================================
Γ,Γ′

1−Aα ⊢ ∆1−Aα,∆′

(c) A is ♢B. This subcase is symmetric to the case □B.

In all cases involving new cuts, since the additional cuts are performed
on strict subformulas of Aα with degree less than n, we immediately get
δ[Mix(Π,Π′)] ≤ n.

The above proof does not go through for the systems EK and EK4, be-
cause of the constraint on the context for the rules □ ⊢ and ⊢ ♢. Indeed,
the case (5) of the proof would fail, as shown by the following two proof
fragments. Let α = β ◦ x be the position of the statement of the lemma,

Π1

⊢ Bβ◦x, Aβ◦x

⊢ ♢Bβ , Aβ◦x

and
Π′

Aβ◦x ⊢ Cβ
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If we apply the induction hypothesis to the pair ⟨Π1,Π
′⟩ we obtain

Mix(Π,Π
′)

⊢ Bβ◦x, Cβ

and now it is impossible to conclude with the ⊢ ♢ rule, because via the
induction hypothesis we deleted the only formula essential to validate the
⊢ ♢ rule. To fix the problem, we need a stronger statement of the lemma,
which mirrors the constraint of the cut rule of EK and EK4.

Lemma 3.4 (Mix Lemma for EK, EK4). Let S be one of the systems EK

or EK4. Let n ∈ N and let Aα be a formula of degree n. Let now Π,Π′

be proofs of the e–sequents Γ ⊢ ∆ and Γ′ ⊢ ∆′, respectively, satisfying the
properties:

• δ[Π], δ[Π′] ≤ n;

• α ∈ Init[Γ,∆−Aα], or α ∈ Init[Γ′−Aα,∆′]

Then one can obtain in an effective way from Π and Π′ a proof Mix(Π,Π′)
of the e–sequent Γ,Γ′ − Aα ⊢ ∆ − Aα,∆′ satisfying the property
δ[Mix(Π,Π′)] ≤ n.

Proof: The proof proceeds as for the previous lemma, with special care
for cases (5) and (7).

1.–4. As in Lemma 3.3

5. r is a cut or a logical rule not introducing Aα to the right.
Apply the induction hypothesis to each pair ⟨Πi,Π

′⟩, so obtaining the
proof Mix(Πi,Π

′), for i ∈ I. The proof Mix(Π,Π′) is then{
Mix(Πi,Π

′)

Γi,Γ
′−Aα ⊢ ∆i−Aα,∆′

}
i∈I

============================ r
Γ,Γ′−Aα ⊢ ∆−Aα,∆′

Notice that in the case of r is a cut rule one has the further constrains
from Figure 3: α ∈ Init[Γ1,∆1 −Aα] or α ∈ Init[Γ2 −Aα,∆2].

6. r′ is a cut or a logical rule not introducing Aα to the left.
This case is symmetric to 3.
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7. r is a logical rule introducing Aα to the right and r′ is a logical rule
introducing Aα to the left.

(a) r is a propositional rule.
This subcase is treated as in the classical logic case (see, for
instance, [11] or [25]). Here we show only the case when A is of
the form B → C.

Let Π and Π′ be respectively

Π1

Γ, Bα ⊢ Cα,∆

Γ ⊢ B → Cα,∆

and

Π′
1

Γ′
1, C

α ⊢ ∆′
1

Π′
2

Γ′
2 ⊢ Bα,∆′

2

Γ′
1,Γ

′
2, B → Cα ⊢ ∆′

1,∆
′
2

Apply the induction hypothesis to the pairs of proofs ⟨Π,Π′
2⟩,

⟨Π1,Π
′⟩ and ⟨Π,Π′

1⟩, obtaining the following proofs:

• Mix(Π,Π′
2) of the sequent Γ,Γ

′
2−Aα ⊢ Bα,∆−Aα,∆′

2 with
constraints α ∈ Init[Γ,∆−Aα] or α ∈ Init[Γ′

2−Aα,∆′
2, B

α]
( Bα acts as a sentinel formula for Aα).

• Mix(Π1,Π
′) of the sequent Γ,Γ′

1−Aα,Γ′
2−AαBα ⊢ Cα,∆−

Aα,∆′
1,∆

′
2 with constraints α ∈ Init[Γ, Bα,∆−Aα, Cα] or

α ∈ Init[Γ′
1−Aα,Γ′

2−Aα,∆′
1,∆

′
2] (both Bα and Cα act as

sentinel formulas for Aα).

• Mix(Π,Π′
1) of the sequent Γ,Γ′

1−Aα, Cα ⊢ ∆−Aα,∆′
1 with

constraints α ∈ Init[Γ,∆−Aα] or α ∈ Init[Γ′
1−Aα, Cα,∆′

1]
(Cα acts as a sentinel formula for Aα).

The proof Mix(Π,Π′) is then obtained as follows. Cut first
Mix(Π,Π′

2) against Mix(Π1,Π
′) to obtain the following proof Υ:

Mix(Π,Π′
2)

Γ,Γ
′
2−A

α ⊢ B
α
,∆−A

α
,∆

′
2

Mix(Π1,Π
′)

Γ,Γ
′
1−A

α
,Γ

′
2−A

α
, B

α ⊢ C
α
,∆−A

α
,∆

′
1,∆

′
2========================================================================= Cut

Γ,Γ
′
1−A

α
,Γ

′
2−A

α ⊢ C
α
,∆−A

α
,∆

′
1,∆

′
2
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Cut now Υ against Mix(Π,Π′
1), obtaining the final proof

Υ

Γ,Γ
′
1−A

α
,Γ

′
2−A

α ⊢ C
α
,∆−A

α
,∆

′
1,∆

′
2

Mix(Π,Π′
1) + right wekenings of ∆′

2

Γ,Γ
′
1−A

α
, C

α ⊢ ∆−A
α
,∆

′
1,∆

′
2========================================================================== Cut

Γ,Γ
′
1−A

α
,Γ

′
2−A

α ⊢ ∆−A
α
,∆

′
1,∆

′
2

The cut in Υ is soundly applied, since at least Cα acts as a
sentinel for the rule, so the constraints are verified. As for the
last cut, let as check that in all possible subcases there exists a
sentinel formula for the cut formula Cα. In building Mix(Π,Π′)
we know there is a sentinel formula for Aα, of shape Dα◦µ, some-
where in the contexts: either Dα◦µ is in Γ, or is in ∆−Aα, or is
in Γ′

1−Aα, or is in Γ′
2−Aα, or is in ∆′

1, or finally is in ∆′
2.

In these cases:

i. if Dα◦µ is in Γ, or is in Γ′
1−Aα, or is in Γ′

2−Aα, then Dα◦µ

is a sentinel for Cα, because it appears on the left of ⊢ in
the first premise of the cut;

ii. if Dα◦µ is in ∆−Aα, or is in ∆′
1, then Dα◦µ is a sentinel

for Cα, because it appears on the right of ⊢ in the second
premise of the cut;

iii. if Dα◦µ is in ∆′
2, note that we have added ∆′

2 (with suitable
right weakenings) to the conclusion of Mix(Π,Π′

1), so that
Dα◦µ could be a sentinel for the cut formula (observe that
the conclusion of the whole proof does not change, since ∆′

2

is already present there.)

(b) A is □B.

Let Π, r, Π′ and r′ be respectively

Π1

Γ ⊢ Bα◦x,∆
⊢ □

Γ ⊢ Aα,∆

and

Π′
1

Γ′, Bα◦β ⊢ ∆′
□ ⊢

Γ′, Aα ⊢ ∆′
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Recall that for r we have the constraint for the ⊢ □ rule α ◦ x ̸∈
Init[Γ,∆] and, since we are in K or in K4, we have also the
constraints on r′ = □ ⊢, namely there must be a sentinel for
Bα◦β .

Let us suppose to be in EK.
In this case β is a singleton, i.e. β = ⟨z⟩ and one also requires
that there exists at least a formula Dα◦z◦µ in Γ′ or in ∆′. Apply
the induction hypothesis to the pairs of proofs ⟨Π1[α ◦ x ↱ α ◦
z],Π′⟩ and ⟨Π,Π′

1⟩, obtaining a proof Mix(Π1[α ◦ x ↱ α ◦ z],Π′)
of Γ[α ◦ x ↱ α ◦ z],Γ′ −Aα ⊢ Bα◦z,∆[α ◦ x ↱ α ◦ z]−Aα,∆′ and
a proof Mix(Π,Π′

1) of Γ,Γ
′ −Aα, Bα◦z ⊢,∆−Aα,∆′.

Thanks to the constraints on the ⊢ □ rule and Proposition 2.11
(eigenposition renaming), it holds that Γ[α ◦ x ↱ α ◦ z] = Γ and
∆[α ◦ x ↱ α ◦ z] = ∆, so we can drop the substitution from the
contexts Γ and ∆.

Notice that we soundly applied the induction hypothesis. To
check this, it enough to verify the constraint α ∈ Init[Γ,∆−Aα]
or α ∈ Init[Γ′ − Aα,∆′] is satisfied both by Mix(Π1[α ◦ x ↱
α ◦ z],Π′) and Mix(Π,Π′

1).

For the proof Mix(Π1[α◦x ↱ α◦z],Π′) of the sequent Γ,Γ′−Aα ⊢
Bα◦z,∆−Aα,∆′ we know there is at least a formula Dα◦z◦µ in
Γ′ or in ∆′, and so the constraint is verified. This holds also
for for the proof Mix(Π,Π′

1) of the sequent Γ,Γ′ − Aα, Bα◦z ⊢
∆−Aα,∆′, thanks to the presence of Bα◦z.

The proof Mix(Π,Π′) is then

Mix(Π1[α ◦ x ↱ α ◦ z],Π′)

Γ,Γ′−Aα ⊢ Bα◦z ,∆−Aα,∆′

Mix(Π,Π′
1)

Γ,Γ′−Aα, Bα◦z ⊢ ∆−Aα,∆′
Cut

Γ,Γ′−Aα,Γ,Γ′−Aα ⊢ ∆−Aα,∆′,∆−Aα,∆′

====================================
Γ,Γ′−Aα ⊢ ∆−Aα,∆′
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Notice that the application of the cut rule is sound, i.e. the
following constraints is satisfied: α ◦ z ∈ Init[Γ,Γ′ − Aα, (∆ −
Aα,∆′)−Bα◦z] or α ◦ z ∈ Init[(Γ,Γ′−Aα)−Bα◦z,∆−Aα,∆′].
We have two cases: if there exists in ∆′ a formula Cα◦z◦µ (con-
straint of Kto the □ ⊢ Γ′) we are done; if there is a formula
Cα◦z that belongs to Γ′, it also belongs to Γ′ − Aα and we can
conclude.

If we are in EK4, then β = δ with δ ̸= ⟨⟩ and we proceed exactly
as for EK.

(c) A is ♢B. This subcase is symmetric to the previous one.

In all cases involving new cuts, since the additional cuts are performed
on strict subformulas of Aα, with degree less than n we immediately get
δ[Mix(Π,Π′)] ≤ n.

Theorem 3.5 (Cut elimination for ED, ET, ED4 ES4). Let M be one of the
modal systems ED, ET, ED4 and ES4. If Π is a EM–proof of Γ ⊢ ∆, then
there exists a cut-free EM–proof Π

∗ of Γ ⊢ ∆.

Proof: By induction on the pair ⟨δ[Π], h(Π)⟩. Suppose Π is not cut-free
and let r be the last rule applied in Π. We distinguish two cases:

1. r is not a cut. Let Π be{
Πi

Γi ⊢ ∆i

}
i∈I r,

Γ ⊢ ∆

where I is one of {1}, {1, 2} Apply the induction hypothesis to each
Πi, obtaining cut-free proofs Π∗

i , for i ∈ I. A cut-free proof Π∗ of
Γ ⊢ ∆ is then {

Π∗
i

Γi ⊢ ∆i

}
i∈I r

Γ ⊢ ∆
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2. r is a cut. Let Π be

Π1

Γ1 ⊢ Aα,∆1

Π2

Γ2, A
α ⊢ ∆2

Cut
Γ ⊢ ∆

We apply the induction hypothesis to Π1 and Π2 in order to obtain
cut-free proofs Π∗

1 and Π∗
2 of Γ1 ⊢ Aα,∆1 and Γ2, A

α ⊢ ∆2 respec-
tively.

Applying Lemma 3.3 to the pair ⟨Π∗
1,Π

∗
2⟩, one gets a proof Π0 of

sequent Γ1,Γ2−Aα ⊢ ∆1−Aα,∆2 such that δ[Π0] ≤ dg(Aα) < δ[Π].

Finally one gets a cut-free proof of Γ1,Γ2−Aα ⊢ ∆1−Aα,∆2 from
Π0 by induction hypothesis and, from it, a cut-free proof of Γ ⊢ ∆
by application of a suitable sequence of structural rules.

Theorem 3.6 (Cut elimination for EK, EK4). Let M be one of the modal
systems EK and EK4. If Π is a EM–proof of Γ ⊢ ∆, then there exists a
cut-free EM–proof Π

∗ of Γ ⊢ ∆.

Proof: By induction on the pair ⟨δ[Π], h(Π)⟩. Suppose Π is not cut-free
and let r be the last rule applied in Π. We distinguish two cases:

1. r is not a cut. Let Π be{
Πi

Γi ⊢ ∆i

}
i∈I r,

Γ ⊢ ∆

where I is one of {1}, {1, 2} Apply the induction hypothesis to each
Πi, obtaining cut-free proofs Π∗

i , for i ∈ I. A cut-free proof Π∗ of
Γ ⊢ ∆ is then {

Π∗
i

Γi ⊢ ∆i

}
i∈I r

Γ ⊢ ∆
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2. r is a cut. Let Π be

Π1

Γ1 ⊢ Aα,∆1

Π2

Γ2, A
α ⊢ ∆2

Cut
Γ1,Γ2 ⊢ ∆1,∆2

where we know that α ∈ Init[Γ1,∆1 −Aα] or α ∈ Init[Γ2 −Aα,∆2].

Apply the induction hypothesis to Π1 and Π2 to obtain cut-free proofs
Π∗

1 and Π∗
2 of Γ1 ⊢ Aα,∆1 and Γ2, A

α ⊢ ∆2 respectively. Notice that
δ[Π∗

1], δ[Π
∗
2] ≤ δ[Aα] = n.

Applying Lemma 3.4 to the pair ⟨Π∗
1,Π

∗
2⟩, one gets a proof Π0 of

sequent Γ1,Γ2−Aα ⊢ ∆1−Aα,∆2 such that δ[Π0] ≤ δ[Aα] < δ[Π]
and α ∈ Init[Γ1,∆1−Aα], or α ∈ Init[Γ2−Aα,∆2]. Notice that this
is the same as we had for the last rule of Π.

Finally one gets a cut-free proof of Γ1,Γ2−Aα ⊢ ∆1−Aα,∆2 from
Π0 by induction hypothesis and, from it, a cut-free proof of Γ1,Γ2 ⊢
∆1,∆2 via a suitable sequence of structural rules.

Let M be one of the systems K,D,T,K4,D4,S4. Subformula Property
and Consistency follows as immediate corollaries of cut-elimination.

Corollary 3.7 (Subformula Property). Each formula occurring in a cut-
free EM-proof Π is a subformula of some formula occurring in the conclusion
of Π.

Corollary 3.8 (Consistency). EM is consistent, namely there is no EM-
proof of the empty sequent ⊢ .

4. E–sequent calculi are equivalent to standard
calculi

The systems introduced in the previous sections prove the same theorems
of the Hilbert-style presentation of the corresponding logics. Let M be one
of the logics K, K4, D, D4 and S4. We start with a proof that, if M proves
A, then EM proves ⊢ A⟨⟩. We show the derivations for the modal axioms.
Observe that the proof of each axiom satisfies the constraints on □ ⊢ and
⊢ ♢ of the corresponding e–system.
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Axiom K

B⟨x⟩ ⊢ B⟨x⟩ A⟨x⟩ ⊢ A⟨x⟩

→⊢
A⟨x⟩, A → B⟨x⟩ ⊢ B⟨x⟩

□ ⊢
A⟨x⟩,□(A → B)

⟨ ⟩ ⊢ B⟨x⟩

===================== □ ⊢
□A⟨ ⟩,□(A → B)

⟨ ⟩ ⊢ B⟨x⟩

⊢ □
□A⟨ ⟩,□(A → B)

⟨ ⟩ ⊢ □B⟨ ⟩

======================= ⊢→
□(A → B)

⟨ ⟩ ⊢ □A → □B⟨ ⟩

⊢→
⊢ □(A → B) → (□A → □B)

⟨ ⟩

Axiom D

A⟨x⟩ ⊢ A⟨x⟩

□ ⊢
□A⟨ ⟩ ⊢ A⟨x⟩

⊢ ⋄
□A⟨ ⟩ ⊢ ♢A⟨ ⟩

⊢→
⊢ □A → ♢A⟨ ⟩

Axiom T

A⟨ ⟩ ⊢ A⟨ ⟩

□ ⊢
□A⟨ ⟩ ⊢ A⟨ ⟩

⊢→
□A → A⟨ ⟩

Axiom 4

A⟨y,x⟩ ⊢ A⟨y,x⟩

□ ⊢
□A⟨ ⟩ ⊢ A⟨y,x⟩

⊢ □
□A⟨ ⟩ ⊢ □A⟨y⟩

⊢ □
□A⟨ ⟩ ⊢ □□A⟨ ⟩

⊢→
⊢ □A → □□A⟨ ⟩



486 Simone Martini, Andrea Masini, Margherita Zorzi

Closure under MP is trivially obtained by means of the cut rule. We
provide a similar construction in [18] where we study a natural deduction
formulations of e–systems.

Finally, closure under NEC is obtained by showing that all positions
in a provable sequent may be “lifted” by any prefix. Observe first that, for
Γ = Aγ1

1 , . . . , Aγn
n , we have Γ[⟨⟩ ↱ β] = Aβ◦γ1

1 , . . . , Aβ◦γn
n .

Proposition 4.1 (lift). Let M be one of the modal systems K, D, T, K4,
D4, S4, and let β be a position. If Γ ⊢ ∆ is provable in EM, so is the
e–sequent Γ[⟨⟩ ↱ β] ⊢ ∆[⟨⟩ ↱ β].

Proof: Like Lemma 2.12: Standard induction on derivations (with a suit-
able renaming of eigenpositions). It is easily verified that the constraints
on the modal rules remain satisfied.

Corollary 4.2 (closure under NEC). Let M be one of the modal systems

K, D, T, K4, D4, S4. If ⊢ A⟨ ⟩ is provable in EM so is the e–sequent ⊢ □A⟨ ⟩.

We can finally state the first direction of the equivalence result.

Theorem 4.3. Let M be one of the modal systems K, D, T, K4, D4, S4.
If ⊢M A, the e–sequent ⊢ A⟨ ⟩ is provable in EM.

As for the other direction, Fitting introduced tableaux systems for a
large class of modal logics (see also Section 5) and proved their equivalence
to the corresponding Hilbert style systems [8, pages 398–400]. Labels in
Fitting’s tableaux play the same role as our positions, and the semantics
he proposes works for our systems. In particular, his proof of soundness
also readily gives the proof we need. We simply state the result:

Theorem 4.4. Let M be one of the modal systems K, D, T, K4, D4, S4.
If the e–sequent ⊢ A⟨ ⟩ is provable in EM, then ⊢M A.

Alternatively, a direct proof can be found in [18], although formulated
in an equivalent natural deduction presentation of our e–sequents.

5. Related work

We discuss in this section some alternative proposals of modal systems,
related to our extended sequents.
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We start from the 2–sequents/linear nested sequents tradition. We then
analyse the work of Fitting [9, 7, 8], Mints [22] and Cerrato [4, 5]. We also
make a quick comparison with the so-called Labeled Deductive Systems,
which represent an important field of studies. A more in-depth comparison,
in the setting of natural deduction systems, may be found in [18].

5.1. Starting point: 2–sequents and linear nested sequents

The systems we studied in this paper are, in their current formulation,
strongly similar to the ones proposed by Fitting [9, 7, 8] and by Mints [22].
However, our research started from other grounds, that of 2–Sequents [19,
27], especially as presented in [17]. In that paper the first and second
authors propose a natural deduction system for the negative fragment
(→, ∧, □) of modal logic, towards a proof theory for the normal modal
logics D,T,D4 and S4. If we rephrase in a sequent calculus setting the
natural deduction rules of that paper, we obtain the following (intuition-
istic) rules for □, where each formula is decorated with a natural number,
representing its level :

Γ, An+k ⊢ B
□ ⊢

Γ,□An ⊢ B

Γ ⊢ An+1

⊢ □
Γ ⊢ □An

In the rule ⊢ □ one requires that, for each formula Ck in Γ, k ≤ n. Different
modal systems are obtained by suitable restrictions of the □ ⊢ rule. For
example, if k = 1 we have D; if k < 0 we have D4, and so on.

The idea works fine for the negative ⊥-free fragments of the modal
logics D, T, D4 and S4, and for the corresponding MELL (Multiplicative
Exponential Linear Logic) subsystems [12].

Unfortunately, at that time we could not extend this formulation of
2–Sequents to the full classical modal logics considered in this paper, since
the notion of level of a formula is too simple and does not interact well
with a standard cut elimination procedure.

Few years ago Lellmann et al. reinterpret 2–Sequents as Linear Nested
Sequents (LNS) [15], a restricted form of Nested Sequents (in their turn
a generalization of relational Hypersequents, see Section 5.5 for some ref-
erences) where the tree-structure is restricted to a no-branching (linear)
structure. Lellmann’s reformulation allows to extends 2–Sequents to a large
class of logics, also avoiding the complexity of nested sequent calculi. In [15]
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Lellmann et al. state a cut elimination theorem through an indirect argu-
ment. They prove cut elimination for the standard formulation (no levels,
no nested sequents) of the considered modal logics and then obtain a cut
elimination statement for LNS by means of a translation into the standard
cut free formalisms.

The extended sequents of the present paper result from the realization
that to obtain a direct syntactical proof of cut elimination, we must enrich
the notion of level in 2–Sequents/LNS, moving to a set of uninterpreted
names. Instead of indexed formula An, at level n we should have (position)
formulas of the shape Aα, with positions α of length n (namely A⟨x1,...,xn⟩).
The constraints on levels of [17]—the key point of the system design—can
be naturally translated (and extended) in constraints on positions.

Non-surprisingly we obtain a system with interesting similarities with
those of Fitting [9, 7, 8], Mints [22] and Cerrato [4, 5]. We focus now on
these authors, starting with Fitting’s research. Even if Cerrato’s system
is antecedent to Mints’ one, to simplify the presentation we introduce first
Mints’ tableaux and then we discuss Cerrato’s by analogy.

5.2. Fitting’s indexed tableaux

From now on, we use the standard notion of tableau for classical logic as
given in Bell and Machover’s textbook [2].

In Fitting’s prefixed tableaux, formulas are labeled with a prefix α. In-
tuitively, one could think of α.A as saying A is true at the world named by
α; and that a prefix α.β is a naming for a world that is accessible from the
world that is named by α. Despite the semantical meaning and intent of
prefixes, we can identify the notion of prefix with that of position—a
prefixed formula α.A can be viewed1 as a position formulas Aα. Fitting 
introduces two kinds of rules, that he calls π and ν rules that model the be-
haviour of modal operators and of their negations. Here we use directly the
symbols □ and ♢ and we take into account only the rules for □ in the basic
normal system K (obviously the rules for ♢ are symmetric). To facilitate
the reading, we adopt our notation:

1In Fitting’s [8] tokens are natural numbers, but this is simply syntactic sugar.
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□–rule:
Π =


...
□Aα

...
|

Aα◦β

¬□–rule:
Π =


...

¬□Aα

...
|

¬Aα◦x

where Π is the branch that is extended by means of the rule and the
following constraints hold: (i) in the □–rule the prefix α ◦ β is not new in
the branch of the tableaux; (ii) in the ¬□–rule the prefix α ◦ x has to be
fresh.

The constraints above match the constraints we introduced in e–sequents
for K. In particular, for □ ⊢ we require that β is a singleton, and that the
main formula has at least a sentinel in the context (notice the analogy with
Fitting’s □–rule); for ⊢ □ we force the usual constraint on the quantifica-
tion, by requiring that α ◦ x does not appear as a prefix in any formula of
the contexts. Also in this latter case we can observe the analogy with the
¬□–rule.

As shown in [9], indexed tableau can be easily “overturned” to obtain
prefixed sequent and translated to obtain nested sequents, and conversely.
Fitting’s tableaux (as well as their reformulation and translations) enjoy a
form of modularity. Prefixed tableaux can be easily reconfigured to move
from K to D: if one no longer requires that on the rule ⊢ □ above the prefix
α ◦ β is not new in the branch, it is possible to derive the D axiom. This
happens very similarly in our framework: constraints on □ ⊢ for K (and
K4) prevents the derivation of the p-formula (□A → ♢A)

γ
. Instead, for

the other normal logics, specific rules (modeling the characteristic axioms)
must be added to those for K.

5.3. Mints’ sequents

In [22] G. Mints introduces a calculus for a family of modal logic inspired
by Kripke’s semantic tableaux. Even if the paper uses the term “tableau”,
the framework is technically a sequent calculus. To facilitate the compar-
ison, we show how to reformulate the calculus of Mints in terms of our
e–sequents. To avoid misunderstanding, from now on we call sequents the
standard (i.e. non indexed) sequents and indexed sequents (in Mints’ ter-
minology) expressions of the kind α(Γ ⊢ ∆), where α is a position and
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Γ ⊢ ∆ is a sequent (in particular a sequent may be seen as an indexed
sequent with ⟨⟩ as index.)

The objects of Mints’ calculus finite are multisets of indexed sequents
called tableaux. A tableau is therefore a multiset of the shape

Γ0 ⊢ ∆0;α1(Γ1 ⊢ ∆1); · · · ;αn(Γn ⊢ ∆n)

where each (Γi ⊢ ∆i) is a sequent. In spite of the name, a tableaux is then
an e–sequent, under the following translation (up to exchange rules):

Γ0 ⊢ ∆0;α1(Γ1 ⊢ ∆1); · · · ;αn(Γn ⊢ ∆n)⇝

Γ0,Γ
α1
1 , . . .Γαn

n ⊢ ∆0,∆
α1
1 , . . .∆αn

n

Under this interpretation, we can now compare Mints’ rules with those
of e–sequents.

The rules for K are the same as our rules, although modularity is ob-
tained differently than in e–sequents. Mints defines a relation r between
positions that at first glance seems similar to our notion of Init[·]. This is
not the case. For example, it is true that α r α ◦ z, but (α, α ◦ β) ̸∈ r if
the length of β is greater than 1. In particular Mints forces that r is not
transitive. The way r is defined and used to formulate the different logics
do not allow to use it to handle directly the transitivity.

Transitivity (axiom 4) is obtained by “adding” to the basic rule of K
the following one (expressed in our notation):

Γ,□Aα◦z ⊢ ∆

Γ,□Aα ⊢ ∆

Also the system for KT is quite different. In fact, Mints introduces two
rules for □ ⊢. The basic rule for K (with the constraint that there must be
a sentinel in the sequent) plus a new one:

Γ, Aα ⊢ ∆

Γ,□Aα ⊢ ∆

The two rules cannot be merged, since the basic rule for □ ⊢ has to satisfy
a suitable constraint.

Mints’ formulation of the rule allows to prove a cut elimination theorem,
at the price of having a proof that does not follow the standard steps of
cut elimination for classical first order logic.
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5.4. Cerrato’s modal tree sequents

In [4, 5] Cerrato proposes modal tree-sequents as a formalism for a family
of normal modal logics, from K to S5. A modal tree-sequent is indeed a
tree of sequents. In spite of a heavy graphical formalism, tree sequents
correspond (modulo a direct simple translation) to Mints’ tableaux, and,
more interestingly, with the same rules. All systems share the same right □
rule, while dedicated left □ rules allow the derivation of the characteristic
axioms of the different logics. Moreover, both Mints and Cerrato manage
transitivity in the same way. If F is the set of formulas, one can define
a function index : P(F) → X∗ that returns the position of the node in
the tree. Starting from a “labeled version” of Cerrato’s tree sequents,
one can easily define a translation into Mints-style multiset of sequents.
Therefore what we said for Mints also applies to Cerrato’s tree sequents. In
particularly, differently from Cerrato, we insist that we obtain a syntactical
proof of cut elimination via the same standard argument which is used for
first order logic, by leaning on a Mix Lemma (see [25]).

5.5. Other systems

In the previous subsections, we focused on systems strongly similar to
our proposal. In the literature, of course, there are many other proof-
theoretical approaches to modal logics. Among these, display calculi [28],
(relational) hypersequents [1, 23, 6], and labelled deductive systems (LDS)
[10, 24, 26, 23], on which we conclude our review.

At a first glance, our system (or those of Fitting-Cerrato-Mints) seems
just a syntactical variant (a “rephrasing”) of LDS. One can define a trans-
lation (objectively, quite cumbersome) of our extended sequents into the
formalism of LDS. We present a detailed comparison (formulated in a nat-
ural deduction version of the present system) in our [18]. That one system
could be translated into another one does not mean that the two are the
same, or that one of them is uninteresting (think, for example, about nat-
ural deduction and the calculus of sequents).

The basic idea of the translation is to associate a new label ai to
each position and then define suitable relational formulas: each position
⟨x1, . . . , xn⟩ is translated into a set of formulas {a0Ra1, . . . , an−1Ran}2.
These relational formulas are treated in LDS with explicit logical rules,

2The simpler {x1Rx2, . . . , xn−1Rxn} would not work.
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whereas in our e–systems positions are treated in the same way as the
terms of the first-order logic, thus with no need for additional special ma-
chinery.

For example, seriality and transitivity are handled in LDS through the
following rules (for details, see e.g. [23]):

Γ, aRb ⊢ c : A,∆
seriality

Γ,⊢ c : A,∆

Γ, aRb, bRc ⊢ c : A,∆
trans

Γ, aRc ⊢ c : A,∆

Dispensing from ad hoc rules like these is the very purpose of e–systems,
see [18] for more details.
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