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The aim of this work is to provide new characterizations of planar quintic Pythagorean-hodograph 
curves. The first two are algebraic and consist of two and three equations, respectively, in terms of 
the edges of the Bézier control polygon as complex numbers. These equations are symmetric with 
respect to the edge indices and cover curves with generic as well as degenerate control polygons. 
The last two characterizations are geometric and rely both on just two auxiliary points outside 
the control polygon. One requires two (possibly degenerate) quadrilaterals to be similar, and the 
other highlights two families of three similar triangles. All characterizations are a step forward 
with respect to the state of the art, and they can be linked to the well-established counterparts for 
planar cubic Pythagorean-hodograph curves. The key ingredient for proving the aforementioned 
results is a novel general expression for the hodograph of the curve.

1. Introduction

A Pythagorean-hodograph (PH) curve is a parametric polynomial curve for which the norm of the hodograph, that is, its first 
derivative with respect to the parameter, is also a polynomial (Farouki and Sakkalis, 1990). For a planar polynomial curve this 
means that the two derivative components and the parametric speed form a Pythagorean triple (Kubota, 1972). As a consequence, 
the arc length of a PH curve can be computed by simply evaluating a polynomial and fixed-distance offset curves are rational, so 
that they can be represented exactly in common CAD systems. Another class of planar polynomial curves with rational offsets are 
indirect Pythagorean-hodograph (iPH) curves. The two derivative components and the parametric speed of an iPH curve form a rational

Pythagorean triple after applying a suitable rational quadratic reparameterization to the curve (Lü, 1995; Lu et al., 2016).
Due to their established practical value in a variety of applications ranging from CNC machining to motion control and railway 

design, low degree PH and iPH curves have been the subject of investigation of several works over the last decades (Farouki, 2008). 
In particular, the derivation of algebraic and geometric characterizations related to their Bézier control polygons (Fang and Wang, 
2018; Farouki, 1994; Farouki et al., 2023; Hormann and Zheng, 2020; Šír and Kosinka, 2010; Wang and Fang, 2009) as well as the 
interpolation of first-order Hermite data (end points and derivatives) have been of primary interest (Choi et al., 2008; Farouki and 
Neff, 1995; Farouki et al., 2020; Moon et al., 2001).
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Our work focuses on quintic PH curves since they are considered the lowest-degree PH curves suitable for free-form design. 
More precisely, after setting the notation and recalling some preliminaries about planar PH curves (Section 2), we introduce two 
new algebraic characterizations (Section 3) and two new geometric characterizations (Section 4) of planar quintic PH curves. The 
proposed algebraic characterizations are more compact than the one established by Farouki (1994) since they cover the generic as 
well as the degenerate case with one common system of symmetric equations. Compared to the geometric characterization by Fang 
and Wang (2018), ours are entirely geometric and simpler since both involve only two instead of four auxiliary points. Moreover, 
one of the geometric characterizations leads to a simple construction of a quintic PH curve from two cubic PH companion curves.

2. Preliminaries and notation

In the plane, a generic polynomial curve 𝒓 of degree 𝑛 ∈ℕ can be expressed in complex Bézier form as

𝒓∶ ℝ→ℂ, 𝑡↦
𝑛∑

𝑘=0
𝒑𝑘𝐵

𝑛
𝑘
(𝑡), (1)

for some control points 𝒑0, … , 𝒑𝑛 ∈ℂ, where

𝐵𝑛
𝑘
(𝑡) =

(
𝑛

𝑘

)
(1 − 𝑡)𝑛−𝑘𝑡𝑘

denotes the 𝑘-th Bernstein polynomial of degree 𝑛. The PH property is then equivalent to the requirement that |𝒓′| is a real polynomial. 
As pointed out by Wang and Fang (2009), a very general description of the hodograph of such curves follows from (Farouki, 1994; 
Farouki and Sakkalis, 1990; Kubota, 1972).

Theorem 1 (Wang and Fang, 2009, Theorem 3). A regular polynomial curve 𝒓 is a PH curve if and only if

𝒓′(𝑡) = 𝑝(𝑡)𝒘(𝑡)2, (2)

for some real polynomial 𝑝 and some complex polynomial 𝒘 with 𝑝(𝑡), 𝒘(𝑡) ≠ 0 for 𝑡 ∈ℝ.

Note that this result can also be seen as a special case of a more general characterization of polynomial curves with rational 
offsets (Lü, 1995, Theorem 1). Since we are interested in quintic PH curves, we consider deg(𝒓′) = 4. Following Theorem 1, there are 
three cases to distinguish:

• deg(𝑝) = 4 and deg(𝒘) = 0
In this case, 𝒓(𝑡) is just a line, parameterized by a strictly monotonic quintic polynomial.

• deg(𝑝) = 2 and deg(𝒘) = 1
Fang and Wang (2018) were the first to analyze this case in depth, and they derive a geometric characterization in terms of the 
Bézier control edges of such a so-called class II quintic PH curve. They further show that there are usually four curves of this type 
that solve a given set of Hermite interpolation conditions.

• deg(𝑝) = 0 and deg(𝒘) = 2
In this case, 𝒓′ is called a primitive Pythagorean hodograph (Farouki, 2008), and the curve 𝒓 may be referred to as a class I quintic 
PH curve (Fang and Wang, 2018). This is by far the best-studied case in the literature and the most relevant for applications, and 
we discuss only curves of this type in the following.

If 𝒓 is a regular class I quintic PH curve, then there exist 𝒘0, 𝒘1, 𝒘2 ∈ℂ with 𝒘0, 𝒘2 ≠ 0, such that

𝒓′(𝑡) =
(
𝒘0(1 − 𝑡)2 + 2𝒘1(1 − 𝑡)𝑡+𝒘2𝑡

2)2
=𝒘2

0𝐵
4
0(𝑡) +𝒘0𝒘1𝐵

4
1(𝑡) +

2𝒘2
1 +𝒘0𝒘2

3
𝐵4
2(𝑡) +𝒘1𝒘2𝐵

4
3(𝑡) +𝒘2

2𝐵
4
4(𝑡).

(3)

Denoting the 𝑘-th edge of the Bézier control polygon of 𝒓 by 𝒆𝑘 = 𝒑𝑘+1 − 𝒑𝑘, differentiating (1) for 𝑛 = 5, and using the properties of 
Bernstein polynomials, the hodograph 𝒓′ can also be expressed as

𝒓′(𝑡) = 5𝒆0𝐵4
0(𝑡) + 5𝒆1𝐵4

1(𝑡) + 5𝒆2𝐵4
2(𝑡) + 5𝒆3𝐵4

3(𝑡) + 5𝒆4𝐵4
4(𝑡). (4)

Comparing the coefficients of the Bernstein polynomials in (3) and (4) yields the well-known relations (Farouki, 1994) between the 
control edges 𝒆𝑘 of a class I quintic PH curve in Bézier form and the parameters 𝒘0, 𝒘1, 𝒘2,

2𝒘2 +𝒘0𝒘2
2

5𝒆0 =𝒘2
0, 5𝒆1 =𝒘0𝒘1, 5𝒆2 =

1
3

, 5𝒆3 =𝒘1𝒘2, 5𝒆4 =𝒘2
2. (5)
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3. Algebraic characterization

Based on the relations in (5), Farouki (1994) shows that a regular quintic curve 𝒓 is a PH curve if and only if its control edges 
satisfy

𝒆0𝒆
2
3 = 𝒆21𝒆4 (6a)

and are consistent with the six constraints

3𝒆0𝒆1𝒆2 − 𝒆20𝒆3 − 2𝒆31 = 0,

3𝒆4𝒆3𝒆2 − 𝒆24𝒆1 − 2𝒆33 = 0,

3𝒆0𝒆3𝒆2 − 𝒆4𝒆0𝒆1 − 2𝒆21𝒆3 = 0,

3𝒆4𝒆1𝒆2 − 𝒆0𝒆4𝒆3 − 2𝒆23𝒆1 = 0,

9𝒆0𝒆22 − 6𝒆21𝒆2 − 2𝒆0𝒆1𝒆3 − 𝒆20𝒆4 = 0,

9𝒆4𝒆22 − 6𝒆23𝒆2 − 2𝒆4𝒆3𝒆1 − 𝒆24𝒆0 = 0.

(6b)

In the generic case with 𝒆1, 𝒆3 both non-zero, the condition in (6a) and any one of the first four conditions in (6b) suffice to 
characterize a PH quintic. In the degenerate case with 𝒆1, 𝒆3 both zero, the condition in (6a) and the first four conditions in (6b) are 
automatically satisfied, and either of the last two conditions in (6b) suffices to characterize a PH quintic. Our aim is to unify these 
conditions by coming up with a set of constraints that does not have to distinguish between the different cases. To this end, let us 
first express the hodograph in (3) in an alternative way.

Corollary 1. A regular quintic curve 𝒓 is a PH curve, if and only if there exist 𝒂, 𝒖, 𝒗 ∈ℂ with 𝒂, 𝒖 ≠ 0, such that

𝒓′(𝑡) = 5𝒂
(
𝒖(1 − 𝑡)2 + 2𝒗(1 − 𝑡)𝑡+ 1

𝒖
𝑡2
)2

. (7)

Proof. Expanding (7), we get

𝒓′(𝑡) = 5𝒂𝒖2𝐵4
0(𝑡) + 5𝒂𝒖𝒗𝐵4

1(𝑡) +
5𝒂(2𝒗2 + 1)

3
𝐵4
2(𝑡) +

5𝒂𝒗
𝒖

𝐵4
3(𝑡) +

5𝒂
𝒖2

𝐵4
4(𝑡). (8)

To derive the coefficients in (8) from those in (3), we first fix 𝒈 =
√
𝒘0𝒘2 (using any of the two possible square roots), and then set 

𝒂 = 𝒈2∕5 =𝒘0𝒘2∕5, 𝒖 =𝒘0∕𝒈 = 𝒈∕𝒘2, and 𝒗 =𝒘1∕𝒈. Vice versa, starting with the coefficients in (8), we get those in (3) by first 
fixing 𝒈 =

√
5𝒂 (again, either of the two square roots can be taken), and then setting 𝒘0 = 𝒈𝒖, 𝒘1 = 𝒈𝒗, and 𝒘2 = 𝒈∕𝒖. □

Note that the representations in (3) and (8) are not unique: the triplet (−𝒘0, −𝒘1, −𝒘2) leads to the same hodograph as 
(𝒘0, 𝒘1, 𝒘2) in (3), and the same holds for the triplets (𝒂, 𝒖, 𝒗) and (𝒂, −𝒖, −𝒗) in (8).

Comparing, as above, the coefficients in (8) and (4), we find the relations

𝒆0 = 𝒂𝒖2, 𝒆1 = 𝒂𝒖𝒗, 𝒆2 = 𝒂
2𝒗2 + 1

3
, 𝒆3 = 𝒂

𝒗

𝒖
, 𝒆4 = 𝒂

1
𝒖2

(9)

between the control edges 𝒆𝑘 of 𝒓 and the parameters 𝒂, 𝒖, 𝒗, which imply four ways to express 𝒂 in terms of the control edges,

𝒂2 = 𝒆0𝒆4,
𝒆0𝒆3
𝒆1

= 𝒂 =
𝒆1𝒆4
𝒆3

, 𝒂 = 3𝒆2 −
(
𝒆21
𝒆0

+
𝒆23
𝒆4

)
. (10)

While the first expression is ambiguous with respect to the sign of 𝒂 and the next two are not well-defined if 𝒆1 = 0 or 𝒆3 = 0, 
respectively, the last expression can always be used to derive the parameter 𝒂 from the control edges of a regular quintic PH curve.

Definition 1. For a regular quintic Bézier curve 𝒓 with control edges 𝒆0, … , 𝒆4, where 𝒆0, 𝒆4 ≠ 0, we call

𝒌 = 3𝒆2 −
(
𝒆21
𝒆0

+
𝒆23
𝒆4

)
(11)

the kern1 of 𝒓. If 𝒌 = 1, then the curve is said to be in normal form.

1 The term kern is inspired by the German phrase “des Pudels Kern” (literally, “the poodle’s core”), referring to the crux or the heart of the matter, because 𝒌
will turn out to play an essential role in the subsequent analysis. This phrase was used by Goethe in “Faust” when reflecting on the episode in which a black poodle 
transforms into Mephistopheles, an agent of the devil in disguise. This context suggests to say that a curve with 𝒌 = 0 is in divine form. However, we shall not pursue 
3

such curves any further, since (10) ensures that 𝒌 ≠ 0 for regular PH quintics.
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By Definition 1, every quintic Bézier curve 𝒓 with a non-vanishing kern and in particular, every regular quintic PH curve, has an 
associated curve 𝒓̃ in normal form,

𝒓̃(𝑡) = 𝒓(𝑡)
𝒌

, 𝑡 ∈ℝ,

with control points and control edges given by

𝒑̃𝑘 =
𝒑𝑘

𝒌
, 𝑘 = 0,… ,5 and 𝒆̃𝑘 =

𝒆𝑘

𝒌
, 𝑘 = 0,… ,4. (12)

We are now ready to establish our novel algebraic characterization of planar PH quintics. Since the multiplication by a non-
zero complex number 𝒄 applies a rotation by arg(𝒄) and a uniform scaling by |𝒄|, transformations that preserve the Pythagorean-
hodograph property, we start by considering curves in normal form.

Theorem 2. A regular quintic Bézier curve 𝒓̃ in normal form is a PH curve, if and only if its control edges satisfy the conditions

𝒆̃0𝒆̃4 = 1, (13a)

𝒆̃0𝒆̃4 = 3𝒆̃2 − 2𝒆̃1𝒆̃3. (13b)

Proof. Since 𝒓̃ is in normal form, we have

3𝒆̃2 −
(
𝒆̃21
𝒆̃0

+
𝒆̃23
𝒆̃4

)
= 1, (14)

and it follows from Corollary 1 and Equations (9) and (12), that 𝒓̃ is a PH curve, if and only if there exist 𝒖, 𝒗 ∈ ℂ with 𝒖 ≠ 0, such 
that

𝒆̃0 = 𝒖2, 𝒆̃1 = 𝒖𝒗, 𝒆̃2 =
2𝒗2 + 1

3
, 𝒆̃3 =

𝒗

𝒖
, 𝒆̃4 =

1
𝒖2

. (15)

To show the sufficiency of the conditions, assume that 𝒓̃ is a regular quintic PH curve. Then, by (15), we have

𝒆̃0𝒆̃4 = 1 and 𝒆̃1𝒆̃3 = 𝒗2 ⟹ 3𝒆̃2 = 2𝒗2 + 1 = 2𝒆̃1𝒆̃3 + 𝒆̃0𝒆̃4,

confirming that both conditions in (13) are satisfied.
Now suppose that the conditions in (13) hold. Condition (13a) implies

𝒆̃4 =
1
𝒆̃0

(16)

and can be used to rewrite (13b) as

3𝒆̃2 = 2𝒆̃1𝒆̃3 + 1. (17)

Plugging this into (14), we get

𝒆̃21
𝒆̃0

+
𝒆̃23
𝒆̃4

= 2𝒆̃1𝒆̃3. (18)

Setting 𝒗 =
√
𝒆̃1𝒆̃3 (as above, it does not matter which square root is used), it follows from (17) that

𝒆̃2 =
2𝒆̃1𝒆̃3 + 1

3
= 2𝒗2 + 1

3
.

To obtain the other identities in (15), we distinguish two cases. On the one hand, if 𝒆̃1 = 0 or 𝒆̃3 = 0, then (18) implies that both 
edges must vanish, and since 𝒗 = 0 in this case, we get the identities for 𝒆̃1 and 𝒆̃3 in (15). By (16), the remaining identities for 𝒆̃0
and 𝒆̃4 are then satisfied for 𝒖 =

√
𝒆̃0 (taking either of the two square roots). On the other hand, if 𝒆̃1, ̃𝒆3 ≠ 0, then 𝒗 ≠ 0 and setting 

𝒖 = 𝒆̃1∕𝒗 = 𝒗∕𝒆̃3 gives

𝒆̃1 = 𝒖𝒗 and 𝒆̃3 =
𝒗

𝒖
.

It then follows from (18) and (16) that

2𝒗2 = 2𝒆̃1𝒆̃3 =
𝒆̃0𝒗

2

𝒖2
+ 𝒖2𝒗2𝒆̃4 ⟹ 2 =

𝒆̃0

𝒖2
+ 𝒖2

𝒆̃0
⟹ 𝒆̃0 = 𝒖2 and 𝒆̃4 =

1
𝒖2

,

which completes the proof. □

The two conditions in Theorem 2 are symmetric and compact, but we still need to extend them to curves that are not in normal 
4

form.
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Corollary 2. A regular quintic Bézier curve 𝒓 is a PH curve, if and only if its control edges satisfy the conditions

𝒆0𝒆4 = 𝒌2, (19a)

𝒆0𝒆4 = 3𝒌𝒆2 − 2𝒆1𝒆3, (19b)

where 𝒌 is the kern of 𝒓.

Proof. On the one hand, if 𝒓 is a PH curve, then the control edges 𝒆̃𝑘 = 𝒆𝑘∕𝒌 of the associated curve 𝒓̃ satisfy the conditions in (13)
by Theorem 2, and the conditions in (19) follow by substituting 𝒆̃𝑘 with 𝒆𝑘∕𝒌 and multiplying with 𝒌2. On the other hand, if the 
control edges satisfy (19), then 𝒌 ≠ 0, because 𝒓 is regular with 𝒆0𝒆4 ≠ 0. Hence, the control edges 𝒆̃𝑘 = 𝒆𝑘∕𝒌 of the associated curve 
𝒓̃ are well-defined and satisfy (13). Therefore, 𝒓̃ is a PH quintic by Theorem 2, and so is 𝒓= 𝒌𝒓̃, because it is similar to 𝒓̃. In fact, 𝒓 is 
just 𝒓̃, rotated and scaled by 𝒌. □

Note that after using (11) and multiplying (19a) by 𝒆20𝒆
2
4 and (19b) by 𝒆0𝒆4, we can express the conditions in (19) in terms of 

polynomials of the edges 𝒆𝑘,

𝒆30𝒆
3
4 = (𝒆0𝒆23 − 3𝒆0𝒆2𝒆4 + 𝒆21𝒆4)

2
, (20a)

𝒆20𝒆
2
4 = −3𝒆2(𝒆0𝒆23 − 3𝒆0𝒆2𝒆4 + 𝒆21𝒆4) − 2𝒆0𝒆1𝒆3𝒆4, (20b)

which reveals that they are of degrees 6 and 4, respectively, compared to the conditions of degree 3 in (6). This increase in degree 
seems to be the price to pay for combining the conditions for the generic and the degenerate case into one common system of 
symmetric equations.

We now provide an equivalent algebraic characterization with one more equation that presents more structure, which makes it 
worthy in its own right.

Corollary 3. A regular quintic Bézier curve 𝒓 is a PH curve, if and only if its control edges satisfy the conditions

4𝒆0𝒆21𝒆
2
3𝒆4 = (𝒆0𝒆23 + 𝒆21𝒆4)

2
, (21a)

6𝒆0𝒆1𝒆2𝒆3𝒆4 = (𝒆0𝒆4 + 2𝒆1𝒆3)(𝒆0𝒆23 + 𝒆21𝒆4), (21b)

9𝒆0𝒆22𝒆4 = (𝒆0𝒆4 + 2𝒆1𝒆3)2. (21c)

Proof. We start by observing that (19) is equivalent to

2𝒆0𝒆1𝒆3𝒆4 = 𝒌(𝒆0𝒆23 + 𝒆21𝒆4), (22a)

3𝒌𝒆2 = 𝒆0𝒆4 + 2𝒆1𝒆3. (22b)

Indeed, (22b) is exactly (19b), while, using (19) and (11), we get

2𝒆1𝒆3 = 3𝒌𝒆2 − 𝒆0𝒆4 = 𝒌(3𝒆2 − 𝒌) = 𝒌

(
𝒆21
𝒆0

+
𝒆23
𝒆4

)
,

which leads to (22a). The conditions in (21) are then equivalent to those in (22). On the one hand, we get (21a) and (21c) by squaring 
both sides of (22a) and (22b) and recalling that 𝒌2 = 𝒆0𝒆4. Moreover, condition (21b) is obtained by multiplying the left-hand sides 
and the right-hand sides of (22a) and (22b). On the other hand, (22a) and (22b) can be derived from (21a) and (21c) by taking the 
square roots on both sides and (21b) guarantees the correct signs of the square roots. □

3.1. Comparison to the state of the art

Comparing the conditions (19) in Corollary 2 and (21) in Corollary 3 with those in (6), it is clear that our algebraic characteriza-
tions are symmetric and more compact, in the sense that they consist of only two or three equations that cover all cases instead of 
different subsets of the seven equations in (6). So let us inspect the conditions a bit closer to comprehend the underlying reason.

We first observe that condition (6a) is not part of the conditions in (19). Indeed, although this condition is necessary, it is too 
“weak” to be sufficient. On the one hand, it is trivially satisfied in the case 𝒆1 = 𝒆3 = 0 and on the other hand, it does not involve 𝒆2. 
Moreover, while (6a) is related to the second and third expression for 𝒂 in (10), which are not well-defined if 𝒆1 = 𝒆3 = 0, the key 
for deriving our set of conditions is the last expression in (10), which identifies 𝒂 as the kern of the curve and is valid for any regular 
quintic PH curve.

We further note that (6a) is equivalent to (21a), because 𝑎𝑏 =
(
𝑎+𝑏
2

)2
is equivalent to 𝑎 = 𝑏, and that Farouki (1994, Eq. (51))

identifies (21c) as a necessary condition. But he also shows that it is not sufficient, even in conjunction with (6a), and the missing 
piece turns out to be (21b). Indeed, expanding (21c), we have
5

9𝒆0𝒆22𝒆4 = 𝒆20𝒆
2
4 + 4𝒆0𝒆1𝒆3𝒆4 + 4𝒆21𝒆

2
3 (23)
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and, after multiplying both sides by 𝒆21 and using (6a),

(3𝒆0𝒆2𝒆3)2 = (𝒆0𝒆1𝒆4 + 2𝒆21𝒆3)
2
. (24)

At this point, we would like to take square roots on both sides to get

3𝒆0𝒆2𝒆3 = 𝒆0𝒆1𝒆4 + 2𝒆21𝒆3, (25)

that is, the third condition in (6b), but it is not clear why we can rule out

−3𝒆0𝒆2𝒆3 = 𝒆0𝒆1𝒆4 + 2𝒆21𝒆3, (26)

which is also consistent with (24). This is where (21b) comes into play. In fact, we get (21b) after multiplying both sides of (25) by 
𝒆1𝒆4 and using (6a), but (21b) is incompatible with (26). One could say that condition (21b) forces 𝒆2 to have the correct sign with 
respect to the signs of the other edges, while this sign remains ambiguous if we consider only conditions (21a) and (21c). Once the 
sign is fixed correctly, we can multiply both sides of (25) by 𝒆3 and use (6a) to get

4𝒆21𝒆
2
3 = 6𝒆21𝒆2𝒆4 − 2𝒆0𝒆1𝒆3𝒆4, (27)

and the fifth condition in (6b) then follows from plugging (27) into (23) and dividing both sides by 𝒆4 ≠ 0. Moreover, we get the first 
condition in (6b) from (25) if we multiply both sides by 𝒆1∕𝒆3 and use (6a). Note that the latter works only if 𝒆3 ≠ 0, but if 𝒆3 = 0, 
then (6a) implies 𝒆1 = 0, because 𝒆0, 𝒆4 ≠ 0, and the first condition in (6b) is then trivially satisfied. The second, fourth, and sixth 
condition in (6b) can be derived from (21) with the same arguments after multiplying both sides of (23) by 𝒆23 and using (6a) to get

(3𝒆1𝒆2𝒆4)2 = (𝒆0𝒆3𝒆4 + 2𝒆1𝒆23)
2
.

3.2. Observations

Farouki (1994) notes that (6a) stands out from the conditions in (6), because it is invariant under the substitution

(𝒆0,𝒆1,𝒆2,𝒆3,𝒆4)↦ (−𝒆4,−𝒆3,−𝒆2,−𝒆1,−𝒆0),

which corresponds to a reparameterization 𝑡 ↦ 1 − 𝑡. The same is true for all conditions in (19), (20), and (21), and they are also 
invariant under the substitutions

(𝒆0,𝒆1,𝒆2,𝒆3,𝒆4)↦ (𝒆0,−𝒆1,𝒆2,−𝒆3,𝒆4),

and

(𝒆0,𝒆1,𝒆2,𝒆3,𝒆4)↦ (−𝒆0,𝒆1,−𝒆2,𝒆3,−𝒆4),

and any composition of these three substitutions.
An interesting observation is that the conditions in (21) can be expressed compactly in matrix from as

𝑬0𝑬
𝖳
2 =𝑬1𝑬

𝖳
1 ,

where

𝑬0 =
(
2𝒆0𝒆1𝒆3
3𝒆0𝒆2

)
, 𝑬1 =

(
𝒆0𝒆

2
3 + 𝒆21𝒆4

2𝒆1𝒆3 + 𝒆0𝒆4

)
, 𝑬2 =

(
2𝒆1𝒆3𝒆4
3𝒆2𝒆4

)
,

which resembles the algebraic characterization of cubic PH curves with control edges 𝒅0, 𝒅1, 𝒅2 (Farouki, 1994), namely 𝒅0𝒅2 = 𝒅2
1. 

Moreover, it is striking that the conditions in (19) and (20) both involve a power of the product between the first and the last control 
edge, akin to the cubic case, but with more complex right-hand sides.

Note that the conditions in (21) are also satisfied by irregular PH quintics, that is, if the quadratic polynomial 𝒘 in (2) has one 
or two real roots. If 𝒘(𝑡) does not vanish for 𝑡 = 0 and 𝑡 = 1, so that 𝒘0𝒘2 ≠ 0, then this follows from the proof of Theorem 2, since 
it relies solely on the non-zero condition of 𝒘0 and 𝒘2. Otherwise, if 𝒘0 = 0 or 𝒘2 = 0, then (5) implies 𝒆0 = 𝒆1 = 0 or 𝒆3 = 𝒆4 = 0, 
and in both cases all three conditions are trivially satisfied. However, the opposite is not true. For example, the edges

𝒆0 = 0, 𝒆1 = 0, 𝒆2 = 1, 𝒆3 = 𝐢, 𝒆4 = 1

satisfy (21), but they do not describe a quintic PH curve.
By construction, the three conditions in (21) are in geometric progression, that is, the ratios of the left-hand sides and the 

right-hand sides of (21a) and (21b) are the same as those of (21b) and (21c), namely

2𝒆1𝒆3 𝒆0𝒆
2
3 + 𝒆21𝒆4
6

3𝒆2
and

2𝒆1𝒆3 + 𝒆0𝒆4
,
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respectively. This shows the dependency among these conditions, at least if 𝒆1, 𝒆2, 𝒆3 ≠ 0. Indeed, in this case (21c) follows from (21a)
and (21b), and (21a) follows from (21b) and (21c). Nonetheless, (21b) is not redundant, because it implies constraints on the signs 
of the square roots of (21a) and (21c). For example, the choice 𝒆0 = 𝒆1 = 𝒆3 = 𝒆4 = 1 and 𝒆2 = −1 satisfies the first and the third 
condition, but not the second.

3.3. Special cases

Let us now take a look at some special cases of PH quintics and how they affect the algebraic conditions in (19) and (21). We 
specify these cases in terms of the parameter 𝒗 from Corollary 1:

(i) 𝒗 = 0
By (9), this case is equivalent to 𝒆1 = 𝒆3 = 0, hence 𝒌 = 3𝒆2, and we conclude that both (19) and (21) reduce to the single 

condition 9𝒆22 = 𝒆0𝒆4, stemming from (19a), (19b), and (21c), while the other conditions in (21) are trivially satisfied. By 
Corollary 1, this case corresponds to 𝒘1 = 0 in (3).

(ii) 𝒗 = ±𝐢∕
√
2

By (9), this happens if and only if 𝒆2 = 0. In this case, (19b) and (21c) reduce to 2𝒆1𝒆3 + 𝒆0𝒆4 = 0, implying that (21b) is 
trivially satisfied, while condition (21a) becomes equivalent to (20a) and thus to (19a). For example, if 𝒆0, 𝒆4 ≠ 0 are given, 
then the curve is a PH quintic, if and only if 𝒆1 = 𝐢𝑘𝒆0

√
𝒈∕2 and 𝒆3 = (−1)𝑘+1𝒆1𝒈 for any 𝑘 = 0, 1, 2, 3 and 𝒈 =

√
𝒆4∕𝒆0. Similarly, 

if 𝒆1, 𝒆3 ≠ 0 are given, then the conditions are satisfied if 𝒆0 = (−1)𝑘𝒆1
√
−2𝒈 and 𝒆4 = 𝒆0∕𝒈2 for any 𝑘 = 0, 1 and 𝒈 = 𝒆1∕𝒆3. By 

Corollary 1, this case corresponds to 𝒘1 = ±𝐢
√
𝒘0𝒘2∕2 in (3).

(iii) 𝒗 = ±1
By (9), this case corresponds to a sequence of control edges in geometric progression, that is, 𝒆𝑘 = 𝒆𝑘−1∕𝒖 = 𝒆0∕𝒖𝑘 for 

𝑘 = 1, 2, 3, 4 for some 𝒖 ∈ ℂ ⧵ {0}, and it is straightforward to verify that the conditions in (19) and (21) are always satisfied 
in this case. Hence, while having control edges in geometric progression is a defining property for cubic PH curves, it is 
only a sufficient condition for quintic PH curves, characterizing a specific subfamily of PH quintics. By Corollary 1, this case 
corresponds to 𝒘1 = ±

√
𝒘0𝒘2 in (3).

(iv) 𝒗 = (𝒖+ 1∕𝒖)∕2 for some 𝒖 ∈ℂ ⧵ {0}
By (7), this captures the case in which the hodograph simplifies to the square of a linear polynomial, namely 𝒓′(𝑡) =

𝒂
(
𝒖(1 − 𝑡) + 𝑡∕𝒖

)2
. In fact, the curve is a degree-raised cubic PH curve with control edges 𝒅0 =

5
3𝒆0, 𝒅1 = 𝒅0∕𝒖2, 𝒅2 = 𝒅1∕𝒖2. 

By Corollary 1, this case corresponds to 𝒘1 = (𝒘0 +𝒘2)∕2 in (3).

Note that these special cases, apart from case (iii), have already been identified and described by Farouki (1994).

4. Geometric characterization

Farouki (1994) notes that condition (6a) has a simple geometric interpretation in terms of the edge lengths 𝐸𝑘 = |𝒆𝑘|, 𝑘 = 0, … , 4
and the interior signed angles 𝜃𝑘 = ∠𝒑𝑘−1𝒑𝑘𝒑𝑘+1 = 𝜋 − arg(𝒆𝑘−1∕𝒆𝑘), 𝑘 = 1, … , 4 of the control polygon, namely

𝐸1
𝐸3

=

√
𝐸0
𝐸4

and 𝜃1 + 𝜃4 = 𝜃2 + 𝜃3, (28)

but the conditions in (6b) do not admit similarly intuitive geometric interpretations.
A more geometric characterization of planar quintic PH curves was later found by Fang and Wang (2018, Theorem 1). Given the 

control points of a quintic Bézier curve, they first construct the auxiliary points 𝒒1 and 𝒒4 on the lines 𝒑0𝒑1 and 𝒑4𝒑5, respectively, 
such that the lines 𝒒1𝒑2 and 𝒑3𝒒4 are parallel and the angles ∠𝒑0𝒒1𝒑2 and ∠𝒑3𝒒4𝒑5 are equal, as well as the two auxiliary points 
𝒒2 and 𝒒3 on the lines 𝒒1𝒑2 and 𝒑3𝒒4, respectively, such that ∠𝒑0𝒑1𝒑2 = ∠𝒑1𝒑2𝒒3 and ∠𝒒2𝒑3𝒑4 = ∠𝒑3𝒑4𝒑5 (see Fig. 2). Using these 
four auxiliary points, they then show that the curve is PH, if and only if the quadrilateral □(𝒑2, 𝒒2, 𝒑3, 𝒒3) is a parallelogram, the 
triangles △(𝒑1, 𝒒1, 𝒑2) and △(𝒑3, 𝒒4, 𝒑4) are similar, and the edge lengths satisfy

2𝐸2
1 = 3𝐸0𝐹 , 2𝐸2

3 = 3𝐸4𝐹 , 𝐸0𝐸4 = 9𝐺2, (29)

where 𝐹 = |𝒇 | and 𝐺 = |𝒈| are the lengths of the parallelogram’s edges 𝒇 = 𝒒3 − 𝒑2 = 𝒑3 − 𝒒2 and 𝒈 = 𝒒2 − 𝒑2 = 𝒑3 − 𝒒3.
Our aim is to provide two simpler and entirely geometric characterizations. The first is optimal, in the sense of involving just a 

single similarity condition for two quadrilaterals. The second is more in the spirit of the well-known geometric characterization for 
PH cubics and the one proposed by Fang and Wang (2018, Theorem 1), in the sense that it is expressed in terms of similarities of 
triangles, and it leads to a simple way to construct PH quintics starting from two PH cubics. However, this second characterization 
does not cover the case 𝒆1 = 𝒆3 = 0.

The first characterization requires the two auxiliary points

𝒕2 = 𝒑3 − 𝒌 and 𝒕3 = 𝒑2 + 𝒌, (30)
7

where 𝒌 is the kern of the given curve. They can be constructed geometrically in two steps (see Fig. 1).
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Fig. 1. Construction of the supporting points 𝒓2 , 𝒓3 and the auxiliary points 𝒕2, 𝒕3 (left) and similar quadrilaterals □(𝒑0, 𝒑1, 𝒑2, 𝒕3) and □(𝒕2, 𝒑3, 𝒑4, 𝒑5) used in Theorem 3
(right) for a general quintic PH curve 𝒓 (top) and a quintic PH curve with 𝒆1 = 𝒆3 = 0 (bottom). In the latter case, the quadrilaterals degenerate to similar triangles.

1. Let 𝒓2, 𝒓3 be two points, such that △(𝒑1, 𝒑2, 𝒓3) is similar to △(𝒑0, 𝒑1, 𝒑2) and △(𝒓2, 𝒑3, 𝒑4) is similar to △(𝒑3, 𝒑4, 𝒑5). If 𝒆1 = 0, 
so that △(𝒑0, 𝒑1, 𝒑2) is degenerate, then let 𝒓3 = 𝒑2, and likewise 𝒓2 = 𝒑3 if 𝒆3 = 0. In any case, the supporting points 𝒓2, 𝒓3 can 
be expressed algebraically as

𝒓2 = 𝒑3 −
𝒆23
𝒆4

and 𝒓3 = 𝒑2 +
𝒆21
𝒆0

. (31)

2. Add the vector 𝒅 from 𝒓2 to 𝒓3 and −𝒆2 to 𝒑2 to get 𝒕2. Likewise, add −𝒅 and 𝒆2 to 𝒑3 to get 𝒕3, that is,

𝒕2 = 𝒑2 + (𝒓3 − 𝒓2) − (𝒑3 − 𝒑2) and 𝒕3 = 𝒑3 − (𝒓3 − 𝒓2) + (𝒑3 − 𝒑2).

This construction gives the correct points, because

𝒕2 = 𝒑3 − 3(𝒑3 − 𝒑2) + (𝒓3 − 𝒑2) + (𝒑3 − 𝒓2) = 𝒑3 − 3𝒆2 +
𝒆21
𝒆0

+
𝒆23
𝒆4

= 𝒑3 − 𝒌

and similarly for 𝒕3. Given 𝒕2 and 𝒕3, we can now state our first geometric characterization of planar quintic PH curves.

Theorem 3. Let 𝒓 be a regular quintic curve and let 𝒕2, 𝒕3 be defined as in (30). Then, 𝒓 is a PH curve, if and only if
8

□(𝒑0,𝒑1,𝒑2, 𝒕3) is similar to □(𝒕2,𝒑3,𝒑4,𝒑5). (32)
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Proof. Assume that 𝒓 is a PH curve. Then, by (30), (9), and the fact that 𝒂 = 𝒌 ≠ 0, we have

𝒂

𝒆0
(𝒑1 − 𝒑0) = 𝒂

𝒆0
𝒆0

= 𝒂 = 𝒑3 − 𝒕2,

𝒂

𝒆0
(𝒑2 − 𝒑1) = 𝒂

𝒆1
𝒆0

= 𝒂
𝒗

𝒖
= 𝒆3 = 𝒑4 − 𝒑3,

𝒂

𝒆0
(𝒕3 − 𝒑2) =

𝒂2

𝒆0
= 𝒆4 = 𝒑5 − 𝒑4,

which implies (32), with 𝒂∕𝒆0 representing the rotation and uniform scaling that maps □(𝒑0, 𝒑1, 𝒑2, 𝒕3) to □(𝒕2, 𝒑3, 𝒑4, 𝒑5).
Conversely, suppose that (32) holds. Then there exists some 𝒛 ≠ 0 which represents the similarity transformation, so that

𝒛𝒆0 = 𝒛(𝒑1 − 𝒑0) = 𝒑3 − 𝒕2 = 𝒌, (33a)

𝒛𝒆1 = 𝒛(𝒑2 − 𝒑1) = 𝒑4 − 𝒑3 = 𝒆3, (33b)

𝒛𝒌 = 𝒛(𝒕3 − 𝒑2) = 𝒑5 − 𝒑4 = 𝒆4, (33c)

which implies 𝒌 ≠ 0, because 𝒓 is a regular curve with 𝒆0, 𝒆4 ≠ 0. From (33a) and (33c), we then have

𝒛 = 𝒌

𝒆0
=

𝒆4
𝒌

⟹ 𝒆0𝒆4 = 𝒌2,

and using (33b), we get

𝒌

𝒆0
𝒆1 = 𝒆3 and

𝒆4
𝒌
𝒆1 = 𝒆3 ⟹ 𝒆0𝒆3 = 𝒌𝒆1 and 𝒆1𝒆4 = 𝒌𝒆3.

Therefore,

𝒌(𝒆0𝒆23 + 𝒆21𝒆4) = 2𝒌2𝒆1𝒆3 = 2𝒆0𝒆1𝒆3𝒆4
and, by (11),

3𝒆2𝒌 = 𝒌2 + 𝒌

(
𝒆21
𝒆0

+
𝒆23
𝒆4

)
= 𝒌2 +

𝒌(𝒆0𝒆23 + 𝒆21𝒆4)
𝒆0𝒆4

= 𝒆0𝒆4 + 2𝒆1𝒆3,

which we recognize as the two conditions in (22). Following the proof of Corollary 2, we conclude that 𝒓 is a PH curve. □

Fig. 1 visualizes the result of Theorem 3. Note that the theorem holds even if the two involved quadrilaterals self-intersect or 
degenerate to triangles.

For the second characterization, let us split the edges 𝒆1 and 𝒆3 into three equal parts by introducing the points

𝒔1 =
2𝒑1 + 𝒑2

3
, 𝒔2 =

𝒑1 + 2𝒑2
3

, 𝒔3 =
2𝒑3 + 𝒑4

3
, 𝒔4 =

𝒑3 + 2𝒑4
3

. (34)

It then follows from (29) that, in case of the curve being PH, the two triangles △(𝒔1, 𝒑2, 𝒒3) and △(𝒒3, 𝒑3, 𝒔3) are similar to 
△(𝒑0, 𝒑1, 𝒑2), and the two triangles △(𝒒2, 𝒑3, 𝒔4) and △(𝒔2, 𝒑2, 𝒒2) are similar to △(𝒑3, 𝒑4, 𝒑5), where 𝒒2, 𝒒3 are the auxiliary 
points from Fang and Wang (2018, Theorem 1). Moreover, our construction of the supporting points 𝒓2, 𝒓3 implies that

𝒒2 =
2𝒓2 + 𝒑3

3
and 𝒒3 =

𝒑2 + 2𝒓3
3

, (35)

where 𝒓2 and 𝒓3 are defined as in (31). This observation gives rise to our second geometric characterization of planar quintic PH 
curves (see Fig. 2).

Corollary 4. Let 𝒓 be a regular quintic curve with 𝒆1, 𝒆3 ≠ 0, let 𝒔2, 𝒔3 be defined as in (34), and let 𝒒2, 𝒒3 be defined as in (35). Then, 𝒓 is 
a PH curve, if and only if

△(𝒒3,𝒑3,𝒔3) is similar to △ (𝒑0,𝒑1,𝒑2), (36a)

△(𝒔2,𝒑2,𝒒2) is similar to △ (𝒑3,𝒑4,𝒑5). (36b)

Proof. By construction, the auxiliary points 𝒒2, 𝒒3 can be expressed as

2𝒆23 2𝒆21
9

𝒒2 = 𝒑3 − 3𝒆4
and 𝒒3 = 𝒑2 + 3𝒆0

. (37)
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Fig. 2. Control points 𝒑𝑘 , control edges 𝒆𝑘 , supporting points 𝒓2, 𝒓3 , auxiliary points 𝒒𝑘 , split points 𝒔𝑘 , parallelogram (red) with edges 𝒇 , 𝒈, and families of similar 
triangles (yellow, purple) used by Fang and Wang (2018, Theorem 1) and in Corollary 4, for the quintic PH curve 𝒓 defined by (3) with 𝒘0 =

√
6𝑒𝜋𝐢∕12 , 𝒘1 = 𝜋𝑒−3𝜋𝐢∕8 , 

and 𝒘2 = 5𝑒−𝜋𝐢∕12∕
√
6. The signed interior angles 𝜃1 and 𝜃4 of the control polygon are marked in green and blue, respectively. (For interpretation of the colors in the 

figure(s), the reader is referred to the web version of this article.)

If 𝒓 is a PH curve, then it follows from (6a) that 𝒆21∕𝒆0 = 𝒆23∕𝒆4, hence, by (11) and (37),

𝒌 = 3𝒆2 − 2
𝒆21
𝒆0

= 3
(
(𝒑3 − 𝒑2) + (𝒑2 − 𝒒3)

)
= 3(𝒑3 − 𝒒3)

and, using (30),

𝒒3 =
3𝒑3 − 𝒌

3
=

2𝒑3 + 𝒕2
3

.

Therefore, △(𝒒3, 𝒑3, 𝒔3) is similar to △(𝒕2, 𝒑3, 𝒑4), which in turn is similar to △(𝒑0, 𝒑1, 𝒑2) by Theorem 3. This confirms (36a), 
and (36b) can be derived analogously.

Now suppose that the conditions in (36) hold. Then, since △(𝒔1, 𝒑2, 𝒒3) is similar to △(𝒑0, 𝒑1, 𝒑2) by construction and therefore 
similar to △(𝒒3, 𝒑3, 𝒔3) by (36a), and likewise △(𝒒2, 𝒑3, 𝒔4) is similar to △(𝒔2, 𝒑2, 𝒒2), we have, since 𝒆1, 𝒆3 ≠ 0,

𝒒3 − 𝒑2
2𝒆1∕3

=
𝒒3 − 𝒑2
𝒑2 − 𝒔1

=
𝒔3 − 𝒑3
𝒑3 − 𝒒3

=
𝒆3∕3

𝒑3 − 𝒒3
and

2𝒆3∕3
𝒑3 − 𝒒2

=
𝒔4 − 𝒑3
𝒑3 − 𝒒2

=
𝒒2 − 𝒑2
𝒑2 − 𝒔2

=
𝒒2 − 𝒑2
𝒆1∕3

.

Consequently,

(𝒒3 − 𝒑2)(𝒑3 − 𝒒3) =
2𝒆1𝒆3
9

= (𝒒2 − 𝒑2)(𝒑3 − 𝒒2) ⟹
𝒒3 − 𝒑2
𝒑2 − 𝒒2

=
𝒒2 − 𝒑3
𝒑3 − 𝒒3

,

and so the triangles △(𝒒2, 𝒑2, 𝒒3) and △(𝒒3, 𝒑3, 𝒒2) are congruent, because they share the edge 𝒒2𝒒3. Therefore, 𝒒3 = 𝒑2 + (𝒑3 −𝒒2), 
and, using (37), (11), and (30), we get

𝒒3 =
1
2
𝒒3 +

1
2
(
𝒑2 + (𝒑3 − 𝒒2)

)
= 1

2
𝒑2 +

𝒆21
3𝒆0

+ 1
2
𝒑2 +

𝒆23
3𝒆4

= 𝒑3 −
1
3

(
3𝒆2 −

𝒆21
𝒆0

−
𝒆23
𝒆4

)
=

3𝒑3 − 𝒌

3
=

2𝒑3 + 𝒕2
3

.

This implies that △(𝒕2, 𝒑3, 𝒑4) is similar to △(𝒒3, 𝒑3, 𝒔3), which in turn is similar to △(𝒑0, 𝒑1, 𝒑2) by (36a). Analogously, we can 
show that △(𝒑1,𝒑2, 𝒕3) is similar to △(𝒑3, 𝒑4, 𝒑5). Therefore, □(𝒑0, 𝒑1, 𝒑2, 𝒕3) is similar to □(𝒕2, 𝒑3, 𝒑4, 𝒑5) and 𝒓 is a PH curve by 
10

Theorem 3. □
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Fig. 3. Control points, control edges, auxiliary points, split points, degenerate parallelogram, and families of similar triangles (cf. Fig. 2) for the quintic PH curve 𝒓
defined by (3) with 𝒘0 =𝒘2 =

√
15(1 + 𝐢) and 𝒘1 =

√
105∕2(1 − 𝐢). The construction by Fang and Wang (2018, Theorem 1) fails for this example.

4.1. Comparison to the state of the art

Comparing our conditions (32) in Theorem 3 and (36) in Corollary 4 with the ones by Fang and Wang (2018, Theorem 1), it is 
clear that ours are simpler and more compact. On the one hand, we need only two instead of four auxiliary points for Theorem 3, 
and the construction of 𝒔2, 𝒔3, 𝒒2, 𝒒3 for Corollary 4 is simpler than the construction of 𝒒1, … , 𝒒4 described by Fang and Wang. On 
the other hand, our characterizations are entirely geometric and do not involve conditions on edge lengths. Moreover, Theorem 3
works for all regular quintic PH curves and Corollary 4 for curves with 𝒆1, 𝒆3 ≠ 0, while the construction by Fang and Wang can fail 
even in the latter case.

For example, if we consider the quintic PH curve in Fig. 3 with Bézier control points

𝒑0 = −
√
126, 𝒑1 = −

√
126 + 6𝐢, 𝒑2 = 6𝐢, 𝒑3 = −6𝐢, 𝒑4 =

√
126 − 6𝐢, 𝒑5 =

√
126,

then 𝒒1 = 𝒑0 + 𝜆𝐢 and 𝒒4 = 𝒑5 − 𝜆𝐢 satisfy their conditions for these two auxiliary points for any 𝜆 ∈ ℝ, and their subsequent 
construction leads to 𝒒2 = 𝒑2 and 𝒒3 = 𝒑3, independently of 𝜆. However, the edge length conditions in (29) are not satisfied for this 
choice of 𝒒2 and 𝒒3. Instead, our construction delivers the correct auxiliary points 𝒒2 = 8𝐢 and 𝒒3 = −8𝐢.

For those cases that are covered by the approach of Fang and Wang, their conditions follow easily from Corollary 4 (see Fig. 2). 
We first obtain 𝒒2 and 𝒒3 as in (35) and then construct 𝒒1 by intersecting the lines 𝒑0𝒑1 and 𝒑2𝒒2 and 𝒒4 by intersecting 𝒑4𝒑5 and 
𝒑3𝒒3. The resulting triangles △(𝒑1, 𝒒1, 𝒑2) and △(𝒑3, 𝒒4, 𝒑4) are similar, because they share the interior angle 𝜃1 at 𝒑1 and 𝒑3 and 
the exterior angle 𝜃4 at 𝒑2 and 𝒑4. Moreover, as shown in the proof of Corollary 4, the similarity conditions (36a) and (36b) imply 
the congruence of the triangles △(𝒒2, 𝒑2, 𝒒3) and △(𝒒3, 𝒑3, 𝒒2), which means that □(𝒑2, 𝒒2, 𝒑3, 𝒒3) is a parallelogram, and it further 
follows from these conditions that the lengths of the edges 𝒇 = 𝒒3 − 𝒑2 = 𝒑3 − 𝒒2 and 𝒈 = 𝒒2 − 𝒑2 = 𝒑3 − 𝒒3 of this parallelogram 
are 𝐹 = |𝒇 | = 2

3𝐸
2
1∕𝐸0 =

2
3𝐸

2
3∕𝐸4 and 𝐺 = |𝒈| = 1

3𝐸1𝐸4∕𝐸3 =
1
3𝐸3𝐸0∕𝐸1, thus giving (29). Note that our 𝒒2 and 𝒒3 in (37) can 

be different from the auxiliary points given by the geometric construction in (Fang and Wang, 2018) for a generic, non-PH quintic 
Bézier curve.

Farouki’s geometric interpretation of the algebraic condition (6a) can be derived from (36), too. The length condition in (28)
follows directly from the previously mentioned identities for 𝐹 , and the angle condition holds, because 𝜃2 = 𝜃1 + 𝛼 and 𝜃3 = 𝜃4 − 𝛼, 
where 𝛼 = ∠𝒒3𝒑2𝒑3 = ∠𝒒2𝒑3𝒑2 (see Fig. 2).

4.2. Observations

Corollary 4 also holds if 𝒆2 = 0, so that the parallelogram □(𝒑2, 𝒒2, 𝒑3, 𝒒3) degenerates to a segment (see Fig. 4), but it cannot be 
applied if 𝒆1 = 𝒆3 = 0. In the latter case (see Fig. 1, bottom), the similarity condition (32) in Theorem 3 degenerates to the condition

△(𝒑0,𝒑1, 𝒕3) is similar to △ (𝒕2,𝒑4,𝒑5),

where

𝒕2 = 𝒑4 − 3𝒆2 and 𝒕3 = 𝒑1 + 3𝒆2,

which is equivalent to the algebraic condition 9𝒆22 = 𝒆0𝒆4 that we encountered in case (i) in Section 3.3.
This actually provides a recipe for generating a quintic PH curve from a cubic PH curve: all we need to do is to stretch the first 

and the last control edge by a factor of three. Indeed, if a cubic PH curve with control edges 𝒅0, 𝒅1, 𝒅2 is given, then it follows from 
11

the observations above that the quintic curve with control edges 𝒆0 = 3𝒅0, 𝒆1 = 0, 𝒆2 = 𝒅1, 𝒆3 = 0, 𝒆4 = 3𝒅2 is PH (see Fig. 5).
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Fig. 4. Control points, control edges, auxiliary points, split points, degenerate parallelogram, and families of similar triangles (cf. Fig. 2) for the quintic PH curve 𝒓
with 𝒆2 = 0 defined by (3) with 𝒘0 =

√
6𝑒𝜋𝐢∕12 , 𝒘1 = −𝐢

√
5∕2, and 𝒘2 = 5𝑒−𝜋𝐢∕12∕

√
6.

Fig. 5. A cubic PH curve (left) can be turned into a degenerate quintic PH curve (right) with 𝒆1 = 𝒆3 = 0 by stretching the first and the last leg by a factor of three.
12

Fig. 6. Quintic PH curves 𝒓 from Fig. 2 (left) and Fig. 4 (right), together with their cubic PH companion curves 𝒄1 and 𝒄2 .
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More interestingly, it follows from the construction of the supporting points 𝒓2, 𝒓3 in (31) that a regular quintic PH curve with 
𝒆1, 𝒆3 ≠ 0 is intimately related to two cubic PH curves. Indeed, it is clear that 𝒑0, 𝒑1, 𝒑2, 𝒓3 and 𝒓2, 𝒑3, 𝒑4, 𝒑5 are the control points of 
two cubic PH companion curves 𝒄1 and 𝒄2, where the last control edge of 𝒄1 and the first control edge of 𝒄2 are translates of each 
other. Vice versa, given two cubic PH curves 𝒄1 and 𝒄2 with control points 𝒑0, 𝒑1, 𝒑2, 𝒓3 and 𝒓2, 𝒑3, 𝒑4, 𝒑5, we can generate a quintic 
PH curve by first rotating and scaling 𝒄2 such that its first control edge is parallel to and has the same length as the last control edge 
of 𝒄1, that is, 𝒓3 − 𝒑2 = 𝒑3 − 𝒓2, and then translating 𝒄2 such that the triangles △(𝒔2, 𝒑2, 𝒒2) and △(𝒑3, 𝒑4, 𝒑5) are similar, where 
𝒔2 = (𝒑1 + 2𝒑2)∕3 and 𝒒2 = (2𝒓2 + 𝒑3)∕3 (see Fig. 6). Alternatively, the correct translation can also be determined by forcing the 
triangles △(𝒒3, 𝒑3, 𝒔3) and △(𝒑0, 𝒑1, 𝒑2) to be similar, where 𝒔3 = (2𝒑3 + 𝒑4)∕3 and 𝒒3 = (2𝒓3 + 𝒑2)∕3.

5. Conclusions

One potential application of the algebraic characterization in Corollary 2 is for deciding whether a given planar quintic curve, 
specified by its Bézier control points, is a PH curve or not. We first convert the control edges of the curve into complex numbers. We 
then use complex arithmetic to compute the kern of the curve as in (11) and to check if the two conditions (19) are satisfied up to 
some tolerance. It remains future work to analyze this approach in detail and to compare it to the methods developed by Farouki 
et al. (2015), which are based on real arithmetic and can detect planar as well as spatial PH curves. It would further be interesting 
to see if there is any numerical advantage in deriving the coefficients 𝒘0, 𝒘1, 𝒘2 of the pre-image polynomial 𝒘 that generates the 
hodograph of the curve from the conditions in (9) and Corollary 1 instead of using the conditions in (5), as suggested by Farouki et 
al. (2015).

In addition to verifying (19) for a given curve, these constraints can also be used for constructing quintic PH curves. For example, 
the first-order Hermite interpolation problem fixes the edges 𝒆0 and 𝒆4 and the sum of all edges, and the conditions in (19) can be 
used to derive formulas for the remaining edges 𝒆1, 𝒆2, 𝒆3. However, the resulting expressions are not simpler than those derived 
by Farouki and Neff (1995) and Dong and Farouki (2015), and the same holds for the other variants of this problem, where different 
pairs of edges are fixed (Farouki et al., 2023).
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