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a b s t r a c t 

In recent years, Human Pose Estimation has achieved impressive results on RGB images. The advent of 

deep learning architectures and large annotated datasets have contributed to these achievements. How- 

ever, little has been done towards estimating the human pose using depth maps, and especially towards 

obtaining a precise 3D body joint localization. To fill this gap, this paper presents RefiNet, a depth-based 

3D human pose refinement framework. Given a depth map and an initial coarse 2D human pose, Re- 

fiNet regresses a fine 3D pose. The framework is composed of three modules, based on different data 

representations, i.e. 2D depth patches, 3D human skeletons, and point clouds. An extensive experimental 

evaluation is carried out to investigate the impact of the model hyper-parameters and to compare Re- 

fiNet with off-the-shelf 2D methods and literature approaches. Results confirm the effectiveness of the 

proposed framework and its limited computational requirements. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The representation of human poses through body joints is 

hown to be informative enough to enable subsequent tasks such 

s Action Recognition [1,2] and People Tracking [3] . Therefore, Hu- 

an Pose Estimation (HPE) techniques are a key element for scene 

nd people understanding. 

Recently, several methods based on RGB images, deep learn- 

ng algorithms [4–6] , and large RGB datasets ( e.g .COCO [7] ) have

chieved stunning results and impressive performance in terms of 

ccuracy, generalization capabilities, and computational load. These 

iterature methods usually provide the human pose as 2D locations 

f the body joints in image coordinates, ignoring the depth dimen- 

ion and any metric information. 

Recently, promising results have been obtained by 3D estimator 

ased only on intensity images [8,9] . However, these approaches 

o not regress the 3D pose in the camera coordinate system and 
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he scale of the human body: indeed, the use of 3D information is 

trictly required to overcome the aforementioned limitations and 

epth maps provided by active depth sensors can be an effective 

olution in place or in addition to RGB cameras. 

With this in mind, we propose to combine off-the-shelf 2D Hu- 

an Pose Estimation (2D HPE) methods with the 3D information 

rovided by depth cameras in the form of depth maps. We present 

 modular framework, namely RefiNet , that recovers a precise 3D 

uman pose in camera space through a series of refinements of 

n initial coarse 2D estimation and a depth map. The system is 

omposed of three independent modules: the first one refines the 

nitial 2D locations of the joints using the depth map, the second 

odule refines the 3D human skeleton as a whole, the third mod- 

le refines the 3D joint locations using the point cloud computed 

rom the depth map. Each module is separately trained and can be 

ndependently enabled or disabled. For the initial 2D HPE, we rely 

n existing 2D methods ( e.g . [4–6] ). However, thanks to the adopted

raining procedure, the system does not rely on any specific 2D 

PE model. 

In this paper, extending our previous work [10] , we conduct 

n in-depth analysis of the hyper-parameters of each module and 

heir influence on the final performance of the whole system. We 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.patrec.2023.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2023.03.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.deusanio@unimore.it
mailto:alessandro.simoni@unimore.it
mailto:s.pini@unimore.it
mailto:guido.borghi@unibo.it
mailto:roberto.vezzani@unimore.it
mailto:rita.cucchiara@unimore.it
https://doi.org/10.1016/j.patrec.2023.03.005
http://creativecommons.org/licenses/by/4.0/


A. D’Eusanio, A. Simoni, S. Pini et al. Pattern Recognition Letters 171 (2023) 185–191 

a

t

o

fi

i

f

h

2

o

d

1

p

b

e

o

e  

l

e

r

u

r

w

e

d

t

d

i

o

l

m

K

p

c

c

m  

c

s

r

m

d

d

p  

p

h

p

m

s

r

t

o

b

p

p

t  

a

m

w

d

o

t

Fig. 1. RefiNet is a modular framework that, given an initial 2D HPE and a depth 

map, computes a refined 3D pose. The block denoted with the letter K is the map- 

ping between 2D and 3D coordinates, requiring camera calibration parameters and 

depth values. 
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lso compare our proposal with literature competitors and discuss 

he advantages and disadvantages of the analyzed solutions. More- 

ver, we propose an updated version of the second module of Re- 

Net, obtaining a significant performance improvement. Finally, we 

nvestigate the portability of the whole system evaluating its per- 

ormance on both GPUs and CPUs. We publicly release the code at 

ttps://aimagelab.ing.unimore.it/go/3d- human- pose- refinement . 

. Related work 

Human Pose on RGB images. The large majority of HPE meth- 

ds available in the literature are based on RGB images. In- 

eed, state-of-the-art human pose estimators exploit CNNs [4,5,11–

4] and large annotated datasets to provide 2D poses. One of the 

ioneering methods based on deep learning is the one described 

y Wei et al. [11] , who proposed a sequential architecture that it- 

ratively estimates the 2D location of body joints. The evolution 

f this paradigm is represented by the method proposed by Cao 

t al. [4] , in which the Part Affinity Fields are used to learn the

inks between the body parts of each person. More recently, Sun 

t al. [5] addressed the problem of preserving high-resolution rep- 

esentations along the whole pose estimation pipeline, through the 

se of multi-scale fusions at model architecture level. Aware of the 

emarkable accuracy obtained by these deep learning approaches, 

e propose to exploit them in conjunction with other input types, 

.g .the depth data. 

Human Pose on Depth Maps. Depth maps are an uncommon 

ata type for the human pose estimation models, probably due to 

he lack of publicly released datasets with synthetic or real depth 

ata and the limited size, in terms of annotated data, of the exist- 

ng ones. In addition, the method proposed by Shotton et al. [15] is 

ften used to automatically annotate depth data with body joint 

ocations, resulting in unreliable and imprecise annotations. This 

ethod is widely used due to its implementation in the Microsoft 

inect SDK : based on Random Forest and trained using a synthetic 

roprietary dataset, it obtains real time speed and a reasonable ac- 

uracy. Hough forests are used by Girshick et al. [16] to regress the 

oordinates of visible and occluded body joints directly from depth 

aps. In the work of Jung et al. [17] , a nearest neighbor approach,

ombined with random trees, is used to localize body joints from 

ingle depth maps. The remaining works [18,19] are based on accu- 

ate but expensive 3D scanners: they usually propose techniques to 

atch fixed pre-defined body models to the acquired point cloud. 

As mentioned above, there is a limited number of depth-based 

atasets for HPE in the literature. The ITOP ( Invariant Top View ) 

ataset [20] contains about 50k low-quality depth images acquired 

lacing two depth sensors ( Asus Xtion Pro ) in the top and the side

oint of view; body joints are manually annotated. A new dataset 

as been recently proposed by DEusanio et al. [21] , in which the 

ose annotations of the Watch-n-Patch dataset [22] have been 

anually refined, for more than 3k frames. In addition, a multi- 

tage and fully convolutional neural network is proposed, obtaining 

eal time speed and a good accuracy [23] . 

Human Pose Refinement. Similar to the Human Pose Estima- 

ion task, most of the Human Pose Refinement methods are based 

n 2D intensity images. In general, several methods [12,24,25] are 

ased on multi-stage architectures, trained through an end-to-end 

rocedure, in which each stage of the model refines the previous 

redictions. Others [26] exploit a shared weight model to estimate 

he error on the pose prediction. As shown by Moon et al. [27] ,

ll of these methods merge the pose estimation and the refine- 

ent task in a single model, obtaining a refinement framework in 

hich the pose estimation and its refinement are strictly depen- 

ent on each other. In this paper, we propose an approach that 

vercomes this issue. Zhang et al. [28] recently proposed a method 

hat predicts an initial 3D pose which is then refined by a point 
186 
loud-based network. Wan et al. [29] proposed an approach, based 

n RGB and segmentation images, that focuses on body parts to re- 

ne a 3D pose. The lack of training data is addressed specifically by 

oon et al. [27] , proposing a model-agnostic human pose refine- 

ent network that is trained with synthetic data expressly gen- 

rated with the error statistics presented by Ruggero Ronchi and 

erona [30,31] introduced a similar approach: a deep neural model 

s trained using a synthetic dataset created with ad-hoc rules. 

. Proposed method 

RefiNet is a modular framework composed of three different 

odules that, given as input a depth image and a set of 2D im- 

ge coordinates of the body joints, outputs a refined and accurate 

D human pose in camera space, i.e .in the absolute 3D camera co- 

rdinate system. Fig. 1 shows a visual summary of RefiNet, high- 

ighting the differences with a conventional baseline model that di- 

ectly outputs a 3D pose sampling the z coordinate from the depth 

ap, without any refinement procedure. In the proposed system, 

he initial 2D HPE is provided by an existing off-the-shelf method. 

he three different modules, here referred to as (Module A, B, and 

) are further detailed in the following sections and an overall 

ipeline is reported in Fig. 2 . During the training phase, each mod- 

le is independently trained, i.e .the output of the previous mod- 

le is not requested to train the following one. On the contrary, 

aussian noise is added to the ground-truth annotations and these 

oisy joints are exploited as training data. In this way, each mod- 

le is capable of refining the input noisy pose during the testing 

hase. 

.1. Initial 2D human pose estimation 

As mentioned above, RefiNet starts its computation from an ini- 

ial 2D human pose obtained from a depth or RGB image. This ini- 

ial body pose can be computed using any off-the-shelf pose es- 

imator available in the literature, applied on a 2D image, repre- 

ented, for instance, by an RGB image, or a depth map (encoded 

s grey-level image), or an IR amplitude map. Certainly, the best 

esults would be obtained by training and testing human pose es- 

imation on huge RGB datasets, such as COCO [7] and MPII Human 

ose [32] . However, not all active depth cameras are coupled with 

GB sensors thus able to provide both intensity and depth data at 

he same time. Moreover, coordinate translation and parallax is- 

ues between the RGB channel and the depth one should be taken 

nto account. The use of IR amplitude images available on ToF cam- 

ras can represent a partial solution since IR and depth are aligned 

y definition ( i.e .they are acquired by the same sensor). On the 

ther hand, the pose estimation methods may perform worse or 

ven not work on this kind of data. Therefore, we decide to train 

https://aimagelab.ing.unimore.it/go/3d-human-pose-refinement
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Fig. 2. Overview of the modules that compose the RefiNet framework. Module A receives 2D depth patches, extracted from depth maps, and provides 2D offsets. Module B 

takes the whole 3D skeleton as input while Module C analyzes point clouds sampled around joints. Both Module B and Module C output 3D offsets.. 

Fig. 3. Visual examples of the output of each module of the RefiNet framework. Starting from the left, the initial 2D HPE, with the related depth map, is the input of the 

framework. Then Module A refines the skeleton through 2D patches, while Module B and Module C work on the 3D skeleton and point cloud, respectively.. 
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D state-of-the-art methods on depth images from scratch to pro- 

ide the initial pose to the proposed framework. Once the 2D HPE 

s computed on the input depth image, each joint is associated to 

 specific depth value. Thus, including also the camera calibration 

arameters, it is possible to compute the 3D coordinates of each 

oint in camera space. Unfortunately, this translating procedure al- 

ays introduces an approximation since, even in case of correct 

D pose estimation, the resulting 3D joints would lie on the body 

urface and may be affected by errors due to occlusions and noise. 

efiNet directly addresses the aforementioned problems. 

.2. General training procedure 

All the modules of RefiNet are trained following a similar ap- 

roach. Each module is individually trained and is completely in- 

ependent of the others. In fact, it requires only ground-truth body 

oses to be trained. Errors, by means of Gaussian noise, are added 

o annotated joints, that are then used as input. This technique 

imulates the presence of errors during the pose prediction pro- 

edure. As a result, each module learns to remove noise from joint 

ocations and to regress the original accurate human pose. This ap- 

roach is especially important for Module A, which is indeed inde- 

endent of any specific 2D human pose estimation used to regress 

he initial pose. 

We adopt a similar loss function L o for the training of every 

odule, i.e .the mean squared error between the predicted and the 

round truth offset for each body joint. In addition, a mask is ap- 

lied in order to ignore non-visible joints: 

 o = 

1 

n 

n ∑ 

i =1 

W 

i ·
∥∥ δi − t i 

∥∥2 

2 
(1) 

here n is the number of joints of the skeleton and W 

i ∈ { 0 , 1 }
s the visibility mask for the i -th joint (which is 1 if it is visible,

 otherwise). For each joint, δi and t i are the predicted and the 

round truth displacements. 

.3. Module a: 2D patch-based refinement 

Module A aims to refine the initial 2D pose estimation through 

he prediction of 2D offsets. The input is represented by a depth 

ap and the body joint coordinates computed on it, expressed 

n the (x, y ) form. This module is composed of a model that re-

eives as input 2D patches cropped around each predicted joint in 

he depth map. The output is a displacement vector δ = (δx , δy ) 
187
hich denotes the displacement of each joint with respect to its 

nitial position: indeed, each final joint position is computed as 

 + δx , y + δy , i.e .the sum of the input coordinates and the pre-

icted offset. Module A is specifically designed to correct the small 

rrors in the 2D human pose that negatively influence the sam- 

led z-value, resulting in inaccurate 3D coordinates. A visual ex- 

mple of this procedure is shown in Fig. 3 : the z-value of the left

lbow after Module A ( Fig. 3 a) is more accurate than the initial

ne (Fig. ). 

Model. The model is a deep neural network consisting of 3 dif- 

erent blocks. The first one receives in input a patch and applies 

 single 7 × 7 convolutional layer with 64 feature maps and re- 

uces the spatial dimension with a max-pooling layer with stride 

 = 2 . Taking inspiration from He et al. [33] , the feature maps are

hen fed to 2 residual layers with 64 and 128 channels and stride 

 = 2 . Finally, the feature maps are grouped using an average pool- 

ng layer and used as input for a sequence of 3 fully connected 

ayers with 256, 256, and 2 hidden units. From a general point of 

iew, Module A learns to predict 2D coordinate displacements for 

ach patch independently. 

Training. We apply a normalization procedure on each patch, in 

rder to obtain zero-mean and unit-variance tensors. We directly 

pply random Gaussian noise to the input 2D joints. We investigate 

he influence of the standard deviation σ of the error distribution 

n the experimental section. The optimizer is Adam [34] with base 

earning rate of 10 −3 , in combination with batch normalization and 

andom dropout. 

.4. Module b: Skeleton-based refinement 

The goal of the second module is to refine the 3D human pose 

stimation relying only on information provided by the 3D skele- 

on. The input of Module B is represented by the 2D body joint 

oordinates and the depth map, while the output is the same co- 

rdinates but in the 3D camera space. As first step, the bidimen- 

ional (x, y ) input is converted in real-world coordinates ( x C , y C , z C )
sing the camera calibration parameters K = { f x , f y , c x , c y } . The co-

rdinate conversion process is computed as follows: 

 

x C , y C , z C ) = 

(
(x − c x ) · z 

f x 
, (y − c y ) · z 

f y 
, z 

)
(2) 

here z is the value of the depth map sampled in (x, y ) , f x and

f y are the focal lengths, c x and c y the coordinates of the optical 

enter. To mitigate the effect of noise and missing depth data, the 
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ampled z is calculated as the median value within a 3 × 3 neigh- 

orhood centered in (x, y ) . Then, the 3D human skeleton – ex- 

ressed as the set of 3D body joints – is fed to the deep model 

escribed below. Similarly to Module A and differently from the 

revious version [10] , an offset is regressed for each body joint, in 

rder to move the joints from the incorrect location to the most 

lausible one. Each predicted offset is a three-dimensional dis- 

lacement vector δ = (δx , δy , δz ) between the location (x C , y C , z C )

f each input joint, expressed in camera-space coordinates, and the 

efined position. 

Model. The deep architecture of Module B is inspired by the 

ork of Martinez et al. [35] . Specifically, the model is based on a

equence of 4 blocks. The first one is a fully-connected layer with 

024 units. This block is followed by two residual blocks, each con- 

aining 2 fully-connected layers with 1024 units. Finally, the out- 

ut block is a fully-connected layer with n · 3 units where n is 

he number of skeleton joints. We adopt the same setting for each 

ully-connected layer, using batch normalization and ReLU as acti- 

ation function. 

Training. For training, a random Gaussian noise is applied on 

he (x, y ) ground-truth coordinates, before sampling the z-value 

rom the depth map. We observe that this procedure can effec- 

ively simulate the initial error of a 2D human pose estimator, and 

hus be used to train a model able to refine 3D coordinates re- 

rieved from the augmented 2D ones. This procedure can lead to 

arge variations on the z axis when coordinates are lifted from 2D 

o 3D, since little variations on the (x, y ) plane can correspond to

rastically different depth values ( e.g .see Fig. ). 

In this case, the 3D predicted displacement and the correspond- 

ng ground truth of the i -th joint, defined in the loss function L o 
see Eq. 1 ), are defined as δi = (δi 

x , δ
i 
y , δ

i 
z ) and t i = ( x i 

C 
, y i 

C 
, z i 

C 
) . As

n Module A, the learning rate is set to 10 −3 and Adam [34] is

dopted as optimizer. 

.5. Module c: Point cloud-based refinement 

The third module aims to refine the joint locations relying on 

he 3D information of the point cloud sampled around each joint 

f the skeleton. Thus, the input of Module C is a point cloud, which

s computed starting from the depth map and the camera calibra- 

ion parameters, here referred as K. Then, the point cloud is sam- 

led around the center of each joint. Starting from an initial 3D 

olume size, we expand it progressively until it contains a min- 

mum amount of points or reaches a predefined maximum size, 

et to 150 mm higher than the initial 3D size. As minimum and 

aximum number of points, in contrast to the values ( [128 , 20 0 0] )

sed in the previous version of RefiNet, described in [10] , we used 

32 , 512] , which we empirically select as the best trade-off be- 

ween accuracy and inference speed. If the number of points in 

he volume is higher than the maximum, we randomly drop the 

xceeding points. We decide to sample and analyze small point 

louds instead of considering the whole point cloud, ranging from 

he head to the feet of the subject. This approach reduces the 

omputational load and the GPU memory requirements. The recent 

ointNet architecture [36] is exploited to regress a 3D displacement 

or each body joint. Each regressed offset is expressed as the dis- 

lacement vector δ = (δx , δy , δz ) between the input locations of the 

x C , y C , z C ) joint coordinates in camera space and the refined ones. 

Model. The model architecture is inspired by the work of Qi 

t al. [36] and consists of two different blocks with different goals: 

he first is responsible for the feature extraction while the second 

ne for the offset regression. The single-point features computed 

y the first block are aggregated through a max-pooling layer and 

hen used as input for the second block. The second block consists 

f a fully-connected layer with 128 units, a ReLU activation, and an 
188 
utput layer with 3 units, corresponding to the 3D displacement 

ector. 

Training. The training procedure of this module follows the 

aradigm used for the previous modules, i.e .using random Gaus- 

ian noise applied on the 3D ground-truth annotations available 

n the train dataset. Preserving the 3D camera space in which the 

odule works, the noise is added to the (x C , y C , z C ) coordinates of

ach joint before the crop of the point cloud. 

As in the previous module, the 3D predicted displacement and 

he corresponding ground truth of the i -th joint, used in the loss L o 
see Eq. 1 ), are defined as δi = (δi 

x , δ
i 
y , δ

i 
z ) and t i = ( x i 

C 
, y i 

C 
, z i 

C 
) . We

et the initial learning rate to 10 −3 and use the Adam [34] opti- 

izer, along with dropout (with drop probability p = . 2 ) and batch

ormalization. 

. Experimental evaluation 

.1. Dataset 

One of the main limitations of using depth data is the lack of 

atasets containing depth maps, specifically collected for the Hu- 

an Pose Estimation. Moreover, several existing datasets include 

nly the joint annotations placed on the body surface, e.g . [21] , 

hile datasets obtained using Mocap systems are not always re- 

iable because the depth value of body joints usually correspond to 

he markers placed near the body surface. It is also important to 

ote that using markers alters the visual appearance and the 3D 

hape of the person. 

In our experimental validation, we use the ITOP dataset [20] , 

hich has been acquired using two Asus Xtion Pro , a Structured 

ight depth sensor having a resolution of 320 × 240 pixels. The 

ataset consists of about 40k training and 10k testing depth maps 

f 20 subjects performing 15 different actions. One sensor is placed 

bove (“top-view”) and the other one in front of (“side-view”) the 

cquired subject. Annotations consist of the 2D and 3D coordinates 

f 15 body joints. Exploiting the two points of view, the body joints 

re semi-automatically annotated and manually refined to lie in- 

ide the body of the subject, i.e .at the 3D center of the physical

oint. 

In this paper, we focused on the “side-view” part of the dataset, 

hich contains recordings from the usual frontal view. 

.2. Experiments 

For our experimental evaluation, we adopt two state-of-the-art 

D human pose estimators, i.e .OpenPose [4] and HRNet [5] . We 

rain them from scratch on the ITOP dataset using the Adam opti- 

izer, a learning rate of 10 −3 and weight decay 10 −4 . We expect to 

btain similar results with both the architectures, since RefiNet is 

ndependent of the method that predicts the initial 2D body joints. 

We adopt two common evaluation metrics in the HPE field in 

rder to assess the overall quality of RefiNet framework: the mean 

verage Precision (mAP), as proposed by Haque et al. [20] , and the 

ean Distance Error (mDE). The mAP is the percentage of predicted 

oints whose 3D distance from the ground truth is lower than a 

hreshold τ ; the mDE is the average distance between the pre- 

icted joints and the ground truth. They are defined as: 

AP = 

1 

n 

∑ 

n 

(‖ v − w ‖ 2 < τ
)

[ % ] (3) 

DE = 

1 

n 

∑ 

n 

‖ v − w ‖ 2 [ cm ] (4) 

here n is the overall number of joints, v is the predicted joint 

hile w is the ground truth joint. In our experiments, we set the 

hreshold τ = 10 cm, as in [20] . 
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Fig. 4. Effects of Gaussian noise σ (top) and 2D patch size (bottom) on mAP accu- 

racy of Module A. OpenPose and HRNet refer to the initial set of joints.. 

Fig. 5. Effects of Gaussian noise σ on mAP accuracy of Module B. 
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Fig. 6. Effects of Gaussian noise σ (top) and 3D patch size (bottom) on mAP accu- 

racy of Module C. OpenPose and HRNet refer to the initial set of joints.. 
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Module A . Two key hyper-parameters of Module A are the stan- 

ard deviation of the Gaussian noise and the 2D patch size. Both 

he parameters are expressed in pixels. 

As shown in Fig. 4 (top), the standard deviation of the random 

aussian noise added to the ground-truth joints has a limited im- 

act: this element confirms the ability of Module A to correctly 

efine the original pose. We observe an accuracy peak at σ = 3 

corresponding to the 7 . 5% of the patch size), which is the value

hat is used in the experiments reported in Section 4.3 . On the 

ther hand, the 2D patch size has a higher impact on performance, 

s shown in Fig. 4 (bottom). In this case, we use a patch size of

0 × 40 pixels in the rest of the experiments. 

Module B . For the Module B, we evaluate the main hyper- 

arameter of the added Gaussian noise, i.e .its standard deviation. 

lso in this case, the parameter is expressed in pixels since the 

oise is added to the 2D human pose (to simulate the error of an

naccurate 2D human pose estimator). 

As shown in Fig. 5 , the hyper-parameter has a substantial im- 

act on the performance of this module. The higher accuracy is 

btained using σ ∈ [3 . 0 , 4 . 0] . Thus, we use σ = 3 . 0 in the follow-

ng experiments. 

Module C . For the last module, we consider two hyper- 

arameters: the standard deviation of the added Gaussian noise 

nd the size of the considered 3D volume. Both the parameters are 

xpressed in millimeters. 
189
As shown in Fig. 6 (top), the standard deviation of the random 

aussian noise added to the 3D ground-truth joints has a limited 

mpact, with an accuracy peak in the range σ ∈ [42 , 60] . In the fol-

owing experiments, we set σ = 42 . As in Module A, the initial size

f the considered 3D volume has a higher impact on performance, 

s shown in Fig. 6 (bottom). In this case, we set a volume size of

00 × 200 × 200 mm in the experiments of the following Section. 

.3. Results 

Experimental results obtained on the ITOP dataset are reported 

n Table 1 and compared with our previous work [10] . In addition, 

s an ablation study, we report the results obtained exploiting only 

ne module at a time, indicated with a 
√ 

symbol, during the test- 

ng phase. It is worth noting that RefiNet framework leads to better 

esults with an overall improvement of about 27% over mAP and 

bout 37% over mDE. As expected, refining the output of OpenPose 

nd HRNet leads to similar results, confirming that RefiNet is in- 

ariant to different off-the-shelf 2D predictors. 

Some visual results are reported in Fig. 3 . As shown, Module 

 is able to refine the 2D position of the body joints. However, 

epth values can be still inaccurate due to local occlusions that 

nfluence the sampling of the z value from the depth map, as vis- 

ble in the example for the left arm. Thus, Module B refines the 

D joints obtaining a plausible 3D skeleton in terms, for instance, 

f limb lengths. Finally, the Module C refines the 3D prediction of 

ach joint by looking at the point cloud. 

We compare the proposed framework with literature methods 

n Table 2 . Following the literature convention [20] , we present the 

AP metric divided into the upper and lower body parts in addi- 

ion to the full body. Specifically, we report the results from the 

ork of Haque et al. [20] , our first version of the proposed frame-

ork [10] , the recent method proposed by Zhang et al. [28] , and a

aseline approach. For the baseline, we first obtain the 2D joint lo- 

ations through HRNet [5] , then the 3D joints are computed using 

he 2D locations, the corresponding z-values taken from the depth 

ap, and the camera calibration parameters. Experimental results 

how that RefiNet achieves comparable accuracy with the respect 

o methods designed to directly work on depth images. Specifically, 

he proposed framework effectively improves the predictions ob- 



A. D’Eusanio, A. Simoni, S. Pini et al. Pattern Recognition Letters 171 (2023) 185–191 

Table 1 

Results in terms of mAP and mDE obtained on ITOP dataset. Mod. A, Mod. B and Mod. C refer to the three modules of RefiNet. Improvements are 

computed with the respect to poses obtained with the initial 2D pose estimators. The 
√ 

symbol indicates that the module is used for the refinement, 

since in RefiNet each module can be independently enabled or disabled. 

Refinement 

Method Mod. A Mod. B Mod. C 

OpenPose [4] HRNet [5] 

mAP ↑ Improv. mDE ↓ Improv. mAP ↑ Improv. mDE ↓ Improv. 

None 0.646 - 12.634 - 0.670 - 10.711 - 

[10] 
√ 

0.687 6.35% 10.442 17.4% 0.699 4.32% 10.060 6.08% √ 

0.775 20.0% 8.463 33.0% 0.787 17.5% 8.185 23.6% √ 

0.719 11.3% 11.834 6.33% 0.734 9.55% 10.693 0.17% √ √ √ 

0.818 26.6% 7.646 39.5% 0.824 23.0% 7.447 30.5% 

Ours 
√ 

0.687 6.35% 10.415 17.6% 0.700 4.48% 9.994 6.69% √ 

0.811 25.5% 8.258 34.6% 0.833 24.3% 8.335 22.2% √ 

0.735 13.8% 11.630 7.95% 0.752 12.2% 10.436 2.57% √ √ √ 

0.833 28.9% 7.347 41.8% 0.842 25.7% 7.217 32.6% 

Table 2 

Comparison between 3D HPE methods [20,28,37] , the baseline 

approach (based on HRNet [5] ), and the proposed method. 

Method 

ITOP side view 

Upper Lower Full 

Body Body Body 

Baseline 71.2 62.3 67.0 

[37] 84.8 72.5 80.5 

[20] 84.0 67.3 77.4 

[28] 88.8 94.1 89.6 

[10] 77.9 85.7 81.8 

Ours 80.8 88.1 84.2 

Table 3 

Performance analysis in terms of the number of learnable pa- 

rameters, the amount of RAM and the inference time required 

by the system. 

Model 

Params RAM Infer. CPU Infer. GPU 

(M) (GB) (ms) (ms) 

OpenPose 52.311 1.175 285.377 44.859 

HRNet 28.536 1.107 175.757 43.385 

Module A 0.828 0.669 6.033 1.872 

Module B 4.302 0.665 0.897 0.824 

Module C 2.935 1.681 72.607 5.542 

RefiNet 8.064 1.705 77.815 7.543 
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ained from off-the-shelf Human Pose Estimation methods origi- 

ally developed to work on the 2D domain. The method of Zhang 

t al. [28] confirms that point clouds are an effective information 

ource for this task. It shows that the adoption of a specific ad- 

ersarial loss function in combination with a-priori dataset knowl- 

dge (the bone length ratio) can improve the mAP, at the expense 

f training complexity. 

We also analyze the computational requirements of RefiNet in 

erms of number of learnable parameters, required video mem- 

ry, and inference time (on both CPU and GPU). We evaluate these 

easures running the framework on a computer equipped with an 

ntel i7-7700K and a GPU NVidia 1080Ti and report the results in 

able 3 . As it can be seen, RefiNet is able to run in real time and

he three modules introduce a limited overhead in terms of param- 

ters, memory usage, and inference time w.r.t.the off-the-shelf 2D 

PE methods. Compared to Zhang et al. [28] , RefiNet is lighter in 

erms of computational load, running at about 130 fps instead of 

4.4 fps. 

. Conclusion 

In this paper, we improve and evaluate RefiNet, a modular 

ramework that aims to refine a 3D pose, starting from a depth 
190 
ap and a coarse 2D pose only. Thanks to the adopted training 

rocedure, the system does not depend on any specific off-the- 

helf human pose estimator. The modules are independent of each 

ther and introduce a limited overhead in terms of computing re- 

ources with the respect to the baseline deep models. Experimen- 

al results on ITOP confirm that RefiNet steadily improves the base- 

ine approach and results are comparable to the ones of 3D models. 

everal future works can be planned. For instance, an adversarial 

oss can be introduced, having shown to improve the overall accu- 

acy. In addition, the use of the single modules of RefiNet frame- 

ork can be further investigated. Finally, the proposed pipeline can 

e also applied and analyzed on a multi-person scenario, in a top- 

own fashion. 

eclaration of competing interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

eferences 

[1] L.L. Presti, M. La Cascia, 3D skeleton-based human action classification: asur- 

vey, Pattern Recognit. (2016) . 

[2] G. Borghi, R. Vezzani, R. Cucchiara, Fast gesture recognition with multiple 
stream discrete hmms on 3d skeletons, ICPR, IEEE, 2016 . 

[3] M. Carraro, M. Munaro, E. Menegatti, Skeleton estimation and tracking by 
means of depth data fusion from depth camera networks, Rob. Auton. Syst. 

(2018) . 
[4] Z. Cao, T. Simon, S.-E. Wei, Y. Sheikh, Realtime multi-person 2d pose estimation 

using part affinity fields, CVPR, 2017 . 

[5] K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning 
for human pose estimation, CVPR, 2019 . 

[6] X. Zhou, D. Wang, P. Krähenbühl, Objects as points, arXiv preprint 
arXiv:1904.07850, 2019 . 

[7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zit-
nick, Microsoft COCO: common objects in context, ECCV, 2014 . 

[8] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar, G. Pons-Moll, 
C. Theobalt, Single-shot multi-person 3d pose estimation from monocular rgb, 

in: International Conference on 3D Vision (3DV), 2018 . 

[9] R. Dabral, N.B. Gundavarapu, R. Mitra, A. Sharma, G. Ramakrishnan, A. Jain, 
Multi-person 3d human pose estimation from monocular images, in: Interna- 

tional Conference on 3D Vision (3DV), 2019 . 
[10] A. D’Eusanio, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara, Refinet: 3d human 

pose refinement with depth maps, ICPR, 2020 . 

http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0001
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0002
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0003
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0004
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0005
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0006
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0007
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0008
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0009
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0010


A. D’Eusanio, A. Simoni, S. Pini et al. Pattern Recognition Letters 171 (2023) 185–191 

[

 

 

[  

[

[

[

[  

[

[

[

[

[

[

[

[

[

[
[

[  

[  
[11] S.-E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Convolutional pose machines, 
CVPR, 2016 . 

12] A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose esti- 
mation, ECCV, 2016 . 

[13] G. Rogez, P. Weinzaepfel, C. Schmid, Lcr-net: localization-classification-regres- 
sion for human pose, CVPR, 2017 . 

[14] B. Xiao, H. Wu, Y. Wei, Simple baselines for human pose estimation and track- 
ing, ECCV, 2018 . 

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

A. Blake, Real-time human pose recognition in parts from single depth images, 
CVPR, 2011 . 

[16] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, A. Fitzgibbon, Efficient regression 
of general-activity human poses from depth images, ICCV, 2011 . 

[17] H.Y. Jung, Y. Suh, G. Moon, K.M. Lee, A sequential approach to 3d human pose
estimation: separation of localization and identification of body joints, ECCV, 

2016 . 

[18] V. Ganapathi, C. Plagemann, D. Koller, S. Thrun, Real-time human pose tracking 
from range data, ECCV, 2012 . 

[19] T. Helten, A. Baak, G. Bharaj, M. Müller, H.-P. Seidel, C. Theobalt, Personaliza- 
tion and evaluation of a real-time depth-based full body tracker, in: Interna- 

tional Conference on 3D Vision (3DV), 2013 . 
20] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, L. Fei-Fei, Towards viewpoint in-

variant 3d human pose estimation, ECCV, 2016 . 

21] A. DEusanio, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara, Manual annotations on 
depth maps for human pose estimation, ICIAP, 2019 . 

22] C. Wu, J. Zhang, S. Savarese, A. Saxena, Watch-n-patch: unsupervised under- 
standing of actions and relations, CVPR, 2015 . 

23] D. Ballotta, G. Borghi, R. Vezzani, R. Cucchiara, Fully convolutional network for 
head detection with depth images, in: ICPR, IEEE, 2018, pp. 752–757 . 
191 
24] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, J. Sun, Cascaded pyramid network
for multi-person pose estimation, CVPR, 2018 . 

25] A. Bulat, G. Tzimiropoulos, Human pose estimation via convolutional part 
heatmap regression, ECCV, 2016 . 

26] J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, Human pose estimation with 
iterative error feedback, CVPR, 2016 . 

27] G. Moon, J.Y. Chang, K.M. Lee, Posefix: model-agnostic general human pose re- 
finement network, CVPR, 2019 . 

28] Z. Zhang, L. Hu, X. Deng, S. Xia, Weakly supervised adversarial learning for 3d 

human pose estimation from point clouds, IEEE TVCG (2020) . 
29] Q. Wan, W. Qiu, A.L. Yuille, Patch-based 3d human pose refinement, arXiv 

preprint arXiv:1905.08231 (2019) . 
30] M. Ruggero Ronchi, P. Perona, Benchmarking and error diagnosis in multi-in- 

stance pose estimation, CVPR, 2017 . 
31] M. Fieraru, A. Khoreva, L. Pishchulin, B. Schiele, Learning to refine human pose 

estimation, CVPR Workshops, 2018 . 

32] M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, 2d human pose estimation: 
new benchmark and state of the art analysis, CVPR, 2014 . 

33] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 
CVPR, 2016 . 

34] D.P. Kingma, J. B, Adam:a method for stochastic optimization, ICLR (2014) . 
35] J. Martinez, R. Hossain, J. Romero, J.J. Little, A simple yet effective baseline for 

3d human pose estimation, ICCV, 2017 . 

36] C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: deep learning on point sets for 3d
classification and segmentation, CVPR, 2017 . 

37] H. Yub Jung, S. Lee, Y. Seok Heo, I. Dong Yun, Random tree walk toward in-
stantaneous 3d human pose estimation, CVPR, 2015 . 

http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0011
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0012
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0013
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0014
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0015
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0016
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0017
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0018
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0019
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0020
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0021
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0022
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0023
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0024
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0025
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0026
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0027
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0028
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0029
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0030
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0031
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0032
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0033
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0034
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0035
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0036
http://refhub.elsevier.com/S0167-8655(23)00069-7/sbref0037

	Depth-based 3D human pose refinement: Evaluating the refinet framework
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Initial 2D human pose estimation
	3.2 General training procedure
	3.3 Module a: 2D patch-based refinement
	3.4 Module b: Skeleton-based refinement
	3.5 Module c: Point cloud-based refinement

	4 Experimental evaluation
	4.1 Dataset
	4.2 Experiments
	4.3 Results

	5 Conclusion
	Declaration of competing interest
	Declaration of Competing Interest
	References


