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Simple Summary: Accurate prediction of the risk of endometrial cancer (EC) recurrence is crucial to
identify the best treatment and achieve the most favorable outcome. Currently, no model is available
to predict this recurrence risk using pre-surgical computed tomography (CT) scans. This pilot study
was carried out to investigate the potential of radiomic features extracted from CT scans to accurately
predict the risk recurrence in such patients. The results showed that a machine learning-based model
trained on CT radiomic features was able to predict EC recurrence risk with high accuracy. These
results suggest that radiomics analysis using pre-surgical CT scans may provide a valuable tool for
predicting recurrences in patients with EC. Further independent studies are required to strengthen
these findings.

Abstract: Background: Current prognostic models lack the use of pre-operative CT images to predict
recurrence in endometrial cancer (EC) patients. Our study aimed to investigate the potential of
radiomic features extracted from pre-surgical CT scans to accurately predict disease-free survival
(DFS) among EC patients. Methods: Contrast-Enhanced CT (CE-CT) scans from 81 EC cases were used
to extract the radiomic features from semi-automatically contoured volumes of interest. We employed
a 10-fold cross-validation approach with a 6:4 training to test set and utilized data augmentation
and balancing techniques. Univariate analysis was applied for feature reduction leading to the
development of three distinct machine learning (ML) models for the prediction of DFS: LASSO-Cox,
CoxBoost and Random Forest (RFsrc). Results: In the training set, the ML models demonstrated
AUCs ranging from 0.92 to 0.93, sensitivities from 0.96 to 1.00 and specificities from 0.77 to 0.89.
In the test set, AUCs ranged from 0.86 to 0.90, sensitivities from 0.89 to 1.00 and specificities from
0.73 to 0.90. Patients classified as having a high recurrence risk prediction by ML models exhibited
significantly worse DSF (p-value < 0.001) across all models. Conclusions: Our findings demonstrate
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the potential of radiomics in predicting EC recurrence. While further validation studies are needed,
our results underscore the promising role of radiomics in forecasting EC outcomes.

Keywords: endometrial cancer; pre-surgical risk; recurrence; prognosis; radiomic; artificial intelli-
gence; personalized medicine

1. Introduction

Endometrial cancer (EC) has become the most prevalent gynecological malignancy
with rising incidence and mortality rates, particularly in high-income countries [1]. This
alarming trend has been primarily linked to the escalation of obesity rates, alongside other
predisposing factors such as physical inactivity and metabolic syndrome [2].

In general, early stages of low-grade endometrioid ECs are associated with a favorable
prognosis, whereas high-grade endometrioid and other types of ECs are characterized by a
high risk of recurrences and a poor prognosis. Even though this latter group represents
a small proportion of these patients (approximatively 20%), half of all EC-related deaths
are found in this category [3,4]. Nevertheless, some low-grade tumors may also exhibit
aggressive behavior. Therefore, the need to better stratify EC patients with high-risk of
recurrence and death has continuously challenged the various classification systems of EC,
starting from the Bokhman histologically-based classification to the newer, more complex,
molecular-based ones [5,6]. Currently, the European Society of Gynecological Oncology
(ESGO)/European Society for Radiotherapy and Oncology (ESTRO)/European Society of
Pathology (ESP) guidelines recommend the integration of multiple layers of information
including clinical, histological and molecular features [7]. However, their primary limitation
is the timing of data acquisition, which occurs after surgery. Additionally, generalizing
results based on a few histological or molecular markers is a significant concern. For
instance, while the current classification system places significant value in stratifying the
high-grade pathogenic somatic mutations in the exonuclease domain of the replicative
DNA polymerase epsilon (POLE) mutated (with good prognosis) from P53 abnormal (with
poor prognosis) for the selection of adjuvant treatment [7,8], it has limited usefulness on
the intermediate prognosis group (no specific molecular profile (NSMP) and microsatellite
instability (MSI) molecular subtypes).

In recent years, the radiomics field has gained significant momentum, with an ever-
growing body of evidence suggesting its potential and capacity in identifying features that
are otherwise unseen by the human eye, as well as their association with various clinical and
pathological features [9]. In EC, pre-surgical radiological assessment is employed for disease
staging, particularly for the evaluation of lymph node involvement, which is required for
the selection of the appropriate treatment. However, this approach can underestimate the
degree of disease extension, as important prognosis-associated features such as myometrial
invasion and lymphovascular invasion (LVI), are only identified by the pathologist in
post-surgical histological samples [4,10]. Selecting patients by noninvasive methods at
diagnosis to tailor the most appropriate surgical strategy has always been the clinician’s
goal, in order to reduce morbidity and mortality risks associated with overtreatment. The
integration of radiomics with the imaging modalities already employed in clinical practice
could lead to a better preoperative evaluation and more efficient management [11].

To date, various studies have explored the usefulness of radiomics-based artificial
intelligence (AI) models in identifying different features of EC associated with lymph node
metastases [12–14], LVI [12,15,16], as well as assisting in the differential diagnosis of EC
from benign lesions [17,18] with promising results. Most of the studies have used magnetic
resonance imaging (MRI) as input for feature extraction. However, limited research is
available regarding the applicability of radiomic models on Computer Tomography (CT)
scans. Despite MRI being the recommended imaging technique for the pelvic region,
pre-surgical cancer staging is performed using CT scans worldwide due to their wider
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distribution and faster acquisition times. So far, CT-based radiomics coupled with machine
learning (ML) models have demonstrated promising results in predicting the progression-
free survival of other tumor types [19] including small cell lung cancer [20], esophageal
cancer [21], glottic cancer [22] and gastric cancer [23]. However, such analyses have not
been carried out yet for EC.

Thus, the aim of this pilot study was to develop and test a non-invasive AI-based
model capable of predicting relapse of EC patients by utilizing radiomic data extracted
from presurgical CT scans.

2. Materials and Methods
2.1. Study Cohort and Clinicopathologic Data

This retrospective, observational study was approved by the local Ethical Committee
with the number 189/2021/Oss/AOUBo. All patients underwent clinical and pathological
diagnosis, surgical and pathological staging, and follow-up at the Division of Oncologic
Gynecology IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy [24].
Electronic medical files were used to obtain all patients’ data, including age at diagnosis,
Body Mass Index (BMI), International Federation of Gynecology and Obstetrics (FIGO)
stage determined using surgical and pathological reports, European Society of Medical On-
cology (ESMO) 2016 risk stratification group, type of surgery, peri-operative complications,
imaging studies and pathology reports. The pathological report and stage were obtained
following the ESGO/ESTRO/ESMO guidelines [25,26]. The Cancer Genome Atlas Program
(TCGA)/The Proactive Molecular Risk Classifier for Endometrial Cancer (PROMISE)/Post
Operative Radiation Therapy in Endometrial Carcinoma (PORTEC) analysis was performed
as previously described [27–30] (Supplementary Materials).

2.2. Patients CT Scans, Image Selection and Contouring

Pre-surgical CT scans, routinely performed in our unit for EC disease staging, were
extracted from the Picture Archiving and Communication System (PACS) of our hospital.
We excluded CT scans in which image artifacts due to hip prosthesis, or movement artifacts
were detected.

The CT examinations were performed on different CT scanners, i.e., LightSpeed 16,
LightSpeed VCT, Discovery CT 750, Optima 660 by GE Healthcare (GE Healthcare, Milwau-
kee, WI, USA), Brilliance iCT 128, Ingenuity, Brilliance 16 by Philips (Philips Healthcare,
Cleveland, OH, USA), and SOMATOM Definition Edge, Emotion 6 by Siemens (Siemens
Healthcare, Forcheim, Germany). Overall, the CT images were acquired with the following
parameters: mA range: 23–605, kV range: 100–140, helical technique: helix; slice thickness
range: 1–5 mm; IV administered low-osmolality non-ionic iodinated contrast agent dose:
90–150 mL. All the images were reconstructed with a soft tissue algorithm and aligned to
the body axis. The radiomic analysis utilized the venous phase from Contrast-Enhanced
CT (CE-CT) scans. This phase has been noted to be more valuable for endometrial cancer
staging compared to the arterial phase as it particularly highlights parenchymal character-
istics, contrast dynamics, and the contrast between the tumor and myometrium [31–36].
Both radiologists and gynecology experts blind to the pathological results performed a
slice-by-slice evaluation of the CT scans and semi-automatically contoured the complete
volume of each patient’s uterus using the MIM software (v. 7.1.4, MIM Software Inc. Cleve-
land, OH, USA) to obtain the volumes of interest (VOIs). Particular attention was paid to
ensure the exclusion of surrounding intestinal and vascular structures. The inter-physician
reproducibility was assessed on a subset of patients through the evaluation of the Dice
Similarity Coefficient (DSC) and the Mean Distance to Agreement (MDA) which are the
most common measures in terms of geometric quantification of contour similarities [37].
The DSC serves as both a spatial overlap index and a metric for validating reproducibility.
Its value varies between 0 and 1, representing the extent of spatial overlap between two
sets of binary segmentation results. A DSC of 0 signifies no spatial overlap, while a DSC of
1 indicates complete overlap [38]. The MDA describes the mean voxel-wise comparison of
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the distance between two associative points in two contour sets [39], thus representing a
measure of average similarity between them. In particular, an MDA of 0 indicates that the
two contours are identical. In this study, DSCs ≥ 0.8 and MDA values ≤ 3 mm were used
to verify the agreement among the physicians, according to the study by Strolin et al. [40].

2.3. Radiomic Features Extraction and Selection

After the contouring step, the resulting VOIs were used for the feature extraction with
an ad hoc developed Python (v. 3.8.3) [41] script including the PyRadiomics library [42]. In
total, 107 radiomic features (RFs) were calculated from eight different classes: First Order
Statistics, 3D Shape-based, 2D Shape-based, Gray Level Cooccurrence Matrix (GLCM), Gray
Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighboring
Gray Tone Difference Matrix (NGTDM) and Gray Level Dependence Matrix (GLDM). Prior
to the RFs extraction, a pre-processing operation was performed and implemented in the
Python script since the CT images were acquired with different scanners and protocols.
Specifically, the images were resampled to obtain an isotropic voxel spacing of 5 mm and
intensity gray level discretization in 64 bins.

2.4. Construction of the Radiomic Predictive Model

The machine learning (ML) model was created using RStudio v.1.2.1335 (R Core Team,
Vienna, Austria), with coding performed in R v.4.1.3 language (https://www.r-project.org/
accessed on 23 December 2022). The database of RFs was used for developing three
predictive classifiers with ML-based supervised approaches having set the EC recurrence
and the time to the recurrence event as outputs. Figure 1 shows the study design in a
schematic way.
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Figure 1. Study design. CE-CT images were delineated, and Radiomic Features (RFs) were automati-
cally extracted using Pyradiomics. Each patient was associated with observed disease-free survival.
The dataset was divided into training and test sets with a 60:40 ratio 100 times. After the application
of the data augmentation and balancing operations, the training data consisted of 318 EC patients of
which 158 had recurrence (49.7%). A RFs reduction was performed using Kaplan and Meier curves
and calculating the p-value of log-rank test assuming a cutoff of 0.20. Thus, the optimal model was
applied using the following ML-based models: LASSO-Cox, CoxBoost and RFsrc.

https://www.r-project.org/
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In particular, the 107 RFs were scaled using the z-score, then, by generating random
seeds to make the results repeatable, the dataset was divided with a balanced output (i.e.,
disease recurrence) in 60% training and 40% testing 100 times. After the automatic feature
extraction, the patients were divided into training and test sets with a 60:40 ratio. The
training set consisted of 49 EC patients, of which nine (18.4%) presented disease recurrence
during follow-up, while the test set included the remaining 32 patients out of which six
(18.7%) presented recurrence during the follow-up period. After the application of the data
augmentation and balancing operations, the training data consisted of 318 EC patients
of which 158 had recurrence (49.7%). The augmented and balanced dataset was created
using the smoteclassif function from UBL R-package [43] which implements the SMOTE
algorithms [44,45], adopting a number of nearest neighbors (i.e., k parameter) equal to
5 (corresponding to the default value), balancing the ratio of 4.4 between majority and
minority classes and multiplying by an augmentation factor of 4. This value was chosen
to obtain the minimum number of patients (i.e., 300) required to create the ML-based
model [46]. In each augmented and balanced training dataset, a Kaplan-Mayer-based
univariate analysis with a p-value ≤ 0.2 was performed on the initial RFs to reduce the
dimensionality of the database.

All the remaining RFs were included in three different ML-models for the disease
recurrence-free prediction: the LASSO-Cox model, i.e., a Cox proportional-hazards regres-
sion regularized using the Least Absolute Shrinkage and Selection Operator (LASSO), the
CoxBoost model [37], i.e., a Cox model with a likelihood-based boosting, and the RFsrc
model, i.e., a random forest model optimized for the survival analysis. In the LASSO-Cox
model, the LASSO penalization method shrinks the coefficients of non-relevant RFs to
zero, considering both the binary output and the variable of the time frame up to the
event (i.e., the months up to the recurrence event) simultaneously. Regarding the choice
of the best hyperparameter (i.e., the penalty term λ), the cv.glmnet function facilitated the
performance of a 10-fold CV to find the minimum λ [47]. This hyperparameter was used
in the glmnet function to create the investigated LASSO-Cox models [48–50]. On the other
hand, in the CoxBoost model, implemented in R through the CoxBoost function [51], the Cox
regression coefficients are updated at each iteration and a “weak” estimator is fitted to the
modified version of the data to minimize a pre-specified loss function. The final estimate
is given by the combination of all the small contributions used to update the parameters
estimation [51]. In this case, for the choice of the best hyperparameter (i.e., the boosting
step size, which controls the weakness of the estimator), the cv.CoxBoost function was used
to perform a 10-fold CV, thus finding the optimal number of boosting steps, i.e., the one
having the minimum mean partial log-likelihood. Finally, the RFsrc model, implemented
in R through the RFsrc library, allows for the extension of the random forest approach to
the survival analysis [52]. In this case, the RFs were selected using the variable hunting
approach in the var.select function and the top variables were included in the RFsrc model.

For each of the ten iterations, the prediction was performed on both groups by ex-
tracting the Receiver Operating Characteristic (ROC) curve with Area Under the Curve
(AUC), sensitivity, specificity, and confidence interval. The threshold value of the ROC
curve obtained for the training dataset calculated with the Youden’s criterion was used also
in the test dataset. For each approach, models with a statistically significant AUC (i.e., with
a confidence interval between 0.5 and 1) in both training and test sets were selected and the
Bayesian information criterion (BIC) was used to identify the optimal model [53], while the
highest AUC was used for the RFsrc-based model.

Finally, the Kaplan-Meier method was implemented to show the survival curves using
the previously defined ROC threshold.

2.5. Statistical Analysis

We assumed a threshold probability for rejecting the null hypothesis α (two-tailed) = 0.05,
a power of 80%, a proportion of RF-based high-risk subjects of 0.25 and a relative hazard
(high-risk group/low-risk group) = 0.15, thus, the total events needed are 12. Considering
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a baseline event rate (events/unit time) for the low-risk group = 0.35, a median survival
time in the groups = 1.5 years, a censoring rate—censored/unit time (assumed equal for
both groups) = 0 and an average length of follow-up FU = 1.5 years, we calculated a sample
size of 60 patients [54].

Descriptive statistics were presented as absolute values and percentages for categorical
variables and mean ± standard deviation (SD) for continuous variables. The chi-square
test was used to analyze differences in the distribution for the categorical variables, while
the t-test was used for continuous ones.

ROC curves and AUC, representing the correct classification probabilities, were used
to calculate the ability of the radiomic classifier to predict the recurrence of EC after primary
treatment. Disease-Free Survival (DFS) curves were built using the Kaplan-Meier estimator
and the log-rank test was used to assess the statistical significance. The reverse Kaplan-
Meier method was used to calculate the overall follow-up time of patients.

Analyses were performed using SPSS statistical software v26 (SPSS Inc. IBM, Chicago,
IL, USA) and R v.4.1.3, using the following packages: pROC, survminer. The significance
threshold was set at a p-value of 0.05.

3. Results
3.1. Patient Characteristics

The study included a total of 81 patients who were diagnosed with EC at the Division
of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy. The
characteristics of the patients are summarized in Table 1. Most patients were diagnosed at
an early stage, namely 61 (75.3%) at stage I, six (7.4%) at stage II, and 14 (17.3%) at stage
III. Endometrioid EC was the most frequently observed histotype (62, 76.5% of patients),
followed by serous (nine; 11.1% of patients) and the dedifferentiated subtypes (nine; 11.1%
of patients). No significant differences were observed between patients with and without
recurrent disease in terms of age at diagnosis, BMI, associated comorbidities such as
hypertension and diabetes, familiar history of cancer, age of menarche and menopause,
and the use of hormonal therapy (p-values > 0.05 for all variables; Table 1).

The median follow-up time was 32.27 months (interquartile range 10.23; 55.3). During
this period, a total of 15 (18.5%) patients experienced recurrence, and 13 (16%) patients died
of disease. The main characteristics of the patients with recurrent EC were: endometroid
histotype (eight; 53.3%), high-grade (11; 73.3%), P53 abnormal molecular subtype (seven;
46.6%) and were classified as having high-intermediate and high ESMO risk (two; 13.3%
and 13; 86.7%, respectively). None of the low-grade EC patients in this study experienced
recurrent events. The most common sites of recurrence were lymph nodes (five; 33.3%) and
distant sites such as brain and lungs (five; 33.3%) followed by local peritoneal (four; 26.7%)
and vaginal site (one; 6.7%) recurrences.

Table 1. Clinical and pathological characteristics of EC patients included in the study. Summary
statistics are presented as counts (percentages) or mean ± standard deviation. N: number of pa-
tients; N/A: not available; BMI: body mass index; FIGO: Federation Internationale de Gynecolgie et
d’Obstetrique; BRT: brachytherapy; RTE: external radiotherapy; CT: chemotherapy; w/o: without;
w/: with.

No Recurrence
N = 66

With Recurrence
N = 15 p-Value

Age at diagnosis (years) mean ± SD 60.7 ± 11.4 65.9 ± 8.6 0.1

BMI N (%) N/A = 1 28.4 ± 7.3 26.7 ± 4.9 0.39

Associated comorbidities N (%)

Hypertension
N/A = 15

No 29 (53.7) 5 (41.7)
0.53Yes 25 (46.3) 7 (58.3)

Diabetes
N/A = 15

No 44 (81.5) 11 (91.7)
0.67Yes 10 (18.5) 1 (8.3)
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Table 1. Cont.

No Recurrence
N = 66

With Recurrence
N = 15 p-Value

Positive family cancer history N (%)
N/A = 23

No 23 (37.7) 6 (42.9)
0.77Yes 38 (62.3) 8 (57.1)

Age at menarche (years) mean ± SD 12.5 ± 1.7 12.9 ± 1.1 0.56

Cause of menopause
N (%) N/A = 2

Physiological 52 (81.3) 13 (86.7)
1Iatrogenic 12 (18.8) 2 (13.3)

Age at menopause (years) mean ± SD 49.2 ± 5.6 52.2 ± 3.5 0.1

Hormonal therapy
N (%) N/A = 2

No 54 (84.4) 13 (86.7)
1Yes 10 (15.6) 2 (13.3)

Histotype
N (%)

Endometrioid 54 (81.8) 8 (53.3)

0.02
Serous/papillary 4 (6.1) 5 (33.3)
Mucinous 1 (1.5) 0
Dedifferentiated 7 (10.6) 2 (13.4)

Tumor Grade
N (%)

G1 18 (27.3) 0
0.01G2 25 (37.9) 4 (26.7)

G3 23 (34.9) 11 (73.3)

Molecular class
N (%)

POLE 12 (18.2) 0

0.03
MSI 24 (36.4) 4 (26.7)
P53 10 (15.1) 7 (46.6)
NSMP 20 (30.3) 4 (26.7)

Stage (FIGO 2014)
N (%)

I 58 (84.8) 5 (33.3)
<0.001II 3 (4.5) 3 (20)

III 7 (10.6) 7 (46.7)

ESMO risk class
w/o molecular class N (%)

Low 34 (51.5) 0

<0.001
Intermediate 8 (12.1) 0
High-intermediate 7 (10.6) 3 (20)
High 17 (25.8) 12 (80)

ESMO risk class
w/molecular class N (%)

Low 40 (49.4) 0

<0.001
Intermediate 9 (13.6) 0
High-intermediate 4 (6.1) 2 (13.3)
High 13 (19.7) 13 (86.7)

Lymph nodal metastasis N/A = 13 4 (7) 6 (54.5) 0.001

Received adjuvant therapy N (%) 36 (54.4) 15 (100) 0.001

Type of adjuvant therapy
N (%)
N/A = 4

BRT 13 (38.2) 3 (20)

0.5

RTE + BRT 2 (5.9) 1 (6.7)
CT 5 (14.7) 3 (20)
CT + RTE 7 (20.6) 2 (13.3)
CT + BRT 1 (2.9) 0
CT + RTE + BRT 6 (17.6) 6 (40)

Recurrence site N (%)

Local pelvic peritoneal - 4 (26.7)

n/a
Vaginal - 1 (6.7)
Lymph nodal - 5 (33.3)
Distant - 5 (33.3)

3.2. Radiomic Model Prediction of Recurrence

The uterine bodies of all 81 pre-surgical patients were contoured in a semi-automatic
manner by a gynecological surgeon and a radiologist. The time between CT and surgery
was less than two months for all analyzed patients. All images were cross-checked and
corrected as necessary. The VOIs drawing process showed a rapid learning curve, with
the mean initial time required for contouring of approximately 20–25 min/patient for the
first ten patients, which then decreased to approximately 10 min/patient. In a subset of
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18 patients (about 22%) from the investigated cohort, the MDA values were below the
chosen threshold of 3 mm, while the DSC values exceeded the value of 0.8 in 83% of the
total cases, representing a good inter-physician reproducibility. Figure 2 shows examples
of contoured VOIs in EC patients with and without disease recurrences, along with the 3D
reconstructions.
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Table 2 shows the AUC (95% CI), sensitivity and specificity of the optimal ML-based
models selected on training set according to the BIC for the LASSO-Cox and CoxBoost
approaches and to the highest AUC value on training set for the RFsrc approach. The
table also reports the threshold obtained from the ROC curve on the training set belonging
to the best ML-based models (i.e., 0.61, 0.55 and 57.01 for LASSO-Cox, CoxBoost and
RFsrc models, respectively). Figure 3 shows the Kaplan-Meier curves for the DFS obtained
using the above thresholds on test set (i.e., patients non used to train the model) with the
corresponding the log-rank tests, the p-values were < 0.001 from all the optimal ML-based
models. These thresholds were used to build the ROC curve on the test set and to divide
patients into high-risk and low-risk recurrence groups (pred_high_risk and pred_low_risk)
(Figure 3). The obtained recurrence risk label was assigned to EC patients and used to build
the Kaplan-Meier curves to estimate the recurrence probabilities. As shown in Figure 3,
the log-rank tests were significant for the DFS on test set (i.e., patients not used to train
the model) with a p-value < 0.001 obtained from all the optimal ML-based models. In
the testing group, the median DFS for the EC patients classified as having a high-risk
for recurrence by the radiomic predictive models was 22.4 months, 25.9 months and 14.1
months for RFsrc, CoxBoost and LASSOCox, respectively.

Table 2. ROC parameters obtained from the optimal LASSO Cox-model for training and test set EC
groups. Th: threshold; Sp: specificity; Se: sensitivity; NPV: negative predictive value; PPV: positive
predictive value; 95% CI: 95% confidence intervals; AUC: area under the curve; #: number of.

Train Test

Model AICc BIC # RFs Seed AUC (95% CI) Se Sp ROC Th AUC (95% CI) Se Sp

RFsrc NA NA 2 4306 0.93 (0.91–0.96) 0.96 0.79 57.01 0.90 (0.84–0.96) 1.00 0.80
CoxBoost 587.7 649.6 17 1936 0.92 (0.88–0.95) 1.00 0.77 0.55 0.86 (0.79–0.93) 1.00 0.73

LASSOCox −580.5 −525.6 15 1510 0.92 (0.88–0.96) 0.96 0.89 0.61 0.89 (0.78–1.00) 0.89 0.90
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Figure 3. Performance of the radiomic models on the test EC cohort with the Kaplan-Meier
curves showing patients’ recurrence based on the three ML models’ predictions; pred_low-risk
and pred_high-risk: ML predictive scores for recurrence.

Table 3 shows the RFs selected by the optimal ML-based models reported in Table 2
and their importance, i.e., their degree of usefulness/contribution to the model. Of note,
for the RFsrc model, we reported the depth of the features as well as their frequency
of occurrence in five repeated iterations. Specifically, the feature depth refers to how
deep a variable is used for splits in a decision tree: variables near the tree’s root capture
broad patterns, while deeper variables capture finer details. At the same time, the feature
occurrence indicates how often a RF is chosen for splitting across all trees in the forest:
high occurrence shows strong influence on predictions, while low occurrence suggests
less impact. In essence, the depth of a RF affects its contribution at different decision
levels, while its occurrence indicates its importance across the entire forest. These factors
collectively shape how random forest trees make predictions. Overall, most of the RFs
detected by the optimal ML-based classifiers belonged to higher order classes. Exceptions
are represented by only four (i.e., 10Percentile, Kurtosis, Minimum, and Variance) and three
(i.e., Flatness, LeastAxisLength, and Maximum2DDiameterColumn) RFs, which belonged
to first-order and shape classes, respectively.

Table 3. Feature importance of the selected radiomic features of the CoxBoost and the LASSOCox
models. For the RFsrc, the depth of the variables as well as their frequencies of occurrence in five
repeated iterations were reported. The values represent the coefficients attributed to each feature in
the ML model.

Coefficient Values in the ML Model

Feature Names CoxBoost LASSOCox
RFsrc

Depth Frequency

original_firstorder_10Percentile −1.2131

original_firstorder_Kurtosis −0.2445 −2.1338

original_firstorder_Minimum −2.0737

original_firstorder_Variance −1.8482

original_glcm_ClusterShade 2.4467 −1.4246

original_glcm_Contrast 0.8503

original_glcm_Correlation −0.5000

original_glcm_Imc2 0.9104 −0.0002

original_glcm_JointEntropy 1.4399 −4.8506
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Table 3. Cont.

Coefficient Values in the ML Model

Feature Names CoxBoost LASSOCox
RFsrc

Depth Frequency

original_glcm_MaximumProbability −0.0274 −1.7325

original_glcm_SumEntropy 0.0306

original_glcm_SumSquares 1.4606

original_gldm_DependenceNonUniformity −0.4479

original_gldm_HighGrayLevelEmphasis 0.4535 80

original_gldm_SmallDependenceHighGrayLevelEmphasis −2.5705

original_glrlm_GrayLevelNonUniformity −0.0495

original_glrlm_RunEntropy −0.6193

original_glszm_LargeAreaHighGrayLevelEmphasis −2.2316

original_glszm_LargeAreaLowGrayLevelEmphasis 0.6585 40

original_glszm_SizeZoneNonUniformity −0.8672

original_glszm_ZoneVariance −0.0525

original_ngtdm_Coarseness −1.9248 −3.5406

original_ngtdm_Complexity −3.9808

original_ngtdm_Contrast 1.1900

original_shape_Flatness 1.4152 2.7535

original_shape_LeastAxisLength −1.8535

original_shape_Maximum2DDiameterColumn 1.4715

Finally, the DFS Kaplan-Meier curves based on molecular classes did not provide a
significant result in our patient cohort (p = 0.12, Figure S1A) while the ones based on their
binary classification (i.e., P53 versus the other molecular classes) showed a significant trend
(p = 0.03 Figure S1B).

4. Discussion

To the best of our knowledge, this is the first study to evaluate the accuracy of CE-CT-
based radiomic features in predicting recurrence in EC patients, highlighting its potential
as a valuable decision support tool in clinical settings. The results of our study provide
convincing evidence of the potential exhibited by ML approaches applied to radiomics
data for predicting DFS.

Imaging techniques are crucial in assessing EC patients, but their availability varies
across countries. In settings with ample resources, MRI is the preferred modality for investi-
gating the pelvic region and identifying the infiltration and extension of EC [55]. However,
low-income countries may lack access to MRI [56]. Positron Emission Tomography (PET)
imaging has been introduced for staging and prognosis [57], but its performance is limited
in detecting lymph node metastases [58]. However, combining high-resolution diagnostic
images with radiomics showed promise in predicting lymph node metastases [13,59,60].
CTs, on the other hand, are more widely available and provide satisfactory staging but
have limited usefulness compared to MRI and PET in EC [55]. Thus, ML models using CT
scans could provide prognostic information in medical centers with fewer resources [61],
offering personalized care for EC patients, and improving pre-surgical risk assessment.
Our study’s ML models provide prognostic information using noninvasive CE-CT images
before surgery. Given that around 18.5% of early-stage cases encounter relapse, the impera-
tive significance of precisely identifying patients for optimal treatment selection cannot be
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overstated [4]. Thus, various classifications aim to identify risk factors to guide surgical
interventions and adjuvant therapies [3,62]. However, this information is usually obtained
after primary surgery, making it challenging to adjust its extent [63]. Our ML models can
predict EC recurrence, which could aid ultra-staging and help surgical teams determine the
best approach for each patient. Additionally, our ML-based models outperform other pre-
dictors (i.e., the TCGA molecular classification of EC) and are independent of postoperative
parameters.

Currently, the role of CT is generally restricted to the preoperative evaluation of
the disease burden in relation to extra-uterine spread, lymphadenopathy and metastatic
disease beyond the pelvis, given the low sensitivity (83%) and low specificity (42%) of CT
in assessing myometrial involvement and cervical stromal invasion [56,64]. To date, most
radiomic analyses have been conducted using MRI data, with only a few studies focusing
on the value of CT scans. For example, radiomic data extracted from PET/CT images
and/or combined with PET/CT-based parameters have been shown to be useful for the
detection of nodal metastases and staging of EC tumors [60,65] while CE-CT has proven
useful for the identification of microsatellite instability [66]. In terms of DFS in EC, few
studies have been published. Nakajo et al. created a [18F]-FDG PET-based radiomic ML
model and obtained an AUC of 0.89 for the prediction of PFS [59], while other studies using
MRI-based models alone or combined with clinical data obtained mean AUCs varying
between 0.62 and 0.85 [67–69]. To complete this knowledge gap, our study aimed to
evaluate the efficacy of CT-based radiomics in predicting recurrences in EC. We used the
radiomic data extracted from the venous phase of CE-CT images to train and establish
three ML-based algorithms. When applying the algorithms on the EC testing group, we
obtained an optimal stratification of high-risk EC patients with accuracy, sensitivity, and
specificity ranging from 0.78 to 0.9, from 0.89 to 1.00, and from 0.73 to 0.90, respectively.
Hence, our study lays the ground for a potential resource for the identification of EC
patients prone to relapse, which could aid in the development of efficacious prevention
and management strategies.

All three models resulted in having an equivalent predictive ability and allowed us
to identify the most important RFs, which mostly belonged to high order classes. It is
worth noting that having multiple concurring models helps increase the robustness and
reliability of the results. Each model utilizes different algorithms or methodologies, thereby
reducing the risk of any single model’s biases or limitations influencing the obtained results.
When multiple models agree on a particular prediction or finding, it enhances confidence
in the validity of the result. The LASSO-Cox model combines the LASSO (Least Absolute
Shrinkage and Selection Operator) method, which performs variable selection, with the
Cox proportional hazards model, which estimates the hazard function [51]. This com-
bined approach can pinpoint the most pertinent variables and estimate their impact on the
outcome. The CoxBoost approaches, on the other hand, employ boosting techniques to
enhance the prediction accuracy of the Cox model [47,49,50]. Boosting iteratively combines
weak learners to create a strong learner, which improves the model’s performance and
reduces bias. Lastly, the RFsrc-based model utilizes the random forest algorithm [52], which
leverages the power of ensemble learning. It constructs multiple decision trees and com-
bines their predictions to produce a robust and accurate model. Random forests can handle
complex interactions between variables and provide insights into feature importance. By
employing these three concordant models, we were able to leverage the unique strengths of
each approach, mitigating the weaknesses, and gaining a comprehensive understanding of
the data. This complex approach using different models represents a strength of our work
despite the relatively small number of patients used in this pilot study. Another strength
of our study is represented by the fact that our models provide important prognostic
information before any therapeutic approach, which was not previously possible.

It is worth discussing that the SMOTE algorithm implemented for data augmentation
and balancing could be affected by an over-generalization problem which could lead to
the inability to capture the characteristics of a specific under-represented group of patients.
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This drawback can be caused by the possible oversampling of noisy or uninformative
samples or the increasing overlap between different classes around the class boundaries [70].
Nevertheless, beyond the internal validation performed using a CV approach as suggested
by Papanikolaou et al. [71], further studies conducted on wider cohorts are needed to
externally validate these results and identify radiomic markers that can be standardized
and easily applied on CE-CT images collected in clinical practice in all medical centers.
External validation was performed only in a limited number of studies, i.e., about an
average of 6% of the cases according to a review evaluating 516 models [72] and could
be further complicated by the lack of standardization among different scan machines and
protocols implemented in the involved hospitals, thus affecting the radiomic pipeline
and requiring a harmonization procedure before the feature extraction in multicentric
studies [73]. To better generalize the proposed ML-based models, our institute is starting
a prospective multicentric study based on CT-based RF and DFS in EC patients. This
paves the way for a possible future validation and adoption as a valuable ML-based tool in
personalized medicine for EC patients.

5. Conclusions

Our study showed that radiomic features from pre-surgical CE-CT scan of EC tumors
can be a valuable tool for predicting recurrences in these patients. By stratifying patients
based on the developed models, surgical and oncological teams can make more informed
decisions about the most suitable treatment options, ultimately improving patient outcomes.
Compared to the molecular stratification, which often requires specialized laboratories
and costly tests, such as identification of POLE mutations, CT-based models can be more
widely adopted, even in hospitals with limited access to MRI and PET/CT resources. This
represents a significant step towards the implementation of more personalized medicine
and has the potential to greatly benefit EC patients and healthcare providers alike.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15184534/s1, Figure S1: Kaplan-Meier curves for PFS of
EC patients based on the TCGA/PROMISE classification (A) and when considering only the P53
mutated class vs. all other classes (B).
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