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Abstract: The occurrence and spread of antibiotic resistance genes (ARGs) in environmental mi-
croorganisms, particularly in poly-extremophilic bacteria, remain underexplored and have received
limited attention. This study aims to investigate the prevalence of ARGs and metal resistance genes
(MRGs) in shotgun metagenome sequences obtained from water and salt crust samples collected
from Lake Afdera and the Assale salt plain in the Danakil Depression, northern Ethiopia. Potential
ARGs were characterized by the comprehensive antibiotic research database (CARD), while MRGs
were identified by using BacMetScan V.1.0. A total of 81 ARGs and 39 MRGs were identified at the
sampling sites. We found a copA resistance gene for copper and the β-lactam encoding resistance
genes were the most abundant the MRG and ARG in the study area. The abundance of MRGs is
positively correlated with mercury (Hg) concentration, highlighting the importance of Hg in the
selection of MRGs. Significant correlations also exist between heavy metals, Zn and Cd, and ARGs,
which suggests that MRGs and ARGs can be co-selected in the environment contaminated by heavy
metals. A network analysis revealed that MRGs formed a complex network with ARGs, primarily
associated with β-lactams, aminoglycosides, and tetracyclines. This suggests potential co-selection
mechanisms, posing concerns for both public health and ecological balance.

Keywords: antibiotic resistance genes; metal resistance genes; shotgun metagenomics; heavy metals

1. Introduction

Antibiotics represent a distinct class of therapeutic agents in the fight against infectious
diseases [1]. They are produced by microorganisms and kill pathogenic microbes by
targeting specific microbial components [1]. However, the emergence of antibiotic resistance
poses a serious threat to the effectiveness of antibiotics, leading to a worldwide public health
crisis that cannot be understated [2–4]. According to the World Health Organization’s
(WHO’s) 2014 report, the world is at the brink of a post-antibiotic era, characterized
by inoperable infections, an increased mortality rate, and escalating healthcare costs [5].
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In 2019, an estimated 4.95 million deaths were attributed to antibiotic resistance, with
1.27 million cases directly caused by infections resulting from this phenomenon [4]. If
effective preventive measures are not implemented immediately, the worldwide death
toll from antibiotic resistance is projected to potentially surge to 10 million annually by
2050 [6]. Human activities, such as the improper use of antibiotics, inappropriate disposal
of unused medicines, as well as intensive agricultural practices, have exacerbated this
natural phenomenon. The increasing concern over the rise of antibiotic-resistant bacteria in
clinical settings has presently prompted efforts to identify the environmental reservoirs of
antibiotic resistance genes (ARGs), as these reservoirs serve as crucial intermediaries and
important routes for the spread of antibiotic resistance [7–9]. Lakes, rivers, hot springs, and
coastline areas, including soils, can act both as natural reservoirs of antibiotic resistance
and pathways for the dissemination of clinically relevant ARGs [10].

While the research has primarily focused on antibiotic resistance in thermophilic and
mesophilic bacteria, both pathogenic and non-pathogenic extremophilic bacteria have
received less attention, despite their extensive use in biotechnological and industrial sectors.
For instance, moderate thermophiles, which cause diseases, such as meningitis, endo-
carditis, and septicemia, have been found to be resistant to various antibiotics, including
erythromycin, tetracycline, sulfamethoxazole, tobramycin, and netilmicin [11]. Similarly,
isolates of Arthrobacter sp. and Hafnia sp. from hot springs have been found resistant to
antibiotics [12]. However, the role of poly-extremophilic environments, which accommo-
dates multiple extremities of temperature, salinity, and heavy metal concentrations, in the
distribution of ARGs and their antibiotic resistance profiles remains underexplored.

In addition to the biological factors, the widespread distribution of heavy metals in
the environment is another consequential aspect of industrialization and urbanization that
has had harmful impacts on human health and ecological risks [13]. Growing evidence
suggests that metal contamination in natural environments significantly contributes to the
persistence and proliferation of antibiotic resistance [14–18]. The historical exposure of
bacteria to metals has made them a major source of environmental contamination. It is
believed that co-selection is one of the primary mechanisms through which heavy metals
contribute to the increased ARG levels in bacterial-rich environments [19–23]. For instance,
soil bacterial resistomes have been found to expand under the selective pressure of Cu
exposure [24]. Similarly, Hu and co-authors [25] reported an increase in the frequencies
and abundances of ARGs in agricultural soils with elevated nickel levels. Recent studies
using metagenomics and metagenome-assembled genomes have further demonstrated the
extensive co-occurrence of ARGs and MRGs in bacterial hosts found within activated sludge
and urban rivers [26,27]. This co-occurrence might suggest a significant environmental risk
in areas with high levels of heavy metals. The close linkages between these resistance genes
suggest the potential for co-transferability and co-expression mechanisms. This study was
conducted in the Danakil Depression, specifically Lake Afdera and the Assale salt plain,
where salt mining is a routine activity. The unregulated extractions of salt in these areas
can lead to human contamination, as salt miners often lack the proper sanitation facilities.
Moreover, Lake Afdera is utilized for both bathing and laundry, enhancing the potential
for contamination. Consequently, it is imperative to ensure the health-related safety of
these ecologically important reservoirs from further anthropogenic interventions. This is
crucial not only because they can potentially serve as reservoirs for the spread of ARGs,
but also due to their general exposure to elevated levels of heavy metals. The primary goal
of this study is to determine the abundance of ARGs and MRGs in Lake Afdera and the
Assale salt plain in the Danakil Depression. The study also aims to explore the potential
correlations between environmentally toxic heavy metals and their associated ARGs. For
this purpose, shotgun metagenome sequences are mined against databases, such as the
comprehensive antibiotic resistance database (CARD) and BacMetScan V.1.0., available
from the BacMet AntiBacterial Biocide and MRG databases to identify potential ARGs and
MRGs, respectively.
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2. Results
2.1. Physicochemical Analysis

Table 1 presents the physico-chemical measurements for water and salt crust samples
collected from Lake Afdera (Figure 1) and the Assale salt plain (Figure 1). The Assale salt
plain is extremely hypersaline (360 g/L) and more acidic (4.61) and warmer (39 ◦C) than
Lake Afdera. Though both Lake Afdera (−111 m) and the Assale salt plain (−119 m) are
notable for their low elevation points, the Assale salt plain is among low-land areas in
Africa. The elemental composition exhibited a distinct variation among the two sample
sites (Table 1).

Table 1. Physicochemical data of the sampling sites (concentrations in g/L, T: ◦C, salinity: g/L,
elevation: m).

Measured Parameters Assale Salt Plain Lake Afdera

Coordinates 0640063 E/1574494 N 0703016 E/1462263 N
pH 4.61 6.29

Temperature (◦C) 39 36
Salinity (g/L) 360 137
Elevation (m) −119 −111

Na (g/L) 49 38.5
Ca (g/L) 21.5 13.9
Mg (g/L) 1.98 1.1
Cl (g/L) 1.7 1.6

Mn (g/L) 0.12 0.618
Cu (g/L) 0.012 0.008
Pb (g/L) 0.0001 0.0002
Zn (g/L) 0.007 0.0001
Ni (g/L) 0.002 0.001
Fe (g/L) 0.049 0.002
Cd (g/L) 0.0001 0.00001

The concentrations of all measured metals were the highest in the Assale salt plain,
except for Pb2+, which was slightly higher in Lake Afdera (Table 1). Concentrations of Mg2+

and Ca2+ ions in Afdera were almost half the amount of those found in the Assale salt plain.
The heavy metal contents of Cu, Zn, and Fe in the Assale salt plain were by far higher than
the measurements recorded in Lake Afdera. The measurements of other physicochemical
parameters are listed in Table 1.

2.2. Metagenomic Data Analysis

Overall, the Illumina (Hong Kong, China) sequencing, using NovaSeqPE150 (Novo-
gene, Hong Kong, China) generated an average of 6621 Mbp reads per sample with the
GC contents determined to be 62% for the Assale salt plain and 56% for Lake Afdera.
After quality trimming, the average cleaned datum was 6609.08 Mbp. From the assembled
metagenomic reads, there were 47,042 and 93,220 scaffolds for the Assale salt plain and
Lake Afdera, respectively. The scaffolds with average lengths of 569.5 bp were selected for
the gene functional annotation. Table 2 presents the overview reads generated through the
sequencing process. The data were assessed for the distribution of the base call quality, with
% bases >Q20 found to be 97.72% and 96.02% for the Assale salt plain and Lake Afdera,
respectively.
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Figure 1. (A) Satellite image of the Lake Afdera and the Assale salt plain in northern Ethiopia.
(B) and (C): panoramic views of the sampling sites of the Assale salt plain near the Dallol geothermal
area and Lake Afdera, respectively.

Table 2. Overview of metagenomics dataset for the Assale salt plain and Lake Afdera.

Parameters Assale Salt Plain Lake Afdera

Library insert size (bp) 350 350
Length of single read (bp) 150 150
Average raw reads (Mbp) 6479 6762

Total number of cleaned reads (Mbp) 6459 6759
GC content (%) 62 56
No. of contigs 47,042 93,220

Longest contig length (bp) 16,520 176,724
N50 (bp) 652 1212

The estimates of alpha diversity indices unveiled significant differences between Lake
Afdera and the Assale salt plain. Both the Shannon and Simpson indices for bacterial
communities demonstrated higher values for Afdera, and a lower value was obtained for
the Assale salt plain (Table 3). These results suggest that Lake Afdera exhibits a higher level
of diversity and evenness than the Assale salt plain. Nonetheless, the general diversity
values for both Lake Afdera and the Assale salt plain were relatively low.

Table 3. Alpha diversity index estimations.

Sampling Sites Shannon Simpson p-Value

Lake Afdera 4.20 0.89 0.01
Assale salt plain 0.39 0.10 0.04

2.3. Bacterial Community Profile

According to the phylum-wise distribution of the metagenomics data, Pseudomon-
adota was found to be the most dominant phylum in Lake Afdera, 63.61%, followed by
Actinomycetota (13.95%), Bacilliota (7.82%), and Bacteroidota (2.61%) (Figure 2). Pseu-
domonadota, likewise, dominated in the Assale salt plain, accounting for 86.95% of all the
organisms, with Bacilliota (3.49%), Cyanobacteria (1.98%), and Actinomycetota (0.012%)
trailing behind (Figure 3).
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Figure 3. Bacterial community profile at the genus-level diversity for (A) Lake Afdera and (B) Assale
salt plain.

Distribution at the genus level displayed a distinct variation. Acinetobacter (18.57%)
was found to be the most prevalent genus in Lake Afdera, followed by Pseudomonas
(11.76%), Microbacterium (7.61%), Bacillus (4.69%), Methylobacterium (4.11%), and Rhein-
heimera (2.46%). However, in the Assale salt plain, Pseudomonas dominated significantly
with 78.47%, trailed by Bacillus (3.33%), Aeromonas (0.241%), Rhodopseudomonas (0.11%),
Rheinheimera (0.10%), and Methylobacterium (0.011%) (Figure 3).

2.4. Metagenomic Studies of ARGs

Through CARD, a total of 81 resistance genes associated with 16 antibiotics were
identified in the metagenome of Afdera. Among these, those related to beta lactam (26),
multidrug (21), aminoglycoside (9), and tetracycline (9) were present in higher abundances
compared to other resistance genes (Figure 4, Supplementary Table S9). Some of the de-
tected resistance genes included the fluoroquinolone class (emrB), β-lactamase (ACC-1,
OXA-58, OXA-363, OXA-212, OXA-50, NDM-17, OXA-134, ACT-29, LRA-19, others), mul-
tidrug resistance (abeM; abeS; mgrA; adeJ; MexC; adeL; adeH; others), sulfonamide (sul2, sul1),
tetracycline (tet39; tetX, tetK, others), and others (Supplementary Table S1). Only a few
ARGs were identified in the Assale salt plain: β-lactamase class (LRA-13), diaminopyrim-
idine (dfrA10), and multidrug resistance efflux pump (adeF) (Supplementary Table S1).
The findings indicate the presence of several ARGs in Lake Afdera compared to the Assale
salt plain.
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plain predicted using CARD, and a resistant gene classification was conducted based on the Clusters
of Orthologous Genes (COG) classification.

For the Clusters of Orthologous Genes (COG) classification, various resistance genes
associated with each antibiotic class are also described in Figure 4. The macrolide antibiotic
class displayed a shared identity with COG predicted genes, like mphD, macA, and srmB;
aminoglycoside aligned with COG predicted genes, such as aadA24, APH6-Id, AAC6-IIc,
and others; tetracycline was associated with COG predicted genes tet32, tetK, tetH, tetO, and
others; fluoroquinolone showed a similarity to COG predicted gene emrB; Beta Lactam was
associated with COG predicted genes, such as ACC-1; OXA-58; OXA-363; OXA-212; and
others; and streptogramin was associated with the predicted gene vatD (Supplementary
Table S14).

The macrolide gene displayed the highest degree of identity (100%) with the Methy-
lobacterium mphD gene (genes for macrolide phosphotransferase), whereas the fluoro-
quinolone gene shared the closest identity (99.43%) with the Enterobacteriaceae emrB gene.
The gene for cephalosporin demonstrated the closest identity (98.02%) to Aeromonas (genes
for OXA beta-lactamase, OXA-212). The Aminoglycoside gene exhibited the closest iden-
tity (82.8%) to Acinetobacter baumanni (genes for aminoglycoside nucleotide-transferase
ANT3-IIc), while the tetracycline resistance gene (Tetracycline efflux gene otrB) revealed a
100% identity match to the Acinetobacter lwoffii (otrB) gene. The sulfonamide gene showed
the closest identity match (100%) to the genes for sulfonamide resistance (sul1) from Acine-
tobacter baumanni and sulfonamide resistance (sul2) from Pseudomonodota phylum. In
the same analogy, the ARGs identified from the Assale salt plain were fluoroquinolone
and tetracycline resistance genes. The fluoroquinolone and tetracycline genes showed the
highest degree of identity (98.97%) with the Acinetobacter adef gene.

2.5. Metagenomic Studies of MRGs

The BacMet2 database annotation identified a total of 39 resistance genes associated
with eight heavy metals. These resistance genes comprised Cu, Zn, Pb, Cr, As, Hg, Cd and
multi-metal resistance (involving Cu, Zn, Pb, Co, Mg, Hg, Cd, and Ni). Among the MRGs,
Cu, Hg, and Cd were the most abundant in the overall dataset (Figure 5, Supplementary
Tables S2–S4). Interestingly, the numbers of MRGs were noticeably higher in Lake Afdera
than in the Assale salt plain (Figure 5, Supplementary Tables S2–S8). Copper resistance
genes or resistance proteins, such as CopC and CopD, displayed a perfect match (100%)
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with the gene cluster from Frankia sp. CcI3. The cadmium tolerance gene, CadD, showed a
99.51% closest identity to Staphylococcus aureus A8819. Similarly, the Mercury resistance
gene coding for Mercuric reductase (EC 1.16.1.1) was a complete match (100%) to the
Enterobacter cloacae subsp. cloacae ATCC 13047. The chromate resistance protein (ChrB) and
chromate transport protein (ChrA) showed 100% and 99.76% similarities to genes found in
Brucella tritici and Pseudomonas aeruginosa, respectively. In addition, microbial communities
in Lake Afdera possessed genes responsible for combined heavy metal resistance, such as
nickel–cobalt–cadmium-tolerant genes (nickel–cobalt–cadmium resistance proteins NccA
and NccB), exhibited the greatest identity match (99.25–99.91%) to Cupriavidus pauculus.
Cobalt–zinc–cadmium resistance protein (CzcD) was a perfect match (100%) to Pseudomonas
aeruginosa. The Cd(II)/Pb(II)-responsive transcriptional regulator had the closest identity
to Bacillus cereus R309803. Magnesium and cobalt efflux proteins CorC had a 99.66% identity
match with Salmonella enterica subsp. enterica serovar Saintpaul str. SARA29 (Supplementary
Table S12). In the case of the Assale salt plain, the copper-translocating P-type ATPase
(EC 3.6.3.4) gene showed a complete (100%) identity match with Pyrococcus yayanosii
CH1. Additionally, copper resistance genes (CopB and CopG proteins) shared the closest
identity (100%) with Archaeoglobus fulgidus DSM 4304 and Escherichia coli (strain K12),
respectively. The arsenic tolerance gene, arsenite oxidase (arsO), had a 100% match with
Roseomonas cervicalis ATCC 49957. P-type ATPase involved in Pb (II) resistance (PbrA)
showed a 68% identity match with Ralstonia metallidurans bacterial species. Moreover, the
mercuric resistance operon regulatory protein showed a perfect match (100%) to Cupriavidus
metallidurans CH34.
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Afdera identified from the BacMet AntiBacterial Biocide and MRGs database. Multi* refers to
multi-metal resistance genes.

According to the RAST and COG identified genes, the metal tolerance gene classes for
cadmium (Cd) were czcB, czcc, czcd, and others; mercury (Hg) tolerance was linked to genes
classes of MerC, MerE, MerR, and others; arsenic (As) tolerance was associated with the
ArsO gene; the lead (Pb) resistance gene was linked to PbrA; and chromium (Cr) tolerance
was associated with the genes ChrB and ChrA, all found in Lake Afdera. On the other hand,
in the Assale salt plain, MRGs were also detected for Cu with COG predicted genes, such as
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CopC, CopD, CopG, and others; Hg with genes, like MerB, MerR, and MIR; Cd tolerance was
associated with cadC; and no As tolerant genes were detected (Supplementary Tables S2–S8
and S14). The findings reveal a greater diversity of metal resistance genes in Lake Afdera
compared to the Assale salt plain.

2.6. Co-Occurrence of Bacterial Hosts and Resistance Genes

The scaffolds were classified into 88 taxa, representing four phyla. Pseudomonadota
(82.6%) was the dominant phyla, followed by Firmicutes (7.6%), Actinobacteria (4.3%),
and Bacteroidetes (1.1%), which collectively enriched the identified ARGs and MRGs
(Supplementary Tables S9 and S10). A network analysis was conducted to uncover the
co-occurrence patterns of bacteria–MRGs–ARGs. The graph highlights the high densities
of Pseudomonadota and related resistance genes compared with networks featuring Acti-
nomycetota, Bacilliota, and Bacteroidota (Figure 6). This suggests that Pseudomonadata
are the primary carriers of resistance genes affected by co-selection.
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Figure 6. Co-occurrence patterns of potential bacterial hosts and their harbored resistance genes.
The network analysis reveals profiles of bacterial hosts carrying both ARGs and MRGs in the four
dominant phyla (Pseudomonadota, Actinomycetota, Bacilliota, and Bacteroidota).

2.7. Correlations between MRGs and ARGs

From the samples in Lake Afdera, a strong positive correlation exists between specific
metals, like cadmium and the abundance of ARGs (r = 0.98, p = 0.001), and between mercury
and the abundance of MRGs (r = 0.88, p= 0.02) (Table 4).

Table 4. Correlation between metal concentrations in the Lake Afdera sample and resistant gene
abundance.

Metals Metal
Concentration

Correlation Coefficient

ARG
Abundance p-Value MRG

Abundance p-Value

Cu 11.49 −0.08 0.87 0.54 0.26
Hg 0.17 −0.66 0.16 0.88 0.02
Cd 0.13 0.98 0.001 −0.12 0.82
Zn 7.16 −0.60 0.21 −0.03 0.96

In the Assale salt plain, significant strong correlations were observed between ARGs
with heavy metal zinc (r = 0.93, p = 0.001) and between mercury and MRGs (r = 0.83,
p ≤ 0.04) (Table 5).
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Table 5. Correlation between metal concentrations in the Assale salt plain sample and resistant
gene abundance.

Metals Metal
Concentration

Correlation Coefficient

ARG
Abundance p-Value MRG

Abundance p-Value

Cu 0.88 −0.54 0.26 0.31 0.54
Hg 1.57 −0.31 0.54 0.83 0.04
Cd 0.02 0.08 0.87 −0.37 0.47
Zn 0.07 0.93 0.001 −0.32 0.53

Additionally, correlations between MRGs and their corresponding ARGs using the
mean abundance levels of resistant genes were computed. Table 6 reveals the existence of
significant positive correlations between ARGs and MRGs at both sample sites (p < 0.05).

Table 6. Correlation between abundance levels of ARGs and MRGs in Lake Afdera and the Assale
salt plain samples collected in April 2021.

Samples ARG Abundance Mean
(±SD)

MRG Abundance Mean
(±SD)

Correlation
Coefficient p-Value

Lake Afdera 25.02 (11.64) 4.91 (3.70) 0.44 0.033
Assale salt plain 2949.94 (1661.09) 8.76(7.42) 0.56 0.004

To further elucidate the correlations between MRGs and their corresponding ARGs, a
network analysis was constructed. The graph reveals the co-occurrence patterns among the
relative abundances of MRGs, ARGs, and heavy metals. The resultant network consisted of
23 nodes (2 MRGs, 14 ARGs, and seven heavy metals) (Figure 7).
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3. Discussion

Over the course of the antibiotic era, human health has shown remarkable improve-
ments, leading some scientists to claim the end of infectious diseases [28]. However, the
dramatic rise in antibiotic resistance among microorganisms has emerged as a growing
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global concern for human health [5]. Although environmental microbes, which are not
disease-causing and are closely linked with antibiotic synthesis, have been largely over-
looked, they are presently recognized to play a vital role in the evolution of antibiotic
resistance. It is believed that pathogens are naturally vulnerable to antibiotics and do not
inherently possess ARGs, but acquire them from environmental microbes. At present, the
mechanism through which ARGs evolve and spread in environmental microorganisms
remains unclear. Notably, every habitat, even habitats isolated for centuries or millennia,
contains bacteria resistant to antibiotics and genes linked to resistance [29–31].

The research on antibiotic resistance has primarily focused on bacteria from ther-
mophilic, mesophilic, and psychrophilic environments [32]. However, no attention has
been given to the unique poly-extreme environments of the Danakil Depression, in the
northern Afar region of Ethiopia. To address this gap, this study was designed to investi-
gate the distribution of ARGs and MRGs in the extreme settings of Dallol and Lake Afdera.
Previous studies have shown that the Danakil Depression is heavily enriched with various
heavy metals, contributing to the remarkable color variations observed in the region’s
hot springs [33–35]. The combination of high metal concentrations and extreme physico-
chemical parameters (e.g., temperature, pH, and salinity) has led to the creation of a unique
multi-extreme environment in the Danakil Depression. A taxonomic analysis revealed the
dominance of Pseudomonadota in both extreme environments, suggesting a resemblance
in the bacterial community structures between the two locations. While the abundance
percentage varied, the major phyla, Pseudomonadota, Actinomycetota, and Bacilliota, were
consistent, except for Bacteroidota, which was found exclusively in Lake Afdera and not in
the Assale salt plain. This miniscule community composition difference might stem from
variations in the physicochemical factors and distant geographical locations [32]. The low
taxonomic diversity in Lake Afdera and the Assale salt plain aligned with the previous
findings in other extreme hot springs, such as Sikkim, a northeastern state in India [36].
Additionally, similarities in community structure can also be observed when compared to
the Rehai geothermal field located in China [37].

Our metagenomic analysis detected several putative ARGs in Lake Afdera, while
the Assale salt plain had less (Supplementary Table S1). Of the identified ARGs, half
were considered housekeeping genes and similarity searches using CARD returned no
matches. These genes included ACC-1, OXA-50, vatD, MexC, APH3-Ia, adeH, OpmB, ACT-29,
vanHB, LRA-19, AAC6-Ib-cr, SMB-1, LRA-13, TEM-71, chrB, AER-1, IND-5, tetX, tetO, rmtB,
APH2-IIa, MexD, tet32, emrB, mexN, OpmH, lnuA, MuxB, mexM, srmB, Sed-1, tetH, dfrA10,
Erm38, OpmH, arr-4, ErmR, EXO-1, mexM, and tetA46. An annotation procedure via RAST
revealed their multi-functionality properties. For instance, the emrB gene encodes both
DNA gyrase subunit A (EC 5.99.1.3) and DNA gyrase subunit B (EC 5.99.1.3), which are
engaged in cell division and DNA replication. Another example is the ChrB gene, which en-
codes a chromate transport protein. Interestingly, these genes, along with metal-dependent
hydrolases of the beta-lactamase superfamily I proteins and multidrug resistance efflux
pumps, were present in the RAST MAGs of Bacilliota (Supplementary Table S14). However,
strains, like Bacillus cereus and Lysinibacillus fusiformis, despite carrying these genes, showed
susceptibility to antibiotics (unpublished data). This suggests that these genes may serve
alternative metabolic roles, making them potentially inactive or hypothetical in antibiotic
resistance. Numerous studies on Bacillus species and their isolates have consistently pro-
duced findings that indicate their susceptibility to various tested antibiotics. For instance, a
study conducted by Coonrod and co-authors demonstrated that 49 Bacillus isolates were
susceptible when tested against six different classes of antibiotics [38]. Investigations in
Jordanian hot springs and other extreme environments, such as remote cave microbiomes,
Antarctic marine waters, and pristine mountain rivers, have also shown the susceptibility of
Bacillus strains to antibiotics [39]. The presence of resistance genes for β-lactam antibiotics
is not surprising, given the involvement of β-lactamases in various common bacterial
functions, like cell wall biosynthesis, signaling molecules, the detoxification of metabolites,
and other processes [40].
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The limited abundance of a few phyla, Actinomycetota and Bacilliota, which are not
the key hosts of ARGs, combined with the observed low diversity, suggests diminished
competition among microbial communities for acquiring ARGs in the current ecosystem.
Moreover, the metagenomic investigation of the Assale salt plain identified only a few
ARGs, predominantly related to Gram-negative bacteria (Supplementary Table S10). This
scarcity of ARGs might be intrinsic to the environment or result from contamination,
potentially from salt soil microflora or human skin flora introduced during salt mining
practices. Previous research by Miller et al. emphasized the link between human activities
and antibiotic resistance in remote sampling stations, such as Palmer in the Antarctic [41].
Given the uncertainty surrounding this issue, we examined the abundance of heavy metals
and MRGs, and also the correlations that possibly existed between ARGs and MRGs.
Several heavy metals were detected, including Cu, Fe, Zn, Cd, Ni, and Pb. The samples
from the Danakil Depression, especially those from Lake Afdera, which originated from a
depth of 160 m, were influenced by the surrounding rocks, leading to the wide distribution
of metallic pollutants. Notably, Cu and Zn were abundant in the study sites and were
directly linked to the development of heavy metal tolerance in the environmental microflora
since the dawn of time [42]. In line with this, metal tolerance was assessed and the potential
co-occurrence of heavy metal resistance with antibiotic resistance was explored. While
metals, like copper and zinc, are essential nutrients supporting various physiological and
cellular functions in microorganisms, they become toxic at high concentrations [43]. This
necessitates the development of resistance mechanisms by microorganisms in response to
prolonged exposure [44]. Accordingly, MRGs associated with copper, cobalt zinc, cadmium
mercury, nickel, lead, arsenic, and chromium were identified in this study. Corroborating
these findings, MRGs were also found in a separate study conducted on a functional
metagenomic analysis [32]. Previous research has documented a significant increase in
metal tolerance, particularly for copper, among several bacterial isolates, including, but not
limited to, E. coli [45], and S. enterica [46], G. thermoleovorans, and G. thermantarcticus [47].

In the environmental samples, heavy metals were observed alongside antibiotic-
resistant microbial communities [48]. More than half of the total microbial resistance genes
detected in our study were linked to commonly consumed antibiotics, such as betalactam
(32.1%), aminoglycoside (11.1%), and tetracycline (11.1%), as well as heavy metals, like Cu,
Hg, and Cd. Similar findings were reported in previous abundance-based surveys [49,50].
This pattern suggests a potential correlation between the abundance profiles of ARGs and
MRGs across different microbial phyla. Pseudomonadota (82.6%) emerged as the dominant
phylum carrying ARGs and MRGs, followed by Bacilliota (7.6%), Actinomycetota (4.3%),
and Bacteroidota (1.1%), indicating a potential risk of resistance gene dissemination. This
distribution suggests a correlation between microbial communities, particularly those
associated with humans, and the abundance of ARGs and MRGs (Figure 6). The long
evolutionary periods, influenced by significant anthropogenic activities, like unhygienic
salt mining practices, might facilitate the dissemination of genes, providing microorganisms
with enhanced protection against harsh environmental conditions [51,52].

The observed abundance profiles of ARGs and MRGs within various genome phyla,
combined with the selection pressure from a metallic-rich environment, raise our interest.
Additionally, the recently reported abundance correlation in clinically important genera
(e.g., Escherichia, Shigella, and Klebsiella) [53] prompted us to investigate the possible co-
occurrence between ARGs and MRGs. The Spearman’s correlation analysis (r2 ≥ 0.8,
p < 0.05) revealed significant associations between specific heavy metals (Cd and Zn) and
ARGs (Tables 4 and 5). These findings are consistent with previous studies that also report
similar correlations, particularly between Zn and ARGs originating from sulfonamides [53]
and tetracycline [48], though the trends are diversified [54,55]. Additionally, significant
correlations were observed between ARGs and MRGs (Table 6), as well as between specific
ARGs, MRGs, and heavy metals from the network analysis (Figure 7). This supports the
hypothesis of the co-occurrence of MRGs and ARGs in the resident microbes in the sam-
pling sites, a phenomenon increasingly reported in the literature, particularly in intestinal
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microbes subjected to antibiotic and metal pressures [56–58]. Further, this co-occurrence
was observed in experiments conducted by Pal and colleagues [50], suggesting a novel
co-selection potential, and was also observed in full-scale biogas reactors [59]. Some
other previous studies have also reported the selection of ARGs by various metals [48,60],
including those found in animal manure [61] and copper tailing dam areas [55].

The co-selection of MRGs with ARGs is hypothesized to be primary pathway for the
spread and persistence of antibiotic resistance in different environments [62,63]. This link
can occur through shared functions, the co-regulation of gene expression, and physical
co-localization of resistance genes (with MRGs and ARGs located in the same mobile
element) [64]. Efflux pumps, like the multidrug efflux pump mdrL in Listeria monocytogenes,
can lead to cross resistance by expelling both antibiotics and heavy metals [65]. In the
cases of co-regulation, the gene expressions of both ARGs and MRGs were influenced by
a common factor. For example, in Pseudomonas aeruginosa, the characterization of efflux
pumps (CzcCBA), which are responsible for resistance to Zn and Cd, revealed that their
expressions were regulated by two genes, CzcS and CzcR. These genes also controlled the
expression of the OprD porin, which was responsible for resistance against carbapenems (a
class of β-lactam antibiotics) [60]. Additionally, the co-localization of MRGs and ARGs on
mobile genetic elements played significant role in co-selection, leading to the dissemination
of ARGs as a consequence of heavy metal contamination. This suggests that ARGs can
be maintained in the environment through the co-selection with MRGs in polluted areas,
where the level of heavy metal contamination is remarkably higher than that of antibiotics
pollution [66]. Overall, the results of the present study imply the heavy metal-induced
selection of ARGs in multi-metal polluted extreme environments, raising concerns for
human and animal health due to frequent exposure to the sampling area. Further studies
are necessary to investigate the potential public health risks associated with these co-
selection mechanisms and their role in promoting resistance in bacterial communities.

4. Materials and Methods
4.1. Study Area and Sampling Sites

The study samples were collected from the hypersaline Lake of Afdera and Assale
salt plain, both located in the geologically actives areas of the northern Afar Depression
(Ethiopia) in the Great Rift Valley (Figure 1). The northern Afar Depression, which includes
the Danakil Depression, is an incipient seafloor-spreading center located between the
western scarp of the Ethiopian Plateau, the Danakil Alps to the east, and the Erta’Ale
Range (NNW–SSE axial volcanic complex) to the south. The Danakil Depression is an
arid, elongated (approximately NNW to SSE) lowland plain (~250 km long) mostly lying
~100 m below sea level (b.s.l.) in the northern part of Ethiopia. A significant portion of the
Danakil Depression hosts vast evaporite deposits, covering an area of 4000 km2, known as
the Assale salt plain. Both the Assale salt plain and Lake Afdera have been traditionally
exploited for table salt extraction for human and cattle consumption for many years. The
annual production ranges from 35,000 to 1.3 million tons [67].

The Assale salt plain near the Dallol geothermal area is characterized by a mix of
extreme physico-chemical parameters, which include high temperatures, an acidic pH,
hypersalinity, and the presence of high concentrations of heavy metals (e.g., iron: 35.6 g/L,
copper: 93 mg/L, and zinc: 72 mg/L) [33,68]. In these extreme ecosystems, extremophilic
organisms known as poly-extremophiles create selective pressure that favors their sur-
vival. These organisms have unique adaptive strategies, primarily involving heavy metal
tolerance [33,34]. Lake Afdera is located in the Afdera Woreda in the southern part of
Danakil Depression. The lake reaches a maximum recorded depth of approximately 80 m,
with a total volume of around 2.4 km3 and reaching up to 112 m b.s.l. Its high salinity
and distinct physicochemical parameters create an ideal environment for extremophiles.
Lake Afdera is also enriched with various heavy metals, including lithium, which is of
interest for industrial applications [69,70]. Sampling was performed in April 2021. We were
only allowed to take samples from the water (2000 mL) of the lake, not the salt crust, by
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the local inhabitants. The community harbors reservations about sampling the salt crust
due to the fear that such research can potentially cast salt extraction in a negative light,
harming the reputation of the community’s primary means of livelihood. Physicochemical
measurements (Table 1) were performed onsite using a portable refractometer (HI-9829-02
advanced portable Multi-parameter pH/ISE/EC/DO/Turbidity waterproof Meter, Eden
Way, UK). GPS coordinates were recorded using GPSMAP64 (Garmin, Lenexa, Kansas,
USA) as per the guidelines of the manufacturer (Table 1). The samples were collected
randomly under aseptic conditions in sterilized thermal flasks (MegaSlim, Hawaii, USA) in
triplicates considering minimal human and animal contact to reduce possible contamina-
tion. Prior to DNA extraction, the samples were transferred to the laboratory and kept at
4 ◦C and then processed immediately.

4.2. Determining Metal Compositions

The metal composition of the lake was determined by inductively coupled plasma
optical emission spectrometer (ICP-OES), specifically the Agilent 5100 SVDV ICP-OES
(Santa Clara, CA, USA), conforming to ES ISO 11885:2007 standards. The samples (50 mL)
were subjected to digestion at 80 ◦C with 10 mL of nitric acid and then cooled, filtrated,
and diluted to 100 mL with distilled water. The detection limit was 0.01 µg L−1. The
standard working parameters were selected, and the procedures outlined by Van de Wiel
were followed [71].

4.3. Metagenomic DNA Extractions and Shotgun Sequencing

DNA extractions were accomplished using modified 1% CTAB-SDS method adopted
from Zhou and co-authors [72] at the molecular biology laboratory of Addis Ababa Science
and Technology University. All the DNA extractions were performed in triplicates and
replicates from each sample site were later pooled prior to metagenome sequencing. The
quality and quantity of the extracted DNA was checked using Thermo Scientific NanoDrop
3300 Fluorospectrometer (Thermofisher Scientific, Wilmington, DE, USA). The DNA was
randomly sheared into small fragments. These fragments were then end repaired and
ligated into Illumina adapters. Sheared fragments underwent size-selection, PCR amplifica-
tion and purification. Metagenome library was prepared per effective library concentration
and the required data volume. The library was examined using ThermoFisher Qubit fluo-
rometry, real time PCR quantitation and bioanalyzer to identify the size distribution. The
library was barcoded, pooled and shotgun sequenced on one lane of a flow cell using a
150 bp paired-end run on a NovaSeq PE150 instrument (Illumina, Tsim Sha Tsui, Hong
Kong). Sequencing reads were de-multiplexed using Cassava v.2.0 [73], FastQC v0.11.6 [74]
was used to examine the quality of the paired-end raw reads, TRIMMOMATIC v0.36 [75]
(Q-value ≤ 38; N > 10bp; reads overlap with adapter > 15bp) was used to remove any
adapters contamination and low quality reads.

4.4. Assembly, Binning, and Annotation of Reads

To generate the assembly of the reads, MEGAHIT [76] was used initially and then the
assembly reads were mapped using Bowtie2 [77]. Assemblies were scaffolded to obtain the
best contigs. Quast was used to compute the assembly statistics [78]. Using the technique
outlined by [79], the assembled contigs were further binned using MetaBAT2 [80], CON-
COCT [81], and MaxBin [82], and the retrieved metagenome assembled genomes (MAGs)
were pooled further with DAS Tool (v1.1.1) [83]. CheckM was used to assess the quality of
MAGs (≥80% completeness and ≤10% contamination) [84]. The metagenome constructed
contigs were subjected to annotations using BLASTn [85] against the NCBI GenBank anno-
tation pipeline and Rapid Annotation using Subsystem Technology (RAST) tools with the
annotation scheme of Classic RAST [86]. The predicted genes were functionally classified
based on the evolutionary genealogy of genes (egg) [87]; orthology was conducted using
COG [88].
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4.5. Taxonomic Assignment of Contigs

The taxonomic profiling of the assembled contigs was conducted using the MEtaGenome
ANalyzer 4 (MEGAN4) [89]. To taxonomically label each metagenomic homolog, MEGAN4
used sequence or phylogenetic similarities to the microNR database [90]. This was done by
placing reads that were homologous to marker genes within a database of taxonomically
informative gene families.

4.6. Extracting Antibiotic and Metal Resistance Genes

The CARD [91] was used to identify and characterize putative ARGs. All genes were
subjected to a blastp (e-value ≤ 1 × 10−5) analysis against the CARD database [92,93].
Each individual gene was comprehensively annotated, including the resistance profiles and
underlying resistance mechanisms. The relative abundances of the various resistance genes
were also calculated [94]. In addition, the BacMetScan V.1.0 [94] script, which was accessible
in BacMet AntiBacterial Biocide and MRG databases, was used to identify potential metal
resistance genes. BacMet-Scan used a manually curated library of genes with resistance
functions that were empirically confirmed [95]. Furthermore, a COG classification was
also performed to predict resistance gene classifications using BLASTx against the COG
database [88].

4.7. Statistical Analysis

The datasets were analyzed using packages in the R environment. Alpha diversity
indices, such as Shannon’s and Sampson’s, were estimated by considering the abundance
of each genus using an analysis of variance (ANOVA), and p < 0.05 values were considered
significant. The ANOVA was performed by statistical PAST software version 4.14 [96].
Additionally, one-way ANOVA was used in SPSS version 26 to assess the differences of
heavy metals, MRGs, and ARGs across the study sites. Spearman’s correlation analyses
were also performed to identify significant correlations between heavy metal concentrations
and resistant gene (MRGs and ARGs) abundances. Furthermore, a network analysis
was employed to explore the co-occurrence patterns of MRGs, ARGs, and heavy metals.
Statistically robust correlations having Spearman’s coefficients > 0.4 and p-values < 0.05
were taken as significant, and R software version 4.3.1 was utilized. A network analysis
was conducted and visualized with i graph on the R package.

5. Conclusions

The persistence and proliferation of antibiotic resistance pose sever threats to human-
ity. Metal-polluted environments have been identified as natural reservoirs for clinically
relevant ARGs. However, the origin and evolution of resistance genes remain poorly
understood and require further extensive research. This study explored the effects of heavy
metals on the proliferation of antimicrobial resistance in two extreme environments, Lake
Afdera and the Assale salt plain, in the Danakil Depression in Ethiopia. A metagenomic
approach was employed to study microbial diversity and understand the profiles of ARGs
and MRGs in the study settings. The abundance of MRGs was positively correlated with
Hg concentration, indicating that Hg played an essential role in the selection of MRGs. As
for ARGs, their abundances were significantly correlated with the concentrations of Zn
and Cd, suggesting that Zn and Cd may have induced antibiotic resistance in the sampling
area. The network analysis revealed the co-occurrence patterns of heavy metals, ARGs,
and MRGs among the resident bacteria communities. The co-selection of ARGs exhibited
a preference for certain bacterial communities, particularly Pseudomonadota, potentially
driving the proliferation of resistance genes. Among the various heavy metals studied,
Cu and Hg triggered wider responses of resistance genes under a high selective pressure.
The present research underscores the urgency of limiting heavy metal contamination in
Lake Afdera and the Assale salt plain, as these regions are primary sites for the production
of consumable commercial salts, and contamination can exacerbate antimicrobial resis-
tance issues due to the co-selection effect on ARGs. Future studies should thoroughly
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examine bacterial resistance phenotypes to establish a comprehensive understanding of
the genotype’s co-selection potential. Additionally, it is important to investigate the af-
filiated genes located near the co-existing ARGs and MRGs to understand other genetic
variables that contribute to the co-selection of antibiotic and metal resistance. Therefore, it
is necessary to identify all the potential co-selection agents and their involvement in the
propagation of antibiotic resistance dissemination in environments associated with humans.
This will improve the risk assessment of antibiotic resistance within the current clinical or
environmental frameworks.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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