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Abstract: Since the first SARS-CoV-2 outbreak, mutations such as single nucleotide polymorphisms
(SNPs) and insertion/deletions (INDELs) have changed and characterized the viral genome sequence,
structure and protein folding leading to the onset of new variants. The presence of those alterations
challenges not only the clinical field but also the diagnostic demand due to failures in gene detection or
incompleteness of polymerase chain reaction (PCR) results. In particular, the analysis of understudied
genes such as N and the investigation through whole-genome next generation sequencing (WG-NGS)
of regions more prone to mutate can help in the identification of new or reacquired mutations, with
the aim of designing robust and long-lasting primers. In 48 samples of SARS-CoV-2 (including
Alpha, Delta and Omicron variants), a lack of N gene amplification was observed in the genomes
analyzed through WG-NGS. Three gene regions were detected hosting the highest number of SNPs
and INDELs. In several cases, the latter can interfere deeply with both the sensitivity of diagnostic
methodologies and the final protein folding. The monitoring over time of the viral evolution and the
reacquisition among different variants of the same mutations or different alterations within the same
genomic positions can be relevant to avoid unnecessary consumption of resources.

Keywords: WG-NGS; SARS-CoV-2; deletions; gene dropout; N gene

1. Introduction

As consequence of an increment of the worldwide infection cases, on 11 March 2020,
the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19)
a global emergency [1]. The infectious agent was identified in a new viral species classified
in the Coronaviridae family and named Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2), phylogenetically related to beta-coronaviruses SARS-CoV and MERS-
CoV [1,2].

Once the viral genome was sequenced, SARS-CoV-2 has been considered genetically
similar to SARS-CoV, notwithstanding the major genomic modifications that differentiate
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the two that occur in the spike gene (S). The gene product, the S protein present on the
surface of the virion, mediates the attachment to human angiotensin-converting enzyme 2
(ACE2) by the receptor binding domain (RBD). This region is highly variable, hence it has
been reported that the insertion of six amino acid mutations in the RBD of SARS-CoV-2
facilitates the ligation of the viral receptor to the enzyme [2–4].

Equally, the acquisition of 12 nucleotides increases the spike protein’s overall instability
and facilitates the furin cleavage as well as the viral infectivity by encoding the amino
acid sequence PRRA, HRRA or LRRA at the level of the junction between S1 and S2
subunits [2–5]. In this scenario, COVID-19 has caused millions of deaths and due to its
continuous circulation, the viral genome mutated and originated new variants that may
be characterized by resistance to medical measures [6]. The new arising strains have
been named through the Greek alphabet and classified into variants of concern (VOCs),
variants of interest (VOIs) and under monitoring (VUMs) depending on their frequency,
infectiveness and mortality [7]. To respond to the need for a validated and standardized
detection, according to the WHO, a robust workflow for the identification of SARS-CoV-2
has to include nucleic acid amplification testing (NAAT) such as reverse-transcription
polymerase chain reaction (qRT-PCR) on E, RdRP, N and S genes [8]. But some of the
mutations acquired during the evolution of the viral genome may lead to failure in RT-PCR
amplification, for instance the 69-70 del in the S gene [9,10] as well as mutations occurring in
the N gene [11,12]. Globally, this technique is considered the gold standard for the diagnosis
of COVID-19 due to its sensitivity; therefore, many industries had developed commercial
kits to reduce the typical run time and improve the methodology protocol [13–15]. The
importance of a solid and proven stability of genomic regions is pivotal to design targets for
a diagnostic kit, therefore in this study we compared 48 samples identified during the daily
diagnostic workflow presenting a PCR peculiar result. The reference assay used was the
Allplex SARS-CoV-2 Extraction-Free (Seegene Inc., Seoul, Republic of Korea) with which
the samples exhibited a lack of amplification of the N gene. Samples were classified into
Alpha, Delta or Omicron after whole-genome next generation sequencing (WG-NGS) on
the Illumina platform and retested for confirmation on Xpert Xpress SARS-CoV-2 (Cepheid,
Sunnyvale, CA, USA) assay technology.

2. Materials and Methods
2.1. Samples Collection

The study was performed on 48 clinical nasopharyngeal samples from SARS-CoV-2
infected individuals collected during the daily routine workflow from March 2021 to July
2022. All the samples used in this study underwent the anonymization procedure used at
the Unit of Microbiology of the Hub Laboratory of the Great Romagna Area (Pievesestina
FC, Italy) to adhere to the regulations issued by the local ethical board (AVR-PPC P09, rev.2;
based on Burnett et al., 2007). The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of AUSL Romagna
(protocol code “COVdPCR” of 7 February 2020).

2.2. RT-PCR Amplification

The presence of SARS-CoV-2 was evaluated through the Allplex SARS-CoV-2 Extraction-
Free system, a multiplex qRT-PCR based on TaqMan probes targeting four viral genes: E,
RdRP/S and N. The Extraction-Free Assay relies on a dilution of 15 µL of sample in 45 µL
of nuclease-free water and an incubation at 98 ◦C for 3 min. Then the sample is maintained
at 4 ◦C for 5 min. Successively, master mix preparation and reaction setup were conducted
as described in the manufacturerinstructions. A total volume of 15 µL of master mix was
aliquoted in a tube containing 5 µL of extracted sample [16]. After the PCR-setup step, the
plate was transferred to a CFX96 thermocycler (Bio-rad, Hercules, CA, USA) where results
analysis and target quantification were performed with Seegene Viewer software from Seegene
Inc. The positivity was declared in samples presenting Cycle Threshold (Ct) values below the
manufacturer’s suggested ones of 40. When an N gene dropout was detected on the Allplex
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SARS-CoV-2 Extraction-Free system, the sample was retested through the Xpert Xpress SARS-
CoV-2 for GeneXpert Dx or GeneXpert Infinity systems [17]. The technology is based on the use
of a single cartridge containing reagents and components for a single RT-PCR on a 300 µL of
sample. Each cartridge includes a sample processing control (SPC) to ensure an appropriate
reaction amplification in temperature, time and reagents. Additionally, a probe check control
(PCC) validates the fluorescence stability. The technique targets two SARS-CoV-2 genes that are
E and N2.

2.3. Viral RNA Extraction and Next-Generation Sequencing

The genetic material was isolated and clarified through automated extraction and
purifications using the Maelstrom 9600 system (TANBead—Taiwan Advanced Nanotech
Inc., Taiwan). The sample undergoes a mechanical lysis through magnetic beads and three
washing steps. The extracted RNA is eluted in about 50 µL.

After the extraction, the library preparation was performed following the CleanPlex
SARS-CoV-2 Flex Research and Surveillance NGS Panel (Paragon Genomics, Inc., Hay-
ward, CA, USA). According to the manufacturer’s instructions, protocol steps of reverse
transcription of viral RNA, digestion, indexing PCR and purifications were performed
on an automated workstation system distributed by Hamilton (Reno, NV, USA). Once
the library was generated, the cDNA was quantified, serial diluted and sequenced on the
MiSeq platform (Illumina, San Diego, CA, USA) [18].

2.4. Data Analysis

Forward and Reverse FastQ files were obtained after sequencing, and reads trimmed
and aligned on the Wuhan reference genome (NCBI Accession number: NC_045512.2)
using SOPHiA DDM software (SOPHiA GeneticsTM, Lausanne, Switzerland). The overall
reads length was maintained within the range of 149–151. To avoid spurious alignments, a
high depth of coverage (DC) was calculated: a possible deletion was manually inspected
and included in the study when the DC was around 100 mapped reads.

The threshold for the variant calling (VF) was set at 70% of the total number of mapped
reads in a specific genome position. Then, the associated consensus sequence was generated
in a FASTA file for each sample and the percentages in presence of each mutation were
compared. The classification and categorization of SARS-CoV-2 variants were performed
on the PANGO Lineages [19,20] website (v.4.2) and confirmed on the Nextclade online web
application (v. 2.13.0) by Nextstrain [21,22].

Deletions were manually inspected by using the desktop application of Integrative
Genomic Viewers (IGV) [23].

Raw data have been deposited in the Sequence Read Archive (SRA), BioProject acces-
sion number PRJNA970221.

2.5. Reference Consensus Sequences Generation

To define the general nationwide mutational trend of each variant, three local con-
sensus sequences (LCS) were generated for 50 random Alpha sequences, 48 Delta and
43 Omicron variants according to the lowest percentage of 1 of not assembled nucleotides
(%N) and excluding the testing samples. The random sequences were chosen within a
limited temporal range starting from the earliest detection of the analyzed variant up
to one month, to annotate the original genome of strain arrived in Emilia-Romagna and
perform the identification of putative mutations cause of the gene dropout. The final LCSs
were annotated in the FASTA file on Lasergene MegAlign Pro software (DNASTAR, Inc.,
Madison, WI, USA) and, according to the previous classification performed on Pangolin,
the tested genomes were aligned to the reference consensus sequence of the variant they
belong to. The differences in mutational presence and distribution were investigated.

Successively, sequences were aligned together with the reference SARS-CoV-2 genome
through ClustalOmega [24] and the remaining mutations on the N gene were analyzed.
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2.6. N Protein Structure Prediction

The nucleotide sequences were translated into the corresponding amino acids chain
through the Transeq EMBOSS tool [25] and then aligned to the NCBI reference N pro-
tein (YP_009825061.1). The prediction of the 3D structure of the N protein was calcu-
lated through RoseTTAFold [26], the algorithm was set with the default parameters and
5 probabilistic models were generated associated with an Angstrom error rate estimation
for every single amino acid [27]. Then, the proteins were analyzed on Lasergene Protean
3D software (DNASTAR, Inc., Madison, WI, USA).

3. Results
3.1. Ct Values

Once the PCR results for both the technologies used in this study were available, data
were compared to confirm the N gene dropout found for the Seegene’s assay (Table 1).

Table 1. The Ct values obtained from the two methodologies were compared to confirm the lack of
amplification of the N gene. The samples tested with the Allplex SARS-CoV-2 Extraction-Free Assay
were confirmed positive with the Xpert Xpress SARS-CoV-2 Assay through which the amplification
of the N2 target was present.

Sample
Number

Variant
Allplex SARS-CoV-2 Extraction-Free Assay Xpert Xpress SARS-CoV-2 Assay

E Gene RdRP/S Gene N Gene IC * E Gene N2 Gene IC *

1 B.1.1.7 25.98 29.02 N/A 22.05 20.9 24.1 27.6

2 B.1.1.7 21.23 22.34 N/A 22.45 17.1 17.9 27.5

3 B.1.1.7 19.18 21.25 N/A 22.12 14.9 16.3 27.5

4 B.1.1.7 19.12 22.01 N/A 21.98 15.8 17.1 27.1

5 B.1.1.7 24.45 26.68 N/A 22.01 20 21.7 27.2

6 B.1.1.7 19.04 21.32 N/A 21.77 15 16.6 28.3

7 B.1.1.7 23.12 24.23 N/A 22.13 18.6 19.3 27.4

8 B.1.1.7 25.98 28.1 N/A 22.31 21.8 23.4 27.7

9 B.1.1.7 27.98 30.01 N/A 21.89 22.9 25.4 28.1

10 B.1.1.7 26.78 29.07 N/A 22.52 21.8 24.7 28.5

11 B.1.1.7 24.98 28.13 N/A 22.33 20.7 23.3 28.2

12 B.1.1.7 23.37 23.98 N/A 21.88 19.7 19.8 27.3

13 B.1.1.7 23.01 26.25 N/A 21.91 18.5 21.4 27.1

14 B.1.1.7 24.55 27.32 N/A 22.12 20.2 23.1 28.3

15 B.1.1.7 23.72 26.03 N/A 22.37 18.7 21.3 27.5

16 B.1.1.7 20.34 22.22 N/A 22.41 16.12 17.6 28.0

17 B.1.1.7 21.23 24.37 N/A 22.4 17.06 19.5 28.1

18 B.1.1.7 18.11 21.01 N/A 21.83 14.94 16.3 27.9

19 B.1.1.7 19.23 19.99 N/A 21.85 14.78 15.3 27.4

20 B.1.1.7 22.12 23.92 N/A 22.01 17.63 19.5 28.0

21 B.1.1.7 19.15 22.32 N/A 21.99 15.06 17.8 28.4

22 B.1.1.7 23.04 24.59 N/A 22.38 19.06 20.9 27.8
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Table 1. Cont.

Sample
Number

Variant
Allplex SARS-CoV-2 Extraction-Free Assay Xpert Xpress SARS-CoV-2 Assay

E Gene RdRP/S Gene N Gene IC * E Gene N2 Gene IC *

23 B.1.1.7 24.46 27.12 N/A 22.52 20.1 23.0 27.1

24 B.1.1.7 20.67 21.89 N/A 22.04 16.4 17.7 27.3

25 B.1.1.7 28.47 30.15 N/A 22.56 24.1 25.6 28.2

26 B.1.1.7 25.34 29.07 N/A 22.63 21.1 24.3 28.5

27 B.1.1.7 23.34 25.87 N/A 22.43 19.5 22.1 27.3

28 B.1.1.7 26.76 29.1 N/A 22.76 22.3 24.8 27.8

29 B.1.1.7 23.53 26.67 N/A 22.51 19.7 22.4 27.3

30 B.1.1.7 24.79 27.2 N/A 22.49 21.1 23.0 28.1

31 B.1.1.7 19.55 21.68 N/A 21.81 15.2 17.5 27.7

32 AY.102 22.13 23.54 N/A 22.06 18.1 19.1 27.4

33 B.1.617.2 17.77 21.98 N/A 21.86 14.8 18.2 28.5

34 AY.43 23.51 25.12 N/A 22.32 19.6 21.0 28.5

35 AY.43 21.88 24.56 N/A 22.44 18.2 20.2 27.0

36 AY.43 25.34 27.89 N/A 22.61 21.8 24.1 27.4

37 AY.43 18.87 21.03 N/A 21.93 15 16.6 28.6

38 AY.23 18.56 20.45 N/A 22.14 15.2 17.0 27.9

39 AY.23 23.34 25.12 N/A 22.25 19.3 20.6 28.6

40 AY.23 20.06 22.76 N/A 22.17 16 18.2 27.2

41 AY.23 26.34 28.98 N/A 22.78 22.1 25.0 27.6

42 BA.1.1 17.88 19.34 N/A 22.21 14.4 15.4 28.1

43 BA.1 20.91 22.65 N/A 22.01 16.5 18.4 27.3

44 BA.1.21 20.67 21.76 N/A 22.32 17.1 18.2 27.5

45 BA.2 17.76 18.63 N/A 21.97 14.2 14.0 27.2

46 BA.2.36 20.09 22.87 N/A 22.31 16.1 18.0 28.0

47 BA.5 29.03 29.77 N/A 22.4 24.7 25.7 28.3

48 BA.5.1 18.36 20.87 N/A 22.35 15.1 16.0 27.9

* IC: internal control.

3.2. Sequence Analysis

The analyzed samples were classified into 31 Alpha (B.1.1.7), 10 Delta (sublineages
AY.23, AY.43 and AY.102) and 7 Omicron (sublineages BA.1.1, BA.1.21, BA.2, BA.2.36,
BA.2.12.1 and BA.5). The N gene was investigated, and three regions were identified where
mutations were present in least 1 out 48 samples. The N gene sequence considered starts
at 28,274 nucleotide position of the reference genome. The first identified region 1 (R1)
covers nucleotides from positions 28,280 to 28,703; region 2 (R2) extends for 27 nucleotides
from 28,879 to 28,907 and has been identified as the shortest zone. Region 3 (R3) includes
genomic positions from 28,912 to 29,510 (Figure 1).
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Figure 1. The extension and the position of the three regions were mapped on the N gene. Region 1
(R1) extends from nucleotides 28,280 to 28,703; region 2 (R2) resulted in the shortest among the three
and includes nucleotides from 28,879 to 28,907; the third region (R3) lies at the end of the gene, from
nucleotides 28,912 to 29,510.

The DC and VF were manually inspected and visualized for each detected mutation,
to discriminate if a deletion could be included in the study (Supplementary Materials, Table
S1). Then, after mapping the mutations, the regions were analyzed following the SARS-
CoV-2 evolution and temporal onset of variants. Particularly, a deletion of six nucleotides
was found in position 28,890–28,895 in the R2 of 23 Alpha samples; the mutation resulted
in a deletion of two amino acids, alanine and proline (Pro207_Ala208del). Within the same
region, a deletion of three nucleotides was annotated in seven Alpha samples and two
Omicron (BA.1 and BA.1.21) in positions from 28,896 to 28,898. The deletion was called
Ala208_Arg209del, where the sequence GCTAGA was changed in a glycine (GGA). The
sole exception among Alpha samples was the number 11, which did not present any of
the previous mutations but a deletion named Arg203_Ser206del in nucleotide positions
28,879–28,890.

Alongside the deletions, one SNP was annotated at nucleotide 28,881 in all three
variants: G > A in Alpha and Omicron and G > T in Delta. Additionally, the two registered
SNPs were G > A and G > C in Alpha and Omicron variants at nucleotide positions 28,882
and 28,883, respectively.

In the remaining samples that did not present these mentioned mutations, some other
deletions were annotated.

Particularly, in two Omicron variant samples (46 and 48), respectively, BA.2.38 and
BA.5.1, two mutations were found in R2 alongside the Glu31_Ser33del starting from 28,881
(Gly203_Ala208del with threonine insertion) and ending at 28,895 as well as a deletion
from 28,898 (Arg209_Met210del) ending at 28,903. Similarly, a deletion from 28,899 to
28,907 (Arg209_Gly212del) was found in sample 45 (BA.2) that resulted in a serine insertion.
Lastly, a long deletion of 18 nucleotides (Gly204_Arg209del) was acquired in the sequence
of sample 42 (BA.1.1).

A similar mutational event was found in the R3 of 10 Delta samples and 1 BA.5.1
sample that presented a deletion of six nucleotides from 28,912 to 28,917; the mutation
resulted in the omission of glycine 214 and 215 (Gly214_Gly215del). Moreover, at position
29,510, four Omicron sequences had an SNP in A > C.
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Even in R1 of seven Omicron samples, a deletion in positions from 28,362 to 28,370
was annotated and called Glu31_Ser33del. Concerning SNPs of the Alpha variant, the R1
presented mutations at 28,280 (G > C), 28,281 (A > T) and 28,282 (T > A) genomic positions.
At nucleotide 28,299, five Delta mutated A > T and all Delta sequences changed A > G
at nucleotide 28,461. On the contrary, a reversion A > T can be seen at position 28,311 of
Omicron variants.

Deletions were also visualized in Integrative Genomic Viewers (IGV) (Supplementary
Materials, Figure S1).

3.3. LCS Comparison

Alpha: The generated LCS presented three substitutions at nucleotide positions 28,280
(G > C), 28,281 (A > T) and 28,282 (T > A), originating the amino acidic mutation D3L. Three
SNPs were found at positions 28,881 (G > A), 28,882 (G > A) and 28,883 (G > C) that resulted in
lysine and arginine mutation. The last SNP, C > T, was annotated in the sequence at 28,977 and
was associated with the substitution called S235F.

Delta: In the Delta LCS sequence, the N gene presented four mutations. The SNP
A > G at 28,461 resulted in the D63G mutation, alongside the amino acid substitutions
G > T at 28,881 (R203M) and G > T at 28,916 (G215C). At genome position 29,402, the
SNP G > T generated the amino acidic substitution D377Y.

Omicron: the genome of the Omicron LCS was investigated, and four mutations were
found to be present in the N gene. At position 28,311, the C > T mutation originated the
amino acid substitution P13L, and three SNPs at positions 28,881 (G > A), 28,882 (G > A)
and 28,883 (G > C) resulted in lysine and arginine mutations, as occurred in Alpha LCS.

Once the mutational set of the three LCSs was characterized, the annotated SNPs were
not considered because of the dropout when present in sample sequences. By excluding those
mutations, some exceptions were noted as sporadic SNPs among samples sequences, although
the main divergence was the presence of the deletion Gly214_Gly215 in place of mutation G > T
at nucleotide 28,916 in Delta sample sequences (Supplementary Materials, Figures S2–S4).

3.4. Temporal Analysis

Due to the recurrence of some deletions in different patients, the epidemiological dis-
tribution and the onset of mutations were investigated through an internal database which
counted the total number of sequences acquired during the sequencing surveillance of the
local COVID-19 cases. The Pro207_Ala208del was thereby annotated in Emilia-Romagna
in 25 Alpha sequences from late March to late May 2021. Around the same period, the
Ala208_Arg209del appeared in three Alpha samples in early April and remained until
early June 2021 for a total of twelve samples; notably, the same mutation was found again
in two Omicron sequences in February and May 2022. From November to December
2021, the deletion Gly214_Gly215 characterized the sequence of 11 patients, all showing
dropout in the N gene. The Glu31_Ser33del appeared to be part of the Omicron variant
mutational arrangement in late December 2021 and constantly increased its fixation until
it became constitutive; therefore, it cannot be directly responsible for the lack of amplifi-
cation. On the other side, Arg203_Ser206del in one Alpha sample and Gly203_Ala208del,
Gly204_Arg209del, Arg209_Met210del and Arg209_Gly212del present in four Omicron
samples were unique in the whole database (Figure 2).

3.5. D Structure Prediction

The structural coordinates of three of the most common deletions (Pro207_208del,
Ala208_209del and Gly214_215del) in the protein folding were analyzed. The mutations
Pro207_208del and Ala208_209del were present in a link zone between two flexible positive-
charged regions. Regarding the deletion Gly214_Gly215, the area was a flexible zone be-
tween a turn region and an α-structure. The Omicron characteristic deletion of Glu31_Ser33
affected a positive-charged flexible turn area (Figure 2).
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Figure 2. The mutation frequency was traced over time and registered for over one year. According
to their trend, the 3D structures of N proteins presenting the most recurrent deletions were gener-
ated through RoseTTAFold, and images were created using Lasergene Protean 3D software from
DNASTAR, Inc. The protein sequences were aligned to the Wuhan reference YP_009825061.1. The
four deletions occurred in flexible link regions: (A) Pro207_Ala208del; (B) Ala208_Arg209del with a
Glycine insertion; (C) Gly214_Gly215del; and (D) Glu31_Ser33del.
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4. Discussion

The spreading of SARS-CoV-2 infections and the following emergence of variants
led not only to enhanced fitness and virulence but also to a decrease in the accuracy of
diagnostic RT-PCR kits or, specifically, in the efficiency of primers and probes consequent
to the onset of mutations and deletions [28,29]. Despite the continuous effort for a rapid de-
velopment of RT-PCR-based techniques, some alterations may destabilize the hybridization
of primers and result in a gene dropout or a delay in Ct values. In particular, the evolution
of the N gene as part of diagnostic targets requires further in-depth study built around the
necessity of strengthening the diagnostic robustness of commercial methodologies [30].

On account of this, the whole-genome sequencing surveillance of COVID-19 allowed
the characterization and classification of mutations and variants [31] and its exploitation
gains increasing relevance in the prediction of the geographical distribution and phylo-
genetic evolution of the virus as well as a blueprint in the advancement of molecular
diagnostic assays [29].

In this study, the strong connection between the temporal analysis and the genomic
surveillance of SARS-CoV-2 has been crucial for the identification of three regions of the
N gene prone to mutate and that present large deletions that may lead to a dropout in N
gene amplification curve. Specifically, Glu31_Ser33del found in R1 of Omicron variants
is not chargeable of dropout because the frequency of the mutation has exponentially
increased with the enlargement of viral diffusion, and the deletion has been fixed during
the evolution of the virus as to be included within the list of characteristic mutations of
lineage B.1.1.529 and its subclassifications [20]. The mutation was not included in the
Omicron LCS; therefore, authors assume that the deletion was not present at the beginning
of the variant spreading in Emilia-Romagna. To exclude the dropout causative effect of
the Glu31_Ser33del, mutations in R2 and R3 of Omicron samples were considered: all
sequences presented at least a deletion in one of the two regions. Particularly, all Omicron
sequences except for sample 48 acquired the Ala208_Arg209del that is shared with Alpha;
on the other hand, the Gly214_Gly215del in common with Delta samples is found in sample
number 48.

Therefore, in a situation opposite to that of R1, deletions occurring in R2 or R3 may
have a causative relation to the lack of N gene amplification using the Allplex SARS-
CoV-2 Extraction-Free Assay by Seegene. In fact, the Gly214_215del found in Delta and
Omicron variants was also detected in other studies and associated with a failure in qRT-
PCR results [32,33]. Previously, the Gly214_215del was only found in the AY.4 sublineage,
but in our study the deletion is annotated not only in additional and different AY strains
but also in an Omicron sequence that showed the same N gene dropout as well as in
Delta. Therefore, the deletion may be reacquired over time and viral evolution. Hence
the monitoring of the R3 region, with a particular focus on the positions from 28,913 to
28,918 nucleotides, can be proposed to avoid probable PCR failures in new commercial
kit development. Additional uncommon mutations such as deletions Ala208_Arg209del,
Pro207_Ala208del and Arg203_Ser206del were observed associated with a N gene dropout.

According to the study of Laine et al., the Ala208_Arg209del was found in Finland
associated with false-negative N gene results [34].

More broadly, the gene area covered by R2 and R3 belongs to a link region rich in
serine and arginine whose functions relate directly to the capacity of RNA separation and
solubilization. Given that the nucleocapsid is one of the regulators of SARS-CoV-2 RNA
transcription, mutations or deletions occurring in those areas may have an impact also on
the viral fitness, replication and host interaction [35–37].

5. Conclusions

The N gene continues to be an understudied gene; therefore, tracking over time of its
mutational trend remains decisive for the identification of more stable regions or positions
that may represent fundamental acquisitions for industries interested in commercial kits
development and differential diagnosis.
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By carefully analyzing the N gene sequence, some regions can be identified that are
more stable than others. With this in mind, designing primers for stable regions and not
for areas prone to mutate can prevent the manufacturing company from upgrading and
improving assay even after the enactment of the commercial kit. Likewise, the user could
achieve greater test reliability by reducing false-negative results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15081630/s1, Table S1: Depth of Coverage and Variant Calling;
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