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A semi analytical solution is obtained here for the fully developed plane Poiseuille flow of a Giesekus fluid with a
Newtonian solvent. The fluid behaviour is described using the Deborah number, the mobility factor and an
appropriate ratio of fluid viscosity to total viscosity as parameters. The given solution shows that the velocity
increases significantly with rising the polymer concentration, confirming that dilution of the solution produces
the same effect as an increase in resistance. The analysis demonstrates that there are limiting values of Deborah
number related to the mobility parameter.

1. Introduction

Viscoelastic fluids have important industrial applications such as
filament stretching, plastic extrusion, injection moulding, oil well dril-
ling, container filling, slurry suspension. In addition, they are sometimes
used in heat transfer equipment, in pharmacology, in foodstuffs (Caglar
Duvarci et al. [1]), in inkjet printers and many other cases. These fluids
exhibit non-linear behaviour and therefore an exact solution is almost
impossible even for simple geometries. There are a large number of
possible non-linear rheological models to adequately describe the
behaviour of complex polymers, one of these is the Giesekus model that
uses three physical parameters: viscosity, mobility factor, and relaxation
time to characterise the fluid (Giesekus [2,3]). The experimental
determination of the mobility factor is well documented in Debbaut and
Burhin [4] and in Calin et al. [5] where a series of experiments are
performed to characterize a high-density polyethylene fluid, with direct
reference to a Giesekus model. In [6], Rehage and Fuchs perform a series
of rheological experiments using steady-state shear flow and large
amplitude oscillating shear regime to examine the correspondence of the
theoretical behaviour of the Giesekus fluid model with the measured
data and they find excellent agreement in steady state flow, while when
a large oscillating amplitude is applied the fluid shows instability.

The rheological law of non-Newtonian fluids is non-linear, and thus
the practical problems involving them are difficult to solve analytically
due to their complexity. For this reason, numerical methods for the
simulation of non-Newtonian fluid flows have been an important branch
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of research. Restricting ourselves to analytical solutions, amongst the
first to deal with plane Couette and Poiseuille flows of Giesekus fluid,
Yoo and Choi [7] provide a careful analysis on the existence of the so-
lution by distinguishing two ranges of variation of the mobility param-
eter and giving for each the limit values of the Deborah number beyond
which no solution can be found. Schleiniger and Weinacht [8] analyse
the solutions for the Poiseuille flow with and without the viscosity
contribution of the solvent and determine, although in implicit form, the
one with physical significance for plane and axi-symmetric flow.

The available explicit solutions are usually restricted to linear
approximation, thus limiting their validity to a small range of the
involved parameters’ values as in Raisi et al. [9]. Dapra and Scarpi [10]
provide a semi-analytical solution for a plane Poiseuille flow: the pre-
sented solution applies to the entire range of values of the physical and
geometric parameters involved. Ferrds et al. [11] propose a
semi-analytical solution for a channel flow with wall slip.

The addition of a solvent amplifies the effects of the non-linear terms
in the constitutive equation increasing the already considerable diffi-
culties in finding an analytical solution even in cases of simple geome-
tries. As an example, with different models, Cruz et al. [12] provide an
analytical solution for fluids whose polymer rheological behaviour is
described by the PTT and FENE-P models and the solvent contribution is
due to a Newtonian fluid. They develop in detail the case of the flow in a
circular cross section pipe and extend the solution to the channel flow.

In their work [13] Araujo et al. show a semi-analytical method to
obtain the streamwise velocity component and the components of the
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Fig. 1. Scheme of the channel.

extra-stress tensor using the LPTT viscoelastic fluid model for channel
and pipe flow without simplifications and considering the solvent
contribution in the homogeneous mixture.

Considering a Giesekus fluid and using a different approach from the
classical one, in which the independent variable is the distance from the
centre of the channel, da Silva Furlan et al. [14] solve the Poiseuille flow
analytically. They rewrite the system of equations by choosing a
component of the stress tensor as the independent variable and compare
the results obtained first with those of Schleiniger and Weinacht and
then with the solutions obtained by a numerical simulation of the gov-
erning equations, the Navier-Stokes and the constitutive equations,
using high-order methods to obtain the solution. With this approach, the
stress tensor components are obtained analytically, whereas the velocity
profile is obtained with a higher-order numerical integration method.

The aim of the present work is to elaborate an analytical solution for
a plane flow of a Giesekus fluid, considering both the full non-linearity of
the constitutive equation and the contribution of a Newtonian solvent.
The problem is defined by specifying the geometry and the governing
equations in dimensionless form. The velocity distribution can be
calculated analytically as a function of the mobility factor, of the
Deborah number and of the ratio between the viscosity of the solvent
and the total viscosity. The existence and validity range of the solution
are also analysed. Finally, the obtained results are presented and dis-
cussed in detail.

2. Problem setting and governing equations

A plane layer of constant thickness 2h filled with an incompressible
Giesekus fluid is considered; the motion is steady and laminar, under the
action of a constant pressure gradient (Fig. 1).

For a steady rectilinear flow in the direction of X axis, the continuity
and momentum equations are
dv

=0 @

—Vp+V-T=0 ()]

where v is the vector velocity, p the pressure, T the total stress tensor and
—h<z<h

The total stress tensor for a Giesekus fluid with non-zero solvent
viscosity can be written as

T=T,+T, 3

the first part refers to the polymer contribution and satisfies the equation

o, )
T,+2 a—?”-&-wVT,,—T,,-Vv—(Vv)TT,, +7ﬁT,,~T,,:ﬂ[vV+(vV)T} (4)

where p is the zero-shear rate viscosity of the polymer, 1 the stress
relaxation time and f the dimensionless mobility parameter (0 < g < 1).

Main symbols adopted:

De Deborah number

T, polymer contribution to total stress tensor
T; solvent contribution to total stress tensor
$ mobility parameter

& viscosity ratio

7 solvent viscosity

4t polymeric viscosity

A stress relaxation time

The solvent contribution to the total stress is
T, =n[Vv+ (V)] (5)
where 7 is the viscosity of the solvent.
3. Semi analytical solution

In order to develop the foregoing analysis, we introduce the non-
dimensional quantities: x = X/h, z = Z/h, u = v(u + 5)/(Ph?), p =
p/(Ph), t =tPh/(u +n), = = T/(Ph), De = APh/u, where P = — dp/0x.

Egs. (1) and (2) become respectively

du

Z_o (6)
P _ % v

—E+V-(‘:p+n) = VL +eVu=0 7

where ¢ =5/(u+n) is the viscosity ratio, 0 < e < 1: if ¢ = 0 the fluid
consists only of the polymer; if ¢ = 1 only the solvent is present. The
non-dimensional constitutive equation of the Giesekus fluid and of the
solvent become

7, + De(1—¢) aai:+u~VT,, —1,Vu— (Vu)' 1, | + pDez, 1,
=(1—¢)[Vu+(Vu)] €))
T, = €[Vu+(Vu)'] 9

For steady Poiseuille flow the continuity Eq. (6) is verified, and the
momentum Eq. (7) has two scalar components. Except for p = p(x, 2)
which depends linearly on x, all the other quantities depend only on z.

1+ 'r’m = —eu 10
0 ,
a—lz’ 41 =0 1)

where a prime indicates d/dz. Eq. (11) allows to write p(x, z) as
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Fig. 2. The parameter k as a function of Deborah number for some values of ¢
for f=0.25.
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Fig. 3. The parameter k as a function of Deborah number for some values of &
for p=0.75.
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Fig. 4. Normalized velocity profile for some values of e for p = 0.25and =1.5.

p(x,z) =Po — X — Tpzz

here py is the assigned pressure at a given point, e.g. at (x,z) = (0,0).
The non-zero components of Egs. (8) and (9) are

pxx

Tper — 2Dty (1 — )i + fDe (1'2 +sz1) =0 12)
2 —
Tpe + pDe (Tﬂx: + 1i::) =0 13

Ty — Detye, (1 — ) + BDeTy (T +7,2:) = (1—€)u 14
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Fig. 5. Normalized velocity profile versus z for some values of & for p = 0.75
and De = 1.5.

Tz = € Z_Z (15)
Egs. (12)-(15) contain the mobility parameter f and the Deborah
number De which encloses both physical parameters of the polymer
(viscosity and relaxation time) and the pressure gradient, which gives
rise to the motion.
Because of the symmetry of the flow field, only the region defined by
—1 < 2 <0 is analysed; the appropriate boundary conditions are

u(—1)=0 (16)
du
o » =0 a7

Solving Eq. (17) with respect to 7., gives

-1+ pxz
Vo) as)

Tpee = 2pDe
where
(/;(TW) =1- 4/’72D627,2)xz (19)

obviously ¢(zpx;) must be non-negative. According to [8], to have a
stable behaviour the positive sign should be taken in Eq. (18).
The other polymeric normal stress 7, can be obtained from Eq. (14)

(1= €)u (1 + Der,,) 1+ pDery.

= 2
Tpne PDer, De (20)

therefore, both normal stresses can be expressed as a function of
tangential stress.

As —0 and ¢ = 0, Giesekus model reduces to the upper convected
Maxwell model. As f—0 or De—0, 7p,;;—0 and 7j;—(1 — s)u'. Even the
normal stress 7,,—0 as Deborah number tends to zero, while 7j— —
Det,, as f—0.

The integration of Eq. (10) gives
Tz = 7(Z+ Su,) (21)

Following classical developments [8], from the previous relations an
algebraic equation of sixth degree with respect to u is obtained; if the
solvent is present (¢ # 0), this equation is not solvable in a closed form.
However, if z is expressed as a function of 7y, 2 = — (Tpe + sti), a
second-degree equation with respect to u is derived. Therefore, based on
Egs. (12)-(14) and some algebraic steps given in detail in Appendix A,
the equation for u is as follows
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Fig. 11. Tangential stress 1, versus z for some values of € for p = 0.75 and De
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u,2(1 —¢) <TEED33,B -1+ ﬁ)z — urrm(l —€)
[2.DEp(F 85 +1) = p+1] + 7. DEF S~ 1) + 2,501~ ) =0
(22)

which can be easily solved:

.DB(8F° —8p+1)+1—p+[28—1|

Tp: P

“ :2(] —¢) (T,%X:Dezﬁ-‘rﬁ— 1>2 <TIZIXZD62/37[7'+ 1) (/1 74T§XZD22/32

In order to decide which of the two solutions is the correct one, one
has to analyse the behaviour of Eq. (23) varying . If /—0 then |2 — 1| =
(1 — 2p), it results that u =0 everywhere if the minus sign is chosen,
while if the plus sign is taken },iﬂ}“/ == which thus turns out to be an

(23)

identity. The limit of Eq. (23) for f—1, |28—1| = (26—1), yields lﬁirrlu[ =

De = =
2(1— &) [R2B5* — 1 + ]

/1422, De? : /
S0 goepe on the layer axis where 7,,; = 0, u must also be zero and
-

only the solution with the minus sign implies u =0 whereas the limit
corresponding to the plus sign tends to infinity. For # =0.5 the two
expressions of u overlap, so it follows that the plus sign is associated
with 0 < <0.5 and the minus sign with 0.5 <8 < 1. As stated above, the
limiting value of u tends to (?’i) as De—0.

The shear stress of the polymer at the wall (2= —1), 7,x,(—1) can be

expressed as a fraction of Tpumax, Where from Eq. (19) Tpxamax = ﬁ .
However, according to Yoo and Choi [7], and recalling the thermody-
namic considerations related to the entropy developed by Giesekus [15],

the condition that should apply if 0 < # < 0.5 is more restrictive: Zpxmax
=% #, i.e. Tpxmax = 2 being 6 = ,/% if0<$<0.5and s :%ﬁif
05<p<1.

The shear stress at the wall can be expressed as

ks

Tp.rz(_1> - E (24)

where 0 < k < 1 represents the ratio between the wall shear-stress of the
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zZ

Fig. 12. Normal stress 1, versus z for some values of & for § = 0.75 and De =
1.5.

fluid and its limit-value 7jxmax When only the Giesekus fluid is present
and then ¢ = 0.
If De—0 then k—0 and 7, (—1)—(1 —¢). The same result is obtained
if f—0 then 7, (—1)—(1 —¢) and in both cases u(— 1)—1.
Substituting Eq. (24) in Eq. (23) gives
W(-1) = L
2De(1 — &) (K25 +p — 1)

28— 1|(P&B—-p+1)4/1 74k252/7’2] (25)

Eq. (21) can be solved with respect to u: recalling Eq. (24) it gives

5 [/852/}(8/}2 -88+1)+1-4

u(=1) = (1—k&/De)/e (26)

substituting Eq. (26) in Eq. (25) a relation between the Deborah number
De and k is obtained:

5 { 251 — €) + K2pS° [8F°¢ + 4B(1 — 3¢) + 5¢ — 4]

—[B4=3e) +e—2-28(1—¢)] +e[2p— 1|(p5° — p+ 1)4/1 —4k2ﬁ252} @7

Again, the plus sign is associated with 0 < # < 0.5 and the minus sign
with 0.5 << 1.
If § = 0.5 then Eq. (27) simplifies in

k[l — (1 —&)&?]
(1=#)(1—e)

The parameter k, representing the ratio between the wall shear-stress
of the fluid and its limit-value Zpemax, is linked to Deborah number by
Eq. (27). It can be seen, for example from Figs. 2 and 3, that De is an
increasing function of k. If De grows, the pressure gradient grows, and
hence the velocity. Thus k is qualitatively related to the value of fluid
velocity. Furthermore, at the same De, i.e., pressure, viscosity and
relaxation time, it can be verified that k depends almost linearly on the
fluid mobility and increases as it increases. On the other hand, if De is
constant, it can be observed that k decreases as ¢ increases.

4. Calculation of the velocity

By solving Eq. (21) with respect to u it follows
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N Ttz

u(z) = ——
For any z the shear stress 7, can be written as 7, (2) = mry,(—1) =

MkTyg = MkS/De, with — 1 <m < 1; when m = +1 it results z = F1;

expressing uand z as a function of m we have

(28)
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Case 0<p<0.5
If0 </ < 0.5 it results 5 = \/gand 126 — 1| = 1— 26 Eq. (27)
becomes
k
211K

, du du dm 1 (mkd
”(Z>=d—z=@d—z=*g(D—e+Z<’")) (29) {2k4(1/3)(1e)+k2[8ﬁzs+4ﬁ(1_3e)+5s4]_2/;(1e)e+2}
and thus +e(1+K) (1-26)\/ 1 —4k*B(1 - p)
(35)

1 (mké dz
du = e (E+ Z(m)> d—mdm (30) The function z(m) is obtained from Eq. (34). It results
and z(m)= mk .

2Der/F1—B)(1—e)(1-m*2)’
u(m) — _é [g /m%d,ﬁ /Z%dm] G 28(1—&)+e—2—2m*k* (1 — ) (1 —&) —m*I [8f2e+4p(1 —3¢) +5e — 4]
! ! —&(14m*K) (1=2p)\/1—4m*i2B(1—p)
which gives (36)
1[ko 20m) 1 Case 0.5<f<1
ulm) = —2 {D_ (ma(m) +1—M(m)) +=, ’5] (32) If0.5 < < 1then s =4 and 2§ — 1| = 26— 1; Eq. (27) gives
being
De = 2 a 2
28(1 — &) [k —4p(1 - p)]
(1 — &) + 2B [8F% + 4B(1 — 3¢) + 5e — 4] — 85 [26°( — 1) + B(4 — 3¢) + & — 2] 37
~2pe2p — 1)1/ (1 - ) (K — 46 + 4p)
The following expression for z(m) is obtained:

M(m) = /Z(m)dm (33)

) = mk
2Def(1 — &) [m*k* — 4p(1 — )]

{ 8B [B(4 —3e) — 2 (1 — &) + e — 2] —m*k*(1 — &) — 2m*k*B[8F%¢ + 4P(1 — 3¢) + 5¢ — 4] }

1 —m?k?

+2Be[m*k* + 4B(1 — B)] (28— 1)

The evaluation of the integral M(m) is given in the Appendix B.

The function z(m) can be obtained from Eq. (21) recalling Eq. (23)
— mks

and putting 7y, =52
It follows
mkd
2(1—&)De[m 28 +p—1]°

{ﬂ(4—3£) —2m* kS B (1—¢) 28 (1 —€) +e—2—m*k* 5B }

z(m)=

[85%e+4B(1—3¢)+5e—4] Le(B—m* K28 f—1) 28— 1|1/ 1 -4’8
(34

(38

If p = 0.5 then Egs. (36) and (38) reduce to:

_ mk[1 —m?k* (1 — )]
“(m) = De(1 — ¢)(m*k> — 1)

5. Limiting values

The maximum value of De, Dep,,, is obtained for k = 1.

If 0 < <0.5 and ¢ # 0 the limit becomes infinite as can be seen
from Eq. (35); if € = 0 (only polymer, no solvent) the limit is, as ex-
pected, /(1 — pB)/p; if ¢ = 1 only the Newtonian solvent is present and

Depgx— .
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If 0.5 < g < 1 from Eq. (37)
3

1
Demnx 7@"” (1 78)(2‘[}7 1)2

(39

if ¢ =0 (only polymer, no solvent) Eq. (39) gives the expected value
ZL/,. If e>1, Depgxy— 0. Solving Eq. (39) with respect to ¢ gives the
minimum value of ¢ to obtain a given value of Depqy:

2p
(28 — 1)’ (2Depaf — 1) + 28

The shear stress 7,,, and the normal stresses 7, and 7, can be now
calculated using eqgs. (21), (18) and (20).

To better explain how the proposed method can be used to calculate
the fluid velocity, one can start by choosing the characteristics of the
Giesekus fluid and the pressure gradient, i.e. De, §, and the amount of
Newtonian solvent to set the viscosity ratio ¢; using Eq. (35) or Eq. (37),
based on the value of f, one can derive numerically the value of k. Fixed
m, —1 < m < 1, the value of z(m) is given by Eq. (36) or Eq. (38). Finally,
the value of the fluid velocity can be obtained from Eq. (32) where the
integral can be calculated using the equations in appendix B; u (z) can be
obtained from Eq. (28), the tangential component of the polymer stress
tensor 7, and the normal components 7, and 7,;, can be easily
determined using Egs. (21), (18) and (20).

Denex =

(40)

Emin = 1 —

6. Results and discussion

The main purpose of the following analysis is to illustrate the influ-
ence of the amount of a Newtonian solvent in a Giesekus fluid in a
steady-state channel flow, using the results of the proposed solution.

In particular, interest focuses on the velocity and stress profiles when
the solvent viscosity ratio ¢ rises from ¢ = 0, where only the Giesekus
fluid is present, and ¢ = 1, where the fluid is reduced to a Newtonian
one. The reference velocity represents the mean velocity of a Newtonian
fluid in terms of pressure gradient, using as the viscosity the sum of the

-2 #Zw) The first calcula-
tions are performed keeping Deborah number constant and using two
different values of the mobility factor : one lower than 0.5 and the other
higher to illustrate the two possible situations named the upper and
lower branch solution (Yoo and Choi [7]). Fig. 2 shows for § = 0.25 the
behaviour of the parameter k as a function of Deborah number for some
values of ¢; k represent the ratio between the wall shear-stress of the
polymer and its limit-value Zpyzmqx. It can be seen that for ¢ =0, i.e. when

only the Giesekus fluid is present, k grows linearly from 0O to 1 as De

polymeric and the solvent viscosity Uy =

increases from O to % . For ¢ > 0, k increases as De increases but the

slope of the curve decreases increasing De. It is seen that k decreases as ¢
increases. Fig. 3 shows k as a function of De when # = 0.75; again if ¢ =
0, k grows linearly as Deborah number grows until k = 1 for De = zl—ﬂ fe

> 0, k grows as De increases and reaches the value k = 1 when Depqy.
Fig. 4 shows the velocity profiles for increasing values of, with De = 1.5
and g = 0.25. The velocity has been normalized dividing it by the mean
Newtonian velocity Uy. The purely polymeric fluid is represented by
e—0. As expected, when the amount of solvent increases, the velocity

Supplementary materials
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decreases considerably, on thickening of the fluid in laminar flow, an
effect similar to the increase in drag. For ¢—1, (dash-dot line), the ve-
locity profile obtained differs from the parabolic profile representing
Newtonian fluid by less than 1.5E — 08, confirming the correctness of the
current solution. Fig. 5 illustrates the normalized velocity profiles for
increasing values of ¢ as De =1.5 and g = 0.75. If > 0.5, there is a
minimum value of ¢ to obtain the assigned value of Deborah number; for
De =1.5, émn = 0.173, which gives the maximum value of velocity at
the axis of the layer. Comparison Fig. 5 with Fig. 4, shows that for the
same ¢, the velocity is greater for greater mobility factor. As e—1, the
velocity profile overlaps the Newtonian profile again. Fig. 6 shows, in a
semi-logarithmic scale, the maximum value of De, as a function of &
for some values of the mobility factor. If 0 < < 0.5, Deygx— o0, whereas
for a given ¢ it decreases more and more as mobility increases. The small
figure, in linear scale, allows to verify that for De = 1.5, &y, = 0.173.
Fig. 7, 8 and 9 show the axial normal component of the polymer stress
tensor 7pxy, the tangential component 7, and the normal component
Tpaz, Tespectively, as the solvent viscosity ratio increases, keeping De and
f constant. The stress components decrease, in absolute value, when ¢
increases, until for e—1, the polymeric stresses vanish. Substituting the
numerical values of the first derivative of velocity u and those of total
stress components into Egs. (12), (13) and (14), the maximum errors are
everywhere less than 2.0E — 14. The behaviour of the polymer stress
components for = 0.75 are shown in Fig. 10, 11, and 12. As expected,
absolute values of stress decrease increasing ¢; a comparation with
Fig. 7, 8 and 9 shows that the stress values are lower as > 0.5.

7. Conclusions

In the present work, the Poiseuille flow of a Giesekus fluid to which a
Newtonian solvent is added has been analysed. The velocity profiles and
the polymer stress components have been determined analytically as a
function of the Giesekus fluid classical parameters and of the ratio ¢ of
solvent viscosity to total viscosity. If the mobility factor § is greater of
0.5, it is emphasized that a solution exists for given 8 and De only if ¢ is
greater than a suitable value.
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Appendix A

Solving Eq. (14) with respect to 7,,, gives
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_ PDety Ty + Ty — v

Tpzz v

P De(v - ﬂtpxz)
where

v=(1-¢&u

Substituting in Eq. (13):

2 2 ' B "2 ' ’
DET, [T + BDeT, Ty [ +v (1 = 28)] + DT, (Brp: —v) + v (1= B) (T —v) =0

Solving Eq. (12) with respect to 7. gives

1+ \/ [47,.De? (2 — fr,.)]
2pDe

Tpxx =

Choosing the plus sign and substituting in Eq. (A3)

21~ 29)\ 4D (2 — Pryc)] + 1+ 2BDET Y + Ty +2(f— 1)y =0

ie.

(1 2§) \/ [4BDe 0, (20 — fr)] +1 = — [2/ﬂ)e2rf,xzv' T+ 28— 1)&}
Squaring both members gives

le’xz(l - 2/})2{ [4/;DEZTPX: (2\)/ 7/}1[7)(:)} + 1} = [z/jDEZT;MV’ + TI/XZ + 2(/j - l)V’:| ’

which recalling Eq. (A2) finally gives Eq. (22).
Appendix B

Calculation of
M(m) = /z(m)dm =M, £+ M,

1
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(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(B1)

The plus sign if 0 < < 0.5, i.e. 5 = \/[(1 — )/p| and the minus sign if 0.5 < <1, i.e.§ = 1/(2p).

. mkéS
M, = [ 201 —e)De[m P& s+ — 1]

U {B(4—3e) —2m*k*5* B (1 —e) —2°(1 — &) + & — 2 — M’k 5" B[8F°c + 4B(1 — 3¢) + 5¢ — 4] }

1
" aDekp(e — 1) (RS pm’ + p— 1) (RSP +f— 1)

KBm*&p+p—1
P&p+p—1
[K'm*B28* (e — 1) + K2B8*(m* + 1) (1 — p)(1 — &) — (1 — B)[4f%e — pBe + 1) + 1]]

e(88° =88+ 1)(K¥m*s*p+ p— 1) (KB5* + p — l)ln( ) + 22 B5% (1 — m*)

m

M, = mks [ PS8 — )28 — 14 /1 — 4 2k2522:|d
2 [{2(1—£)De[mzk252ﬂ+ﬂ—1]2 8(,[3 m {/] )| Y | " 5| am

_ 28— 1]
© 2Dekps(e — 1) (K6 pm® + p — 1) (BB +p — 1)

{ [Em*&*p+2(8 — 1)] (KB5* + p—1)y/ (1 — 4k*m*f°8%) — [P p+2(8 — 1)] (K¥*m*B8* + p — 1)/ (1 — 4k*5*5) }

e8P 1) [|2/;_1\_ (1 — 420?25 {\2/;—1|+ (17418/3252)}
4Dekps(e — 1) [|2ﬁ—1\+ (1 — 4215 {\2ﬁ—1|— (17418/;252)}

(B2)

(B3)
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