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ABSTRACT
We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when
the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations
of the bootstrap. Specifically, we show that the prepivoting approach of Beran, originally proposed to deliver
higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an
asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in
and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference.
To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference
on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric
regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models. Supplemen-
tary materials for this article are available online.
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1. Introduction

Suppose that θ is a scalar parameter of interest and let θ̂n denote
an estimator for which

Tn := g(n)(θ̂n − θ)
d→ B + ξ1, (1.1)

where g(n) → ∞ is the rate of convergence of θ̂n, ξ1 is a contin-
uous random variable centered at zero, and B is an asymptotic
bias (our theory in fact allows for a more general formulation
of the bias). A typical example is g(n) = n1/2 and ξ1 ∼
N(0, σ 2). Unless B can be consistently estimated, which is often
difficult or impossible, classic (first-order) asymptotic inference
on θ based on quantiles of ξ1 in (1.1) is not feasible. Further-
more, the bootstrap, which is well known to deliver asymptotic
refinements over first-order asymptotic approximations as well
as bias corrections (Hall 1992; Horowitz 2001; Cattaneo and
Jansson 2018, 2022; Cattaneo, Jansson, and Ma 2019), cannot in
general be applied to solve the asymptotic bias problem when
a consistent estimator of B does not exist. Examples are given
below.

Our goal is to justify bootstrap inference based on Tn in
the context of asymptotically biased estimators and where a
consistent estimator of B does not exist. Consider the bootstrap
statistic T∗

n := g(n)(θ̂∗
n − θ̂n), where θ̂∗

n is a bootstrap version of
θ̂n, such that

T∗
n − B̂n

d∗→p ξ1, (1.2)

where B̂n is the implicit bootstrap bias, and “ d∗→p” denotes weak
convergence in probability (defined below). When B̂n − B =
op(1), the bootstrap is asymptotically valid in the usual sense that
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the bootstrap distribution of T∗
n is consistent for the asymptotic

distribution of Tn, that is, supx∈R
|P∗(T∗

n ≤ x) − P(Tn ≤ x)| =
op(1).

We consider situations where B̂n − B is not asymptotically
negligible so the bootstrap fails to replicate the asymptotic bias.
For example, this happens when the asymptotic bias term in
the bootstrap world includes a random (additive) component,
that is

B̂n − B d→ ξ2 (jointly with (1.1)), (1.3)

where ξ2 is a random variable centered at zero. In this case, the
bootstrap distribution is random in the limit and hence cannot
mimic the asymptotic distribution given in (1.1). Moreover, the
distribution of the bootstrap p-value, p̂n := P∗(T∗

n ≤ Tn), is
not asymptotically uniform, and the bootstrap cannot in gen-
eral deliver hypothesis tests (or confidence intervals) with the
desired null rejection probability (or coverage probability).

In this article, we show that in this nonstandard case valid
inference can successfully be restored by proper implementation
of the bootstrap. This is done by focusing on properties of the
bootstrap p-value rather than on the bootstrap as a means of
estimating limiting distributions, which is infeasible due to the
asymptotic bias. In particular, we show that such implementa-
tions lead to bootstrap inferences that are valid in the sense that
they provide asymptotically uniformly distributed p-values.

Our inference strategy is based on the fact that, for some
bootstrap schemes, the large-sample distribution of the boot-
strap p-value, say H(u), u ∈ [0, 1], although not uniform, does
not depend on B. That is, we can search for bootstrap algorithms
which generate bootstrap p-values that, in large samples, are
not affected by unknown bias terms. When this is possible,
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we can make use of the prepivoting approach of Beran (1987,
1988), which—as we will show in this article—allows to restore
bootstrap validity. Specifically, our proposed modified p-value is
defined as

p̃n := Ĥn(p̂n),

where Ĥn(u) is any consistent estimator of H(u), uniformly
over u ∈ [0, 1]. The (asymptotic) probability integral transform
p̂n �→ H(p̂n), continuity of H(u), and consistency of Ĥn(u)

then guarantee that p̃n is asymptotically uniformly distributed.
Interestingly, Beran (1987, 1988) proposed this approach to
obtain asymptotic refinements for the bootstrap, but did not
consider asymptotically biased estimators as we do here.

We propose two approaches to estimating H. First, if H =
Hγ , where γ is a finite-dimensional parameter vector, and a con-
sistent estimator γ̂n of γ is available, then a “plug-in” approach
setting Ĥn = Hγ̂n can deliver asymptotically uniform p-values.
Second, if estimation of γ is difficult (e.g., when γ does not
have a closed form expression), we can use a “double boot-
strap” scheme (Efron 1983; Hall 1986), where estimation of H
is achieved by resampling from the bootstrap data originated in
the first level.

For both methods, we provide general high-level conditions
that imply validity of the proposed approach. Our conditions
are not specific to a given bootstrap method; rather, they can
in principle be applied to any bootstrap scheme satisfying the
proposed sufficient conditions for asymptotic validity.

Our approach is related to recent work by Shao and Politis
(2013) and Cavaliere and Georgiev (2020). In particular, a
common feature is that the distribution function of the bootstrap
statistic, conditional on the original data, is random in the limit.
Cavaliere and Georgiev (2020) emphasize that randomness of
the limiting bootstrap measure does not prevent the bootstrap
from delivering an asymptotically uniform p-value (bootstrap
“unconditional” validity), and provide results to assess such
asymptotic uniformity. Our context is different, since the
presence of an asymptotic bias term renders the distribution
of the bootstrap p-value nonuniform, even asymptotically. In
this respect, our work is related to Shao and Politis (2013), who
show that t-statistics based on subsampling or block bootstrap
methods with bandwidth proportional to sample size may
deliver non-uniformly distributed p-values that, however, can
be estimated.

To illustrate the practical relevance of our results and to show
how to implement them in applied problems, we consider three
examples involving estimators that feature an asymptotic bias
term. In the first two examples (model averaging and ridge
regression), B is not consistently estimable due to the presence of
local-to-zero parameters and the standard bootstrap fails. In the
third example (nonparametric regression), the bootstrap fails
because B depends on the second-order derivative of the condi-
tional mean function, whose estimation requires the use of a dif-
ferent (suboptimal) bandwidth. In these examples, ξ1 is normal,
but g(n) and B are example-specific. Two additional examples
are presented in the supplement. The fourth example is a simple
location model without the assumption of finite variance, where
ξ1 is not normal and estimators converge at an unknown rate.
The fifth example considers inference for dynamic panel data
models, where B is the incidental parameter bias.

The remainder of the article is organized as follows. In Sec-
tion 2 we introduce our three leading examples. Section 3 con-
tains our general results, which we apply to the three examples
in Section 4. Section 5 concludes. The supplemental material
contains two appendices. Appendix A specializes the general
theory to the case of asymptotically Gaussian statistics, and
Appendix B contains details and proofs for the three leading
examples, as well as two additional examples.

Notation

Throughout this article, the notation ∼ indicates equality in dis-
tribution. For instance, Z ∼ N(0, 1) means that Z is distributed
as a standard normal random variable. We write “x := y” and
“y =: x” to mean that x is defined by y. The standard Gaussian
cumulative distribution function (cdf) is denoted by �; U[0,1]
is the uniform distribution on [0, 1], and I{·} is the indicator
function. If F is a cdf, F−1 denotes the generalized inverse, that
is, the quantile function, F−1(u) := inf{v ∈ R : F(v) ≥ u},
u ∈ R. Unless specified otherwise, all limits are for n → ∞.
For matrices a, b, c with n rows, we let Sab := a′b/n and Sab.c :=
Sab − SacS−1

cc Scb, assuming that Scc has full rank.
For a (single level or first-level) bootstrap sequence, say Y∗

n ,

we use Y∗
n

p∗
→p 0, or equivalently Y∗

n
p∗
→ 0, in probability,

to mean that, for any ε > 0, P∗(|Y∗
n | > ε) →p 0, where

P∗ denotes the probability measure conditional on the original
data Dn. An equivalent notation is Y∗

n = op∗(1) (where we
omit the qualification “in probability” for brevity). Similarly, for
a double (or second-level) bootstrap sequence, say Y∗∗

n , we write

Y∗∗
n = op∗∗(1) to mean that for all ε > 0, P∗∗(|Y∗∗

n | > ε)
p∗
→p 0,

where P∗∗ is the probability measure conditional on the first-
level bootstrap data D∗

n and on Dn.
We use Y∗

n
d∗→p ξ , or equivalently Y∗

n
d∗→ ξ , in probability, to

mean that, for all continuity points u ∈ R of the cdf of ξ , say
G(u) := P(ξ ≤ u), it holds that P∗(Y∗

n ≤ u) − G(u) →p 0.

Similarly, for a double bootstrap sequence Y∗∗
n , we use Y∗∗

n
d∗∗→p∗

ξ , in probability, to mean that P∗∗(Y∗∗
n ≤ u) − G(u)

p∗
→p 0 for

all continuity points u of G.

2. Examples

In this section we introduce our three leading examples.
Example-specific regularity conditions, formally stated results,
and additional definitions are given in Appendix B. For each of
these examples, we argue that (1.1), (1.2), and (1.3) hold, such
that the bootstrap p-values p̂n are not uniformly distributed
rendering standard bootstrap inference invalid. We then return
to each example in Section 4, where we discuss how to
implement our proposed method and prove its validity.

2.1. Inference after Model Averaging

Setup. We consider inference based on a model averaging esti-
mator obtained as a weighted average of least squares estimators
(Hansen 2007). Assume that data are generated according to the
linear model

y = xβ + Zδ + ε, (2.1)
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where β is the (scalar) parameter of interest and ε is an n-vector
of identically and independently distributed random variables
with mean zero and variance σ 2 (henceforth iid(0, σ 2)), condi-
tional on W := (x, Z).

The researcher fits a set of M models, each of them based on
different exclusion restrictions on the q-dimensional vector δ.
This setup allows for model averaging both explicitly and implic-
itly. The former follows, for example, Hansen (2007). The latter
includes the common practice of robustness checks in applied
research, where the significance of a target coefficient is evalu-
ated through an (often informal) assessment of its significance
across a set of regressions based on different sets of controls; see
Oster (2019) and the references therein. Specifically, letting Rm
denote a q × qm selection matrix, the mth model includes x and
Zm := ZRm as regressors, and the corresponding OLS estimator
of β is β̃m,n := S−1

xx.Zm
Sxy.Zm . Given a set of fixed weights ω :=

(ω1, . . . , ωM)′ such that ωm ∈ [0, 1] and
�M

m=1 ωm = 1, the
model averaging estimator is β̃n := �M

m=1 ωmβ̃m,n. Then Tn :=
n1/2(β̃n − β) satisfies Tn − Bn →d ξ1 ∼ N(0, v2), where v2 > 0
and

Bn := Qnn1/2δ, Qn :=
M�

m=1
ωmS−1

xx.Zm
SxZ.Zm .

Thus, the magnitude of the asymptotic bias Bn depends on n1/2δ.
If δ is local to zero in the sense that δ = cn−1/2 for some vector
c ∈ Rq (as in, e.g., Hjort and Claeskens 2003; Liu 2015; Hounyo
and Lahiri 2023), then Bn →p B := Qc with Q := plim Qn,
so that (1.1) is satisfied with nonzero B in general. Because B
depends on c, which is not consistently estimable, we cannot
obtain valid inference from a Gaussian distribution based on
sample analogues of B and v2.
Fixed regressor bootstrap. We generate the bootstrap sample as
y∗ = xβ̂n + Zδ̂n + ε∗, where ε∗|Dn ∼ N(0, σ̂ 2

n In), (β̂n, δ̂′
n, σ̂ 2

n ) is
the OLS estimator from the full model, and Dn = {y, W}. Similar
results can be established for the nonparametric bootstrap where
ε∗ is resampled from the full model residuals. The bootstrap
model averaging estimator is given by β̃∗

n := �M
m=1 ωmβ̃∗

m,n,
where β̃∗

m,n := S−1
xx.Zm

Sxy∗.Zm . Letting T∗
n := n1/2(β̃∗

n − β̂n), we
can show that (1.2) holds with B̂n := Qnn1/2δ̂n such that, as in
(1.3),

B̂n − Bn = Qnn1/2(δ̂n − δ)
d→ ξ2 ∼ N(0, v22), v22 > 0,

given in particular the asymptotic normality of n1/2(δ̂n − δ).
Because the bias term in the bootstrap world is random in
the limit, the conditional distribution of T∗

n is also random
in the limit, and in particular does not mimic the asymptotic
distribution of the original statistic Tn.

Pairs bootstrap. Consider now a pairs (random design) bootstrap
sample {y∗

t , x∗
t , z∗

t ; t = 1, . . . , n}, based on resampling with
replacement from the tuples {yt , xt , zt ; t = 1, . . . , n}. As is
standard, it is useful to recall that the bootstrap data have the
representation

y∗ = x∗β̂n + Z∗δ̂n + ε∗,

where ε∗ = (ε∗
1 , . . . , ε∗

n)′ and ε∗
t is an iid draw from ε̂t = yt −

xtβ̂n − z′
t δ̂n. The pairs bootstrap model averaging estimator is

β̃∗
n :=

M�

m=1
ωmβ̃∗

m,n with β̃∗
m,n := S−1

x∗x∗.Z∗
m

Sx∗y∗.Z∗
m

and Z∗
m = Z∗Rm. The pairs bootstrap statistic is then

T∗
n := n1/2(β̃∗

n − β̂n) = B∗
n + n1/2S−1

x∗x∗Sx∗ε∗ ,
where

B∗
n :=

M�

m=1
ωmS−1

x∗x∗.Z∗
m

Sx∗Z∗.Z∗
mn1/2δ̂n.

Therefore, and in contrast with the fixed regressor bootstrap
(FRB), the term B∗

n is stochastic under the bootstrap probability
measure and replaces the bias term B̂n. This difference is not
innocuous because it implies that T∗

n − B̂n no longer replicates
the asymptotic distribution of Tn − Bn and (1.2) does not hold.
However, this does not prevent our method from working, but
it will require a different set of conditions which we will give in
Section 3.5.

2.2. Ridge Regression

Setup. We consider estimation of a vector of regression param-
eters through regularization; in particular, by using a ridge esti-
mator. The model is yt = θ ′xt + εt , t = 1, . . . , n, where xt is a
p × 1 non-stochastic vector and εt ∼ iid(0, σ 2). Interest is on
testing H0 : g′θ = r, based on ridge estimation of θ . Specifically,
the ridge estimator has closed form expression θ̃n = S̃−1

xx Sxy,
where S̃xx := Sxx + n−1cnIp and cn is a tuning parameter that
controls the degree of shrinkage toward zero. Clearly, cn = 0
corresponds to the OLS estimator, θ̂n. We are interested in the
case where the regressors have limited explanatory power, that
is, where θ = δn−1/2 is local to zero, which can in fact be
taken as a motivation for shrinkage toward zero and hence for
ridge estimation. To test H0, we consider the test statistic Tn :=
n1/2(g′θ̃n − r). If n−1cn → c0 ≥ 0 (as in, e.g., Fu and Knight
2000) then, under the null, it holds that Tn − Bn →d ξ1 ∼
N(0, v2), where
Bn := −cnn−1/2g′S̃−1

xx θ = −cnn−1g′S̃−1
xx δ → B := −c0g′�̃−1

xx δ

with �̃xx := �xx + c0Ip and �xx := lim Sxx. Hence, for c0 > 0,
θ̃n is asymptotically biased and the bias term cannot be consis-
tently estimated. Consequently, (1.1) is satisfied, and inference
based on the quantiles of the N(0, v2) distribution is invalid
unless c0 = 0.
Bootstrap. Consider a pairs (random design) bootstrap sample
{y∗

t , x∗
t ; t = 1, . . . , n} built by iid resampling from the tuples

{yt , xt ; t = 1, . . . , n}. The bootstrap analogue of the ridge esti-
mator is θ̃∗

n := S̃−1
x∗x∗Sx∗y∗ , where S̃x∗x∗ := Sx∗x∗ + n−1cnIp. The

bootstrap statistic is T∗
n := n1/2g′(θ̃∗

n − θ̂n), which is centered
using θ̂n to guarantee that ε∗

t and x∗
t are uncorrelated in the

bootstrap world. Because we have used a pairs bootstrap, we now
have T∗

n − B∗
n

d∗→p ξ1 for B∗
n := −cnn−1/2g′S̃−1

x∗x∗ θ̂n. However,
B∗

n − B̂n = op∗(1) with B̂n := −cnn−1/2g′S̃−1
xx θ̂n, such that

T∗
n − B̂n still satisfies (1.2). Then (1.3) holds with

B̂n − Bn = −cnn−1g′S̃−1
xx n1/2(θ̂n − θ)

d→ ξ2 ∼ N(0, v22), v22 > 0,

so the bootstrap fails to approximate the asymptotic distribution
of Tn (see also Chatterjee and Lahiri 2010, 2011).
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2.3. Nonparametric Regression

Setup. Consider the model

yt = β(xt) + εt , t = 1, . . . , n, (2.2)

where β(·) is a smooth function and εt ∼ iid(0, σ 2). For sim-
plicity, we consider a fixed-design model; that is, xt = t/n. The
goal is inference on β(x) for a fixed x ∈ (0, 1). We apply the
standard Nadaraya-Watson (fixed-design) estimator β̂h(x) :=
(nh)−1 �n

t=1 K((xt − x)/h)yt , where h = cn−1/5 for some
c > 0 is the MSE-optimal bandwidth and K is the kernel
function. We do not consider the more general local polynomial
regression case, although we conjecture that very similar results
will hold. We leave that case for future research. The statistic
Tn := (nh)1/2(β̂h(x)−β(x)) satisfies Tn−Bn →d ξ1 ∼ N(0, v2),
where v2 := σ 2 �

K(u)2du > 0 and

Bn := (nh)1/2

�
1
nh

n�

t=1
ktβ(xt) − β(x)

�

(2.3)

with kt := K((xt − x)/h). The bias Bn satisfies

Bn = (nh)1/2(h2β ′′(x)κ2/2 + o(h2)) → B := c5/2β ′′(x)κ2/2,
(2.4)

where κ2 := �
u2K(u)du and β ′′(x) denotes the second-order

derivative of β(x). Thus, (1.1) is satisfied. Estimating B or Bn is
challenging because it involves estimating β ′′(x), and although
theoretically valid estimators exist, they perform poorly in finite
samples. This issue is pointed out by Calonico, Cattaneo, and
Titunik (2014) and Calonico, Cattaneo, and Farrell (2018), who
propose more accurate bias correction techniques specifically
for regression discontinuity designs and nonparametric curve
estimation.

Bootstrap. The (parametric) bootstrap sample is generated as
y∗

t = β̂h(xt) + ε∗
t , t = 1, . . . , n, where ε∗

t |Dn ∼ iidN(0, σ̂ 2
n )

with Dn = {yt ; t = 1, . . . , n} and σ̂ 2
n denotes a consistent

estimator of σ 2; for example the residual variance. Let β̂∗
h (x) :=

(nh)−1 �n
t=1 kty∗

t and T∗
n := (nh)1/2(β̂∗

h (x)−β̂h(x)). Then (1.2)
is satisfied with

B̂n := (nh)1/2

�
1
nh

n�

t=1
ktβ̂h(xt) − β̂h(x)

�

.

Because h = cn−1/5, (1.3) holds with

B̂n − Bn = (nh)1/2
�

1
nh

n�

t=1
kt(β̂h(xt) − β(xt)) − (β̂h(x) − β(x))

�

d→ ξ2 ∼ N(0, v22),

where v22 > 0, so the bootstrap is invalid. Two possible
solutions to this problem are to generate the bootstrap sample
as y∗

t = β̂g(xt) + ε∗
t , where g is an oversmoothing bandwidth

satisfying ng5 → ∞ (e.g., Härdle and Marron 1991) or to
center the bootstrap statistic at its expected value and add
a consistent estimator of B (e.g., Härdle and Bowman 1988;
Eubank and Speckman 1993). Both approaches require selecting
two bandwidths, which is not straightforward. An alternative
approach, suggested by Hall and Horowitz (2013), focuses on
an asymptotic theory-based confidence interval and applies the

bootstrap to calibrate its coverage probability. However, this
requires an additional averaging step across a grid of x (their
step 6) to asymptotically eliminate ξ2, and it results in an asymp-
totically conservative interval. Finally, a non-bootstrap-based
solution is undersmoothing using a bandwidth h satisfying
nh5 → 0, although of course that is not MSE-optimal and
may result in trivial power against certain local alternatives; see
Section 4.3.

3. General Results

3.1. Framework and Invalidity of the Standard Bootstrap

The general framework is as follows. We have a statistic Tn
defined as a general function of a sample Dn, for which we
would like to compute a valid bootstrap p-value. Usually, Tn is
a test statistic or a (possibly normalized) parameter estimator;
for example, Tn = g(n)(θ̂n − θ0). Let D∗

n denote the bootstrap
sample, which depends on the original data and on some aux-
iliary bootstrap variates (which we assume defined jointly with
Dn on a possibly extended probability space). Let T∗

n denote the
bootstrap version of Tn computed on D∗

n; for example, T∗
n =

g(n)(θ̂∗
n − θ̂n). Let L̂n(u) := P∗(T∗

n ≤ u), u ∈ R, denote
its distribution function, conditional on the original data. The
bootstrap p-value is defined as

p̂n := P∗(T∗
n ≤ Tn) = L̂n(Tn).

First-order asymptotic validity of p̂n requires that p̂n con-
verges in distribution to a standard uniform distribution; that is,
that p̂n →d U[0,1]. In this section we focus on a class of statistics
Tn and T∗

n for which this condition is not necessarily satisfied.
The main reason is the presence of an additive “bias” term Bn
that contaminates the distribution of Tn and cannot be replicated
by the bootstrap distribution of T∗

n .

Assumption 1. Tn − Bn →d ξ1, where ξ1 is centered at zero and
the cdf G(u) = P(ξ1 ≤ u) is continuous and strictly increasing
over its support.

When Bn converges to a nonzero constant B, Assumption 1
can be written Tn →d B + ξ1 as in (1.1). If Tn is a normalized
version of a (scalar) parameter estimator, that is, Tn = g(n)(θ̂n−
θ0), then we can think of B as the asymptotic bias of θ̂n because
ξ1 is centered at zero. Although we allow for the possibility that
Bn does not have a limit (and it may even diverge), we will still
refer to Bn as a “bias term”. More generally, in Assumption 1
we cover any statistic Tn that is not necessarily Gaussian (even
asymptotically) and whose limiting distribution is G only after
we subtract the sequence Bn. The limiting distribution G may
depend on a parameter such that Tn − Bn is not an asymptotic
pivot.

Inference based on the asymptotic distribution of Tn requires
estimating Bn and any parameter in G. Alternatively, we can
use the bootstrap to bypass parameter estimation and directly
compute a bootstrap p-value that relies on T∗

n and Tn alone;
that is, we consider p̂n := P∗(T∗

n ≤ Tn). A set of high-level
conditions on T∗

n and Tn that allow us to derive the asymptotic
properties of this p-value are described next.
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Assumption 2. For some Dn-measurable random variable B̂n,
it holds that: (i) T∗

n − B̂n
d∗→p ξ1, where ξ1 is described in

Assumption 1; (ii)
�

Tn − Bn
B̂n − Bn

�
d→

�
ξ1
ξ2

�
,

where ξ2 is centered at zero and F(u) = P(ξ1 − ξ2 ≤ u) is a
continuous cdf.

Assumption 2(i) states that T∗
n − B̂n converges in distribution

to a random variable ξ1 having the same distribution function
G as Tn − Bn.1 Thus, B̂n can be thought of as an implicit
bootstrap bias that affects the statistic T∗

n , in the same way that Bn
affects the original statistic Tn. Assumption 2(ii) complements
Assumption 1 by requiring the joint convergence of Tn −Bn and
B̂n − Bn towards ξ1 and ξ2, respectively; see also (1.1)–(1.3).

Given Assumption 2(i), we could use the bootstrap distribu-
tion of T∗

n − B̂n to approximate the distribution of Tn −Bn. Since
Bn is typically unknown, this result is not very useful for infer-
ence unless B̂n is consistent for Bn. In this case, Assumption 2
together with Assumption 1 imply that p̂n is asymptotically dis-
tributed as U[0,1]. This follows by noting that if B̂n −Bn = op(1),
then ξ2 = 0 a.s., implying that F(u) = G(u). Consequently,

p̂n := P∗(T∗
n ≤ Tn) = P∗(T∗

n − B̂n ≤ Tn − B̂n)

= G(Tn − B̂n) + op(1) (by Assumption 2(i))
d→ G(ξ1 − ξ2) (by Assumption 2(ii) and continuity of G)

∼ U[0,1],

where the last distributional equality holds by F = G and
the probability integral transform. However, this result does
not hold if B̂n − Bn does not converge to zero in probability.
Specifically, if B̂n − Bn →d ξ2 (jointly with Tn − Bn →d ξ1),
then

Tn − B̂n = (Tn − Bn) − (B̂n − Bn)
d→ ξ1 − ξ2 ∼ F−1(U[0,1])

under Assumptions 1 and 2(ii). When ξ2 is nondegenerate, F �=
G, implying that p̂n = G(Tn − B̂n) + op(1) is not asymptotically
distributed as a standard uniform random variable. This result
is summarized in the following theorem.

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then p̂n →d
G(F−1(U[0,1])).

Proof. First notice that p̂n and G(Tn − B̂n) have the same
asymptotic distribution because Assumption 2(i) and continuity
of G imply that, by Polya’s theorem,

|p̂n − G(Tn − B̂n)| ≤ sup
u∈R

|P∗(T∗
n − B̂n ≤ u) − G(u)| p→ 0.

1Note that we write T∗
n − B̂n

d∗→p ξ1 to mean that T∗
n − B̂n has (conditionally

on Dn) the same asymptotic distribution function as the random variable

ξ1. We could alternatively write that T∗
n − B̂n

d∗→p ξ∗
1 and Tn − Bn

d→ ξ1
where ξ∗

1 and ξ1 are two independent copies of the same distribution, that
is, P(ξ1 ≤ u) = P(ξ∗

1 ≤ u). We do not make this distinction because we care
only about distributional results, but it should be kept in mind.

Next, by Assumption 2(ii), Tn − B̂n →d ξ1 − ξ2, such that

G(Tn − B̂n)
d→ G(ξ1 − ξ2)

by continuity of G and the continuous mapping theorem. Since
ξ1 − ξ2 has continuous cdf F, it holds that ξ1 − ξ2 ∼ F−1(U[0,1]),
which completes the proof.

Remark 3.1. The value of B̂n in Assumption 2(i) depends on
the chosen bootstrap algorithm. It is possible that B̂n →p 0 for
some bootstrap algorithms; examples are given in Remark B.2
and Appendix B.5. If this is the case, then ξ2 = −B a.s., which
implies that

F(u) := P(ξ1 − ξ2 ≤ u) = P(ξ1 ≤ u − B) = G(u − B),
and hence Assumption 2(ii) is not satisfied. In this case the
bootstrap p-value satisfies

p̂n
d→ G(G−1(U[0,1]) + B).

Note that this distribution is uniform only if B = 0. Hence, the
p-value depends on B, even in the limit.

Remark 3.2. Under Assumptions 1 and 2, standard bootstrap
(percentile) confidence sets are also in general invalid. Consider,
for example, the case where Tn = g(n)(θ̂n − θ0) and T∗

n
is its bootstrap analogue with (conditional) distribution func-
tion L̂n(u). A right-sided confidence set for θ0 at nominal con-
fidence level 1 − α ∈ (0, 1) can be obtained as (e.g., Horowitz
2001, p. 3171) CI1−α

n := [θ̂n − g(n)−1q̂n(1 − α), +∞), where
q̂n(1 − α) := L̂−1

n (1 − α). Then

P(θ0 ∈ CI1−α
n ) = P(θ̂n − g(n)−1q̂n(1 − α) ≤ θ0)

= P(Tn ≤ q̂n(1 − α))

= P(L̂n(Tn) ≤ 1 − α)

= P(p̂n ≤ 1 − α) � 1 − α

because, by Theorem 3.1, p̂n is not asymptotically uniformly
distributed.

Remark 3.3. It is worth noting that, under Assumptions 1 and 2,
the bootstrap (conditional) distribution is random in the limit
whenever ξ2 is nondegenerate. Specifically, assume for simplicity
that Bn →p B. Recall that L̂n(u) := P∗(T∗

n ≤ u), u ∈ R, and let
Ĝn(u) := P∗(T∗

n − B̂n ≤ u). It then holds that

L̂n(u) = Ĝn(u − B̂n) = G(u − B − (B̂n − B)) + ân(u),
where ân(u) ≤ supu∈R

|Ĝn(u) − G(u)| = op(1) by Assump-
tion 2(i), continuity of G, and Polya’s theorem. Because
B̂n − B →d ξ2, it follows that when ξ2 is nondegenerate,
L̂n(u) →w G(u−B−ξ2), where →w denotes weak convergence
of cdf ’s as (random) elements of a function space (see Cavaliere
and Georgiev 2020). The presence of ξ2 in G(u − B − ξ2)

makes this a random cdf.2 Therefore, the bootstrap is unable
to mimic the asymptotic distribution of Tn, which is G(u − B)

by Assumption 1.

2The same result follows in terms of weak convergence in distribution of
T∗

n |Dn . Specifically, because T∗
n = (T∗

n − B̂n) + (B̂n − Bn) + Bn , where

T∗
n − B̂n

d∗→p ξ∗
1 and (jointly) B̂n − Bn

d→ ξ2 with ξ∗
1 ∼ ξ1 independent

of ξ2, we have that T∗
n |Dn

w→ (B + ξ∗
1 + ξ2)|ξ2.
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Next, we describe two possible solutions to the invalidity of
the standard bootstrap p-value p̂n. One relies on the prepivoting
approach of Beran (1987, 1988); see Section 3.2. The basic
idea is that we modify p̂n by applying the mapping p̂n �→
H(p̂n), where H(u) is the asymptotic cdf of p̂n, which makes
the modified p-value H(p̂n) asymptotically standard uniform.
Contrary to Beran (1987, 1988), who proposed prepivoting as a
way of providing asymptotic refinements for the bootstrap, here
we show how to use prepivoting to solve the invalidity of the
standard bootstrap p-value p̂n. This result is new in the bootstrap
literature. The second approach relies on computing a standard
bootstrap p-value based on the modified statistic given by Tn −
B̂n; see Section 3.4. Thus, we modify the test statistic rather than
modifying the way we compute the bootstrap p-value.

3.2. Prepivoting

Theorem 3.1 implies that

P(p̂n ≤ u) → P(G(F−1(U[0,1])) ≤ u)

= P(U[0,1] ≤ F(G−1(u))) = F(G−1(u)) =: H(u)

uniformly over u ∈ [0, 1] by Polya’s theorem, given the continu-
ity of G and F. Although H is not the uniform distribution, unless
G = F, it is continuous because G is strictly increasing. Thus,
the following corollary to Theorem 3.1 holds by the probability
integral transform.

Corollary 3.1. Under the conditions of Theorem 3.1, H(p̂n) →d
U[0,1].

Therefore, the mapping of p̂n into H(p̂n) transforms p̂n into a
new p-value, H(p̂n), whose asymptotic distribution is the stan-
dard uniform distribution on [0, 1]. Inference based on H(p̂n) is
generally infeasible, because we do not observe H(u). However,
if we can replace H(u) with a uniformly consistent estimator
Ĥn(u) then this approach will deliver a feasible modified p-value
p̃n := Ĥn(p̂n). Since the limit distribution of p̃n is the standard
uniform distribution, p̃n is an asymptotically valid p-value. The
mapping of p̂n into p̃n = Ĥn(p̂n) by the estimated distribution of
the former corresponds to what Beran (1987) calls “prepivoting.”
In the following sections, we describe two methods of obtaining
a consistent estimator of H(u).

Remark 3.4. The prepivoting approach can also be used to solve
the invalidity of confidence sets based on the standard bootstrap;
see Remark 3.2. In particular, replace the nominal level 1 − α by
Ĥ−1

n (1 − α) and consider 	CI1−α

n := [θ̂n − g(n)−1q̂n(Ĥ−1
n (1 −

α)), +∞). Then

P(θ0 ∈ 	CI1−α

n ) = P(p̂n ≤ Ĥ−1
n (1 − α))

= P(Ĥn(p̂n) ≤ 1 − α) → 1 − α,

where the last convergence is implied by Corollary 3.1 and
consistency of Ĥn.

Remark 3.5. Corollary 3.1 can also be applied to right-tailed or
two-tailed tests. The right-tailed p-value, say p̂n,r := P∗(T∗

n >

Tn) = 1 − L̂n(Tn) = 1 − p̂n, has cdf P(p̂n,r ≤ u) = P(p̂n ≥

1−u) = 1−P(p̂n < 1−u) = 1−H(1−u)+o(1) uniformly in u.
Note that, because the conditional cdf of T∗

n is continuous in the
limit, the p-value p̂n,r is asymptotically equivalent to P∗(T∗

n ≥
Tn). Thus, by Corollary 3.1, the modified right-tailed p-value,
p̃n,r := 1 − Ĥn(p̂n,r), satisfies

p̃n,r = 1 − H(1 − p̂n,r) + op(1) = 1 − H(p̂n) + op(1)
d→ U[0,1].

Similarly, for two-tailed tests the equal-tailed bootstrap p-value,
p̃n,et := 2 min{p̃n, p̃n,r} = 2 min{p̃n, 1 − p̃n}, satisfies p̃n,et →d
U[0,1] by Corollary 3.1 and the continuous mapping theorem.

3.2.1. Plug-in Approach
Suppose H(u) = Hγ (u) depends on a finite-dimensional
parameter, γ . In view of Theorem 3.1, a simple approach to
estimating H(u) is to use

Ĥn(u) = Hγ̂n(u),

where γ̂n denotes a consistent estimator of γ . This leads to a
plug-in modified p-value defined as

p̃n = Hγ̂n(p̂n).

By consistency of γ̂n and under the assumption that Hγ is
continuous in γ , it follows immediately that

p̃n = H(p̂n) + op(1)
d→ F(G−1(G(F−1(U[0,1])))) = U[0,1].

This result is summarized next.

Corollary 3.2. Let Assumptions 1 and 2 hold, and suppose Hγ (u)

is continuous in (γ , u). If γ̂n →p γ then p̃n = Hγ̂n(p̂n) →d
U[0,1].

The plug-in approach relies on a consistent estimator of the
asymptotic distribution H, but does not require estimating the
“bias term” Bn. When estimating γ is simple, this approach
is attractive since it does not require any double resampling.
Examples are given in Section 4. However, computation of γ is
case-specific and may be cumbersome in practice. An automatic
approach is to use the bootstrap to estimate H(u), as we describe
next.

3.2.2. Double Bootstrap
Following Beran (1987, 1988), we can estimate H(u) with the
bootstrap. That is, we let

Ĥn(u) = P∗(p̂∗
n ≤ u),

where p̂∗
n is the bootstrap analogue of p̂n. Since p̂n is itself a

bootstrap p-value, computing p̂∗
n requires a double bootstrap.

In particular, let D∗∗
n denote a further bootstrap sample of size

n based on D∗
n and some additional bootstrap variates (defined

jointly with Dn and D∗
n on a possibly extended probability space),

and let T∗∗
n denote the bootstrap version of T∗

n computed on D∗∗
n .

With this notation, the second-level bootstrap p-value is defined
as

p̂∗
n := P∗∗(T∗∗

n ≤ T∗
n),
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where P∗∗ denotes the bootstrap probability measure condi-
tional on D∗

n and Dn (making p̂∗
n a function of D∗

n and Dn). This
leads to a double bootstrap modified p-value, as given by

p̃n := Ĥn(p̂n) = P∗(p̂∗
n ≤ p̂n).

In order to show that p̃n = Ĥn(p̂n) →d U[0,1], we add the
following assumption.

Assumption 3. Let ξ1 and ξ2 be as defined in Assumptions 1
and 2. For some (D∗

n, Dn)-measurable random variable B̂∗
n, it

holds that: (i) T∗∗
n − B̂∗

n
d∗∗→p∗ ξ1, in probability, and (ii) T∗

n −
B̂∗

n
d∗→p ξ1 − ξ2.

Assumption 3 complements Assumptions 1 and 2 by impos-
ing high-level conditions on the second-level bootstrap statis-
tics. Specifically, Assumption 3(i) assumes that T∗∗

n has asymp-
totic distribution G only after we subtract B̂∗

n. This term is the
second-level bootstrap analogue of B̂n. It depends only on the
first-level bootstrap data D∗

n and is not random under P∗∗. The
second part of Assumption 3 follows from Assumption 2 in the
special case that B̂∗

n − B̂n = op∗(1), in probability; that is, when
ξ2 = 0 a.s., implying F = G. When F �= G, B̂∗

n is not a consistent
estimator of B̂n. However, under Assumption 3,

T∗
n − B̂∗

n = (T∗
n − B̂n) − (B̂∗

n − B̂n)
d∗→p ξ1 − ξ2 = F−1(U[0,1])

implying that T∗
n − B̂∗

n mimics the distribution of Tn − B̂n.
This suffices for proving the asymptotic validity of the double
bootstrap modified p-value, p̃n = Ĥn(p̂n), as proved next.

Theorem 3.2. Under Assumptions 1, 2, and 3, it holds that p̃n =
Ĥn(p̂n) →d U[0,1].

Proof. To prove this result, recall that Ĥn(u) = P∗(p̂∗
n ≤ u) and

P(p̂n ≤ u) → H(u) = F(G−1(u)) uniformly in u ∈ R, since
H is a continuous distribution function by Assumptions 1 and
2. Thus, we have that

p̂∗
n = P∗∗(T∗∗

n ≤ T∗
n) = P∗∗(T∗∗

n − B̂∗
n ≤ T∗

n − B̂∗
n)

= G(T∗
n − B̂∗

n) + op∗(1), by Assumption 3(i),
= G(F−1(U[0,1])) + op∗(1), by Assumption 3(ii),

where G(F−1(U[0,1])) is a random variable whose distribution
function is H. Hence,

sup
u∈R

|Ĥn(u) − H(u)| = op(1).

Since H(p̂n) →d U[0,1], we can conclude that p̃n = Ĥn(p̂n) →d
U[0,1].

Theorem 3.2 shows that prepivoting the standard bootstrap
p-value p̂n by applying the mapping Ĥn transforms it into an
asymptotically uniformly distributed random variable. This
result holds under Assumptions 1, 2, and 3, independently of
whether G = F or not. When G = F then p̂n →d U[0,1] (as
implied by Theorem 3.1). In this case, the prepivoting approach
is not necessary to obtain a first-order asymptotically valid test,

although it might help further reducing the size distortion of
the test. This corresponds to the setting of Beran (1987, 1988),
where prepivoting was proposed as a way of reducing the level
distortions of confidence intervals. When G �= F then p̂n is
not asymptotically uniform and a standard bootstrap test based
on p̂n is asymptotically invalid, as shown in Theorem 3.1. In this
case, prepivoting transforms an asymptotically invalid bootstrap
p-value into one that is asymptotically valid. This setting was not
considered by Beran (1987, 1988) and is new to our article.

3.3. Power of Tests

In this section we explicitly consider a testing situation. Suppose
we are interested in testing H0 : θ = θ̄ against H1 : θ < θ̄ .
Specifically, defining Tn(θ) := g(n)(θ̂n − θ), we consider the
test statistic Tn(θ̄). The corresponding bootstrap p-value is p̂n(θ̄)

with p̂n(θ) := P∗(T∗
n ≤ Tn(θ)). When the null hypothesis is

true, that is, when θ̄ = θ0 with θ0 denoting the true value, we find
Tn(θ̄) = Tn(θ0) = Tn and p̂n(θ̄) = p̂n(θ0) = p̂n, where Tn and
p̂n are as defined previously. If Assumptions 1 and 2 hold under
the null, Theorem 3.1 and Corollary 3.1 imply that tests based
on H(p̂n(θ̄)) have correct asymptotic size, where H continues to
denote the asymptotic cdf of p̂n.

To analyze power, we consider θ0 = θ̄ + an for some deter-
ministic sequence an. Then an = 0 under the null hypothesis,
whereas an = a < 0 corresponds to a fixed alternative and
an = a/g(n) for a < 0 corresponds to a local alternative. Thus,
we define πn := g(n)(θ0−θ̄ ) = g(n)an so that Tn(θ̄) = Tn+πn.

Theorem 3.3. Suppose Assumptions 1 and 2 hold. (i) If πn → π

then H(p̂n(θ̄)) →d F(F−1(U[0,1]) + π). (ii) If πn → −∞ then
P(H(p̂n(θ̄)) ≤ α) → 1 for any nominal level α > 0.

Proof. As in the proof of Theorem 3.1 we have, by Assump-
tion 2(i),

p̂n(θ̄) = P∗(T∗
n ≤ Tn(θ̄)) = P∗(T∗

n − B̂n ≤ Tn − B̂n + πn)

= G(Tn − B̂n + πn) + op(1).

If πn → π then p̂n(θ̄) →d G(F−1(U[0,1]) + π) by Assump-
tion 2(ii), so that

H(p̂n(θ̄))
d→ H(G(F−1(U[0,1]) + π)) = F(F−1(U[0,1]) + π)

by definition of H(u). If πn → −∞ then p̂n(θ̄) →p 0 because
Tn − B̂n = Op(1) by Assumption 2(ii), so that H(p̂n(θ̄)) →p
H(0) = 0 and P(H(p̂n(θ̄)) ≤ α) → 1 for any α > 0.

It follows from Theorem 3.3(ii) that a left-tailed test that
rejects for small values of H(p̂n(θ̄)) is consistent. Furthermore,
it follows from Theorem 3.3(i) that such a test has nontrivial
asymptotic local power against π < 0. Specifically, the asymp-
totic local power against π is given by P(H(p̂n(θ̄)) ≤ α) →
F(F−1(α) − π). Interestingly, this only depends on F and not
on G. As above, to implement the modified p-value, H(p̂n(θ̄)),
in practice, we would need a (uniformly) consistent estimator of
H, that is, the asymptotic distribution of the bootstrap p-value
when the null hypothesis is true. This could be either the plug-
in or double bootstrap estimators, as discussed in Sections 3.2.1
and 3.2.2.
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Note that Assumption 2 is still assumed to hold in Theo-
rem 3.3. That is, the bootstrap statistic T∗

n is assumed to have
the same asymptotic behavior under the null and under the
alternative. This is commonly the case when the bootstrap algo-
rithm does not impose the null hypothesis when generating the
bootstrap data.

3.4. Bootstrap p-value based on Tn � �Bn

The double bootstrap modified p-value p̃n depends only on the
statistic Tn and its bootstrap analogues T∗

n and T∗∗
n . It does not

involve computing explicitly B̂n or B̂∗
n, but in some applications

it can be computationally costly as it requires two levels of
resampling. As it turns out, p̃n is asymptotically equivalent to a
single-level bootstrap p-value that is based on bootstrapping the
statistic Tn − B̂n, as we show next.

By definition, the double bootstrap modified p-value is given
by p̃n := P∗(p̂∗

n ≤ p̂n), where

p̂∗
n := P∗∗(T∗∗

n ≤ T∗
n) = P∗∗(T∗∗

n − B̂∗
n ≤ T∗

n − B̂∗
n)

= G(T∗
n − B̂∗

n) + op∗(1),

in probability, given Assumption 3. Similarly, under Assump-
tions 1 and 2,

p̂n := P∗(T∗
n ≤ Tn) = P∗(T∗

n − B̂n ≤ Tn − B̂n)

= G(Tn − B̂n) + op(1).

It follows that

p̃n := P∗(p̂∗
n ≤ p̂n) = P∗(G(T∗

n − B̂∗
n) ≤ G(Tn − B̂n)) + op(1)

= P∗(T∗
n − B̂∗

n ≤ Tn − B̂n) + op(1)

because G is continuous. We summarize this result in the follow-
ing corollary.

Corollary 3.3. Under Assumptions 1, 2, and 3, p̃n = P∗(T∗
n −

B̂∗
n ≤ Tn − B̂n) + op(1).

Theorem 3.2 shows that p̃n →d U[0,1] and hence is asymptot-
ically valid. In view of this, Corollary 3.3 shows that removing
B̂n from Tn and computing a bootstrap p-value based on the
new statistic, Tn − B̂n, also solves the invalidity problem of the
standard bootstrap p-value, p̂n = P∗(T∗

n ≤ Tn). Note that we do
not require ξ2 = 0, that is, B̂n − Bn and B̂∗

n − B̂n do not need to
converge to zero.

When B̂n and B̂∗
n are easy to compute, for example, when they

are available analytically as functions of Dn and D∗
n, respectively,

Corollary 3.3 is useful as it avoids implementing a double boot-
strap. When this is not the case, that is, when deriving B̂n and
B̂∗

n explicitly is cumbersome or impossible, we may be able to
estimate B̂n from the bootstrap and B̂∗

n from a double bootstrap.
Corollary 3.3 then shows that the double bootstrap modified p-
value p̃n is a convenient alternative since it depends only on Tn,
T∗

n , and T∗∗
n . It is important to note that none of these approaches

requires the consistency of B̂n and B̂∗
n.

3.5. A More General Set of High-Level Conditions

We conclude this section by providing an alternative set of high-
level conditions that cover bootstrap methods for which T∗

n −
B̂n has a different limiting distribution than Tn − Bn. This may
happen, for example, for the pairs bootstrap; see Section 2.1 and
Remark 3.6.

Assumption 4. Assumption 2 holds with part (i) replaced by
(i) T∗

n − B̂n
d∗→p ζ1, where ζ1 is centered at zero and the cdf

J(u) = P(ζ1 ≤ u) is continuous and strictly increasing over its
support.

Under Assumption 4, T∗
n − B̂n does not replicate the distribu-

tion of Tn − Bn. This is to be understood in the sense that there
does not exist a P∗-measurable term B̂n such that T∗

n − B̂n has
the same asymptotic distribution as Tn − Bn.

An important generalization provided by Assumption 4 com-
pared with Assumption 2 is to allow for bootstrap methods
where the “centering term,” say B∗

n, depends on the bootstrap
data. That is, to allow cases where there is a random (with respect
to P∗, that is, depending on the bootstrap data) term B∗

n such that
T∗

n − B∗
n

d∗→p ξ1 and hence has the same asymptotic distribution

as Tn−Bn. Clearly, this violates Assumption 2 unless B∗
n−B̂n

p∗
→p

0 (as in the ridge regression in Section 2.2). However, letting ζ1

be such that B∗
n − B̂n

d∗→p ζ1 − ξ1, then Assumption 4 covers the
former case.

Remark 3.6. A leading example where T∗
n − B∗

n
d∗→p ξ1 and

hence has the same asymptotic distribution as Tn−Bn is the pairs
bootstrap as in Section 2.1 for the model averaging example. We
study this case in more detail in Section 4.1.

The asymptotic distribution of the bootstrap p-value under
Assumption 4 is given in the following theorem. The proof is
identical to that of Theorem 3.1, with G replaced by J, and hence
omitted.

Theorem 3.4. If Assumptions 1 and 4 hold then p̂n →d
J(F−1(U[0,1])).

Theorem 3.4 implies that now P(p̂n ≤ u) → P(J(F−1(U[0,1]))
≤ u) = F(J−1(u)) =: H(u). Clearly, a plug-in approach to
estimating this H(u) based on G as described in Section 3.2.1
would be invalid because G �= J in general. However, it
follows straightforwardly by the same arguments as applied in
Section 3.2.1 that a plug-in approach based on J will deliver an
asymptotically valid plug-in modified p-value.

To implement an asymptotically valid double bootstrap mod-
ified p-value we consider the following high-level condition.

Assumption 5. Assumption 3 holds with part (i) replaced by
(i) T∗∗

n − B̂∗
n

d∗∗→p∗ ζ1, in probability, where ζ1 is defined in
Assumption 4.

Under Assumption 5, the second-level bootstrap statistic,
T∗∗

n − B̂∗
n, replicates the distribution of the first-level statistic,

T∗
n − B̂n. Thus, the second-level bootstrap p-value is
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p̂∗
n := P∗∗(T∗∗

n ≤ T∗
n) = P∗∗(T∗∗

n − B̂∗
n ≤ T∗

n − B̂∗
n)

= J(T∗
n − B̂∗

n) + op∗(1)

d∗→p J(ξ1 − ξ2) = J(F−1(U[0,1]))

under Assumption 5. Hence, the second-level bootstrap p-value
has the same asymptotic distribution as the original bootstrap
p-value. It follows that the double bootstrap modified p-value,
p̃n := Ĥn(p̂n) = P∗(p̂∗

n ≤ p̂n), is asymptotically valid,
which is stated next. The proof is essentially identical to that of
Theorem 3.2 and hence omitted.

Theorem 3.5. Under Assumptions 1, 4, and 5, it holds that p̃n =
Ĥn(p̂n) →d U[0,1].

Remark 3.7. Consider again the case with a random bootstrap
centering term in Remark 3.6, where B∗

n − B̂n
d∗→p ζ1 − ξ1 such

that T∗
n − B∗

n
d∗→p ξ1. Within this setup, we can consider double

bootstrap methods such that, for a random (with respect to P∗∗)
term B∗∗

n we have T∗∗
n − B∗∗

n
d∗∗→p∗ ξ1, in probability. Thus, the

asymptotic distribution of the second-level bootstrap statistic
mimics that of the first-level statistic. When B∗∗

n and ζ1 are such
that B∗∗

n − B̂∗
n

d∗∗→p∗ ζ1 − ξ1, in probability, then Assumption 5 is
satisfied. As in Remark 3.6 this setup allows us to cover the pairs
bootstrap.

4. Examples Continued

In this section we revisit our three leading examples from Sec-
tion 2, where we argued that standard boostrap inference is
invalid due to the presence of bias. In this section we show how
to apply our general theory in each example. Again, we refer to
Appendix B for detailed derivations.

4.1. Inference after Model Averaging

Fixed regressor bootstrap. Extending the arguments in Sec-
tion 2.1, we obtain the following result.

Lemma 4.1. Under regularity conditions stated in Appendix B.1,
Assumptions 1 and 2 are satisfied with (ξ1, ξ2)′ ∼ N(0, V),
where V := (vij), i, j = 1, 2, is positive definite and continuous
in ω, σ 2, and �WW := plim SWW .

By Lemma 4.1, the conditions of Theorem 3.1 hold with
G(u) = �(u/v11) and F(u) = �(u/vd), where v2

d = v11 +
v22 − 2v12 > 0. Then Theorem 3.1 implies that the standard
bootstrap p-value satisfies p̂n →d �(m�−1(U[0,1])) with m2 :=
v2

d/v2. Because ω is known and σ 2, �WW are easily estimated,
a consistent estimator m̂n →p m is available, and the plug-in
approach in Corollary 3.2 can be implemented by considering
the modified p-value, p̃n = �(m̂−1

n �−1(p̂n)). Inspection of the
proofs shows that our modified bootstrap approach is asymp-
totically valid whether δ is fixed or local-to-zero. In the former
case, Bn is Op(n1/2) rather than Op(1), implying that Bn diverges
in probability and β̃n is not even consistent for β . Despite this,
the modified bootstrap p-value is asymptotically valid.

Alternatively, we can implement the double bootstrap as in
Section 3.2.2. Specifically, let

y∗∗ = xβ̂∗
n + Zδ̂∗

n + ε∗∗,

where ε∗∗|{Dn, D∗
n} ∼ N(0, σ̂ ∗2

n In), (β̂∗
n , δ̂∗′

n , σ̂ ∗2
n ) is the OLS

estimator obtained from the full model estimated on the first-
level bootstrap data, and D∗

n = {y∗, W}. The double bootstrap
statistic is T∗∗

n := n1/2(β̃∗∗
n − β̂∗

n), where β̃∗∗
n := �M

m=1 ωmβ̃∗∗
m,n

with β̃∗∗
m,n := S−1

xx.Zm
Sxy∗∗.Zm defined as the double bootstrap OLS

estimator from the mth model. The double bootstrap modified
p-value is then p̃n = P∗(p̂∗

n ≤ p̂n) with p̂∗
n = P∗∗(T∗∗

n ≤ T∗
n).

Lemma 4.2. Under the conditions of Lemma 4.1, Assumption 3
holds with B̂∗

n := Qnn1/2δ̂∗
n .

Lemma 4.2 shows that Assumption 3 is verified in this exam-
ple. The asymptotic validity of the double bootstrap modified p-
value now follows from Lemmas 4.1 and 4.2 and Theorem 3.2.

Pairs bootstrap. For the pairs bootstrap we verify the high-level
conditions in Section 3.5. To simplify the discussion we consider
the case with scalar zt in (2.1) and where we “average” over only
one model (M = 1), which is the simplest model in which zt is
omitted from the regression. That is, we estimate β by regression
of y on x, that is, β̃n := S−1

xx Sxy. In this special case, Tn − Bn →d
N(0, v2) with v2 := σ 2�−1

xx and Bn := S−1
xx Sxzn1/2δ.

Lemma 4.3. Under regularity conditions stated in Appendix B.1,
it holds that T∗

n − B̂n
d∗→p N(0, v2 + κ2), where B̂n :=

S−1
xx Sxzn1/2δ̂n and κ2 := dr(δ)′�rdr(δ) with dr(δ) :=

δ(�−1
xx , −�−2

xx �xz)′.

Notice that, in contrast to the FRB, the asymptotic variance
of T∗

n fails to replicate that of Tn because of the term κ2 > 0.
This implies that the methodology developed in Theorem 3.1
and its corollaries no longer applies. Instead, we can apply the
theory of Section 3.5. In particular, Lemma 4.3 shows that
Assumption 4(i) holds in this case with ζ1 ∼ N(0, v2 + κ2).
Lemma 4.3 also shows that B̂n is the same for the pairs bootstrap
and the FRB, such that Lemma 4.1 shows that Assumptions 1
and 2(ii) are verified. This implies that Theorem 3.4 holds for
this example. Using similar arguments, it can be shown that
Assumption 5 also holds for this example, which implies that
the double bootstrap p-values are asymptotically uniformly dis-
tributed.

Under local alternatives of the form β0 = β̄ + an−1/2, where
β̄ is the value under the null (Section 3.3), the asymptotic local
power function for the modified p-value is given by �(�−1(α)−
a/vd); see Theorem 3.3. It is not difficult to verify that this is the
same power function as that obtained from a test based directly
on β̂n from the full model (2.1).

4.2. Ridge Regression

To complete the example in Section 2.2, we can proceed as in the
previous example.

Lemma 4.4. Under the null hypothesis and the regularity condi-
tions stated in Appendix B.2, Assumptions 1 and 2 are satisfied
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with (ξ1, ξ2)′ ∼ N(0, V), where V := (vij), i, j = 1, 2, is positive
definite and continuous in c0, σ 2, and �xx.

As in Section 4.1, Lemma 4.4 and Theorem 3.1 imply that the
standard bootstrap p-value satisfies p̂n →d �(m�−1(U[0,1])),
where we now have m2 = (g′�̃−1

xx �xx�̃−1
xx g)−1g′�−1

xx g. Note
that this result holds irrespectively of θ being fixed or local to
zero. Thus, the bootstrap is invalid unless c0 = 0 which implies
m = 1. For the plug-in method, a simple consistent estimator
of m is given by m̂2

n := (g′S̃−1
xx SxxS̃−1

xx g)−1g′S−1
xx g, and inference

based on the plug-in modified p-value p̃n = �(m̂−1
n �−1(p̂n)) is

then asymptotically valid by Corollary 3.2.
To implement the double bootstrap method, we can draw

the double bootstrap sample {y∗∗
t , x∗∗

t ; t = 1, . . . , n} as iid from
{y∗

t , x∗
t ; t = 1, . . . , n}. Accordingly, the second-level bootstrap

ridge estimator is θ̃∗∗
n := S̃−1

x∗∗x∗∗Sx∗∗y∗∗ with associated test
statistic T∗∗

n := n1/2g′(θ̃∗∗
n − θ̂∗

n ), which is centered at the first-
level bootstrap OLS estimator, θ̂∗

n . It is straightforward to show
that, without additional conditions, Assumption 3 holds.

Lemma 4.5. Under the conditions of Lemma 4.4, Assumption 3
holds with B̂∗

n := −cnn−1/2g′S̃−1
x∗x∗ θ̂∗

n .

Validity of the double bootstrap modified p-value p̃n =
P∗(p̂∗

n ≤ p̂n) now follows by application of Theorem 3.2.

4.3. Nonparametric Regression

Again, we complete the example in Section 2.3 by proceeding as
in the previous examples.

Lemma 4.6. Under regularity conditions stated in Appendix B.3,
Assumptions 1 and 2 are satisfied with (ξ1, ξ2)′ ∼ N(0, V),
where V := (vij), i, j = 1, 2, is positive definite and continuous
in σ 2 and the kernel function.

As before, Lemma 4.6 and Theorem 3.1 imply that the
standard bootstrap p-value satisfies p̂n →d �(m�−1(U[0,1])),
where we now have m2 := 4 + (

�
K2(u)du)−1(

�
(
�

K(s −
u)K(s)ds)2du − 4

�
K(u)

�
K(u − s)K(s)dsdu). Thus, in this

example, m need not be estimated because it is observed once K
is chosen. Therefore, valid inference is feasible with the modified
p-value p̃n = H(p̂n) = �(m−1�−1(p̂n)); see Corollary 3.1.

We can also apply a double bootstrap modification. Let y∗∗
t =

β̂∗
h (xt) + ε∗∗

t , t = 1, . . . , n, where ε∗∗
t |{Dn, D∗

n} ∼ iidN(0, σ̂ ∗2
n )

with D∗
n := {y∗

t ; t = 1, . . . , n} and σ̂ ∗2
n denoting the residual

variance from the first-level bootstrap data. The double boot-
strap analogue of Tn is T∗∗

n := (nh)1/2(β̂∗∗
h (x) − β̂∗

h (x)), where
β̂∗∗

h (x) := (nh)−1 �n
t=1 kty∗∗

t . This can be decomposed as
T∗∗

n = ξ∗∗
1,n + B̂∗

n, where B̂∗
n := (nh)1/2((nh)−1 �n

t=1 ktβ̂
∗
h (xt) −

β̂∗
h (x)). Unfortunately, although ξ∗∗

1,n satisfies Assumption 3(i),
B̂∗

n does not satisfy Assumption 3(ii). The reason is that B̂∗
n −

B̂n = ξ∗
2,n + B̂2,n − B̂n, where ξ∗

2,n satisfies Assumption 3(ii),
but B̂2,n := (nh)−1 �n

t=1 ktB̂n(xt) is a smoothed version of B̂n
(evaluated at xt) and although B̂2,n − B̂n is mean zero it is not
op(1). However, B̂2,n − B̂n is observed, so this is easily corrected
by defining T̄∗∗

n := T∗∗
n −(B̂2,n−B̂n). Then we have the following

result.

Lemma 4.7. Under the conditions of Lemma 4.6, Assumption 3
holds with T∗∗

n and B̂∗
n replaced by T̄∗∗

n and B̄∗
n := B̂∗

n − (B̂2,n −
B̂n), respectively.

The validity of the double bootstrap modified p-value p̃n :=
P∗(p̂∗

n ≤ p̂n), where p̂∗
n := P∗∗(T̄∗∗

n ≤ T∗
n), follows from

Lemma 4.7 and Theorem 3.2. This in turn implies that confi-
dence intervals based on the double bootstrap are asymptotically
valid; see also Remark 3.4. We note that Hall and Horowitz
(2013) also proposed, without theory, a version of their cal-
ibration method based on the double bootstrap. Our double
bootstrap-based method for confidence intervals corresponds to
their steps 1–5, and where we need a correction they have instead
a step 6 in which they average over a grid of x.

Finally, under local alternatives of the form β0(x) = β̄ +
an−2/5, where β̄ is the value under the null (Section 3.3), the
asymptotic local power function for the modified p-value is
given by �(�−1(α) − a/vd); see Theorem 3.3. Alternatively, we
could consider a “bias-free” test based on undersmoothing; that
is, using a bandwidth h satisfying nh5 → 0 such that Bn → 0
and inference can be based on quantiles of ξ1 ∼ N(0, v2

11). In
contrast to our procedure, however, such a test has only trivial
power against β̄ + an−2/5 because (nh)1/2an−2/5 → 0.

5. Concluding Remarks

In this article, we have shown that in statistical problems involv-
ing bias terms that cannot be estimated, the bootstrap can be
modified to provide asymptotically valid inference. Intuitively,
the main idea is the following: in some important cases, the
bootstrap can be used to “debias” a statistic whose bias is non-
negligible, but when doing so additional “noise” is injected. This
additional noise does not vanish because the bias cannot be
consistently estimated, but it can be handled either by a “plug-
in” method or by an additional (i.e., double) bootstrap layer.
Specifically, our solution is simple and involves (i) focusing on
the bootstrap p-value; (ii) estimating its asymptotic distribution;
(iii) mapping the original (invalid) p-value into a new (valid)
p-value using the prepivoting approach. These steps are easy
to implement in practice and we provide sufficient conditions
for asymptotic validity of the associated tests and confidence
intervals.

Our results can be generalized in several directions. For
instance, there is a growing literature where inference on a
parameter of interest is combined with some auxiliary infor-
mation in the form of a bound on the bias of the estimator in
question. These bounds appear, for example, in Oster (2019)
and Li and Müller (2021). It is of interest to investigate how our
analysis can be extended in order to incorporate such bounds.
Other possible extensions include non-ergodic problems, large-
dimensional models, and multivariate estimators or statistics.
All these extensions are left for future research.

Supplementary Materials

The supplemental material contains two appendices. Appendix A describes
in detail the conditions and results of the article under the special case of
asymptotically Gaussian statistics. Appendix B contains details and proofs
for the three examples in the article, as well as two additional examples.
Additional references are included at the end of the supplement.
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