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A B S T R A C T

We establish new results for estimation and inference in financial durations models, where
events are observed over a given time span, such as a trading day, or a week. For the classical
autoregressive conditional duration (ACD) models by Engle and Russell (1998), we show that
the large sample behavior of likelihood estimators is highly sensitive to the tail behavior of the
financial durations. In particular, even under stationarity, asymptotic normality breaks down
for tail indices smaller than one or, equivalently, when the clustering behavior of the observed
events is such that the unconditional distribution of the durations has no finite mean. Instead,
we find that estimators are mixed Gaussian and have non-standard rates of convergence. The
results are based on exploiting the crucial fact that for duration data the number of observations
within any given time span is random. Our results apply to general econometric models where
the number of observed events is random.

1. Introduction

In the seminal papers by Engle and Russell (1998) and Engle (2000), autoregressive conditional duration (ACD) models were
introduced for modeling durations, or waiting times, between financial events, and to analyze liquidity in financial markets. Financial
events are observed over a given period of time, such as a (trading) day, a week, or a year; hence, both the size and the number
of durations are random variables. As we demonstrate, the randomness of the number of events has a major impact on asymptotics
and inference in dynamic duration models. Moreover, as detailed below, existing results cover alone the case where the number
of events is non-random and therefore are not applicable to estimation of ACD models over a given time span. In this paper, we
provide the missing asymptotic analysis for likelihood-based estimators. We specifically show that the randomness of the number of
events plays a crucial role and leads to a new distributional theory (at non-standard rates of convergence) for likelihood estimators
and related test statistics. The derivation of these novel results requires non-standard asymptotic arguments, combining new results
on the tail behavior of the durations with renewal theory.

The ACD models are by now quite popular in financial econometrics; see e.g. Hautsch (2012) and Fernandes et al. (2016) for
applications and theory in the context of high-frequency data and Pacurar (2008) for a general survey. Applications of dynamic
duration models such as the ACD are extensively used also in different areas of economics; see e.g. Hamilton and Jordà (2002) or
Aquilina et al. (2022).
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Let [0, 𝑇 ] denote the observation period, where we observe 𝑛 event times
{

𝑡𝑖
}𝑛
𝑖=1, 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 ≤ 𝑇 , with corresponding

durations 𝑥𝑖 = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 1,… , 𝑛, 𝑡0 = 0. As noted in Engle and Russell (1998), 𝑛 is the realization at time 𝑡 = 𝑇 of the stochastic
counting process 𝑁𝑡, 𝑡 ≥ 0, given by

𝑁𝑡 = #
{

𝑘 ≥ 1 ∶ 𝑡𝑘 = 𝑥1 +⋯ + 𝑥𝑘 ≤ 𝑡
}

. (1.1)

n particular, the number of events 𝑁𝑇 , in the observation period [0, 𝑇 ], is as mentioned a random variable.
The most known dynamic duration model is the ACD of Engle and Russell (1998) which in its simplest version (ACD of order

ne) is given by

𝑥𝑖 = 𝜓𝑖 (𝜃) 𝜀𝑖, 𝜓𝑖 (𝜃) = 𝜔 + 𝛼𝑥𝑖−1, 𝑖 = 1,… , 𝑁𝑇 , (1.2)

here 𝜃 = (𝜔, 𝛼)′ and 𝜓𝑖(𝜃) is the conditional (duration) rate of the ith waiting time 𝑥𝑖, i.e., conditional on 𝑖−1 = 𝜎(𝑥𝑖−1, 𝑥𝑖−2,…).
he innovations {𝜀𝑖} are assumed i.i.d., strictly positive, with unit mean, E[𝜀𝑖] = 1. If 𝜀𝑖 is exponentially distributed this is referred
o as exponential ACD (EACD).

With parameters 𝜃 = (𝜔, 𝛼)′, for 𝜔 > 0, 𝛼 ≥ 0, and observation period [0, 𝑇 ], the EACD log-likelihood function is given by

𝐿𝑇 (𝜃) = −
𝑁𝑇
∑

𝑖=1

[

log𝜓𝑖 (𝜃) +
𝑥𝑖

𝜓𝑖 (𝜃)

]

, 𝑇 ≥ 0 . (1.3)

Then �̂�𝑇 = argmax𝜃 𝐿𝑇 (𝜃) denotes the maximum likelihood estimator (MLE) of 𝜃 in the case of i.i.d. exponentially distributed {𝜀𝑖},
otherwise we refer to it as a quasi maximum likelihood estimator (QMLE).

Engle and Russell (1998) note that the log-likelihood function in (1.3) has the same form as the log-likelihood function for the
autoregressive conditional heteroskedastic (ARCH) model with Gaussian innovations, and quote standard asymptotic theory from
ARCH models in Lee and Hansen (1994); see also Fernandes and Grammig (2006), Hautsch (2012), Theorem 5.2), Allen et al.
(2008) and Sin (2014) for a similar approach to inference. This approach treats 𝑁𝑇 as deterministic; that is, sampling is by number
of durations and not over a fixed, predetermined observation period [0, 𝑇 ]. Importantly, the results for deterministic 𝑁𝑇 cannot be
applied to the case of random 𝑁𝑇 , as analyzed here.

To give an idea of the difference in arguments between the two different sampling schemes, a key insight is that the fact that
the number of observations 𝑁𝑇 is random implies that classical laws of large numbers (LLNs) and central limit theorems (CLTs)
are no longer directly applicable to likelihood-related quantities such as score and information. For instance, it is known from
renewal process theory (see e.g. (Gut, 2009)) that 𝑁𝑇 → ∞ is not sufficient for the LLN or the CLT to apply to series of the form
𝑌𝑇 =

∑𝑁𝑇
𝑖=1 𝜉𝑖, where both 𝑁𝑇 and the random variables {𝜉𝑖} are defined in terms of the durations {𝑥𝑖}; such series appear repeatedly

in the asymptotic theory for ACD. In contrast to the deterministic 𝑁𝑇 case, the large sample behavior of 𝑌𝑇 is intimately related
o the large sample properties of the counts 𝑁𝑇 , which, again, depends on the tail properties (and existence of moments) of the
arginal distribution of the stationary and ergodic duration 𝑥𝑖. Such dependence leads to a novel asymptotic theory, based on
on-standard arguments.

Specifically, as we show in this paper, the asymptotic theory for the MLE crucially depends on the tail behavior and existence of
unconditional) moments for the ergodic and stationary durations {𝑥𝑖}, with the tail behavior characterized by the tail index 𝜅 > 0
f the marginal distribution of 𝑥𝑖; 𝑃 (𝑥𝑖 > 𝑧) ∼ 𝑐𝜅𝑧−𝜅 as 𝑧 → ∞ for some constant 𝑐𝜅 > 0. We show that, while asymptotic normality

holds for 𝜅 > 1, or equivalently, when the durations have finite mean, asymptotic normality breaks down for 𝜅 < 1. Notably, in
inite sample, the Gaussian asymptotic approximation is poor for the case of infinite variance 𝜅 < 2 and indeed invalid for the case

of infinite mean where 𝜅 < 1. This is a crucial fact, given that a wide range of tail indices is witnessed in empirical applications on
duration data. Thus, for example, Hill estimation of 𝜅 yields �̂� = 2.1 > 2 for the (diurnally-adjusted) IBM transaction data analyzed
in Engle and Russell (1998) and �̂� = 2.5 > 2 on the durations between tweets in Cavaliere et al. (2023). Moreover, �̂� = 1.4 ∈ (1, 2)
for the DJIA data from Embrechts et al. (2011), while �̂� = 0.81 < 1 on diurnally-adjusted durations of GameStop stock intraday
trades (January 1 to February 24, 2021); see Fig. 1 for plots of durations and the corresponding histograms.1

A preview of our results is as follows. In classic settings, with {𝑥𝑖} i.i.d. with finite mean, the number of events per unit of time
𝑁𝑇 ∕𝑇 converges almost surely to a strictly positive constant, in which case LLNs and CLTs for ∑𝑁𝑇

𝑖=1 𝜉𝑖 can usually be verified; see
e.g. Gut (2009) for a survey. In the ACD setting, whether this holds depends on the tail index 𝜅. On the one hand, if 𝜅 > 1, hence
[𝑥𝑖] = 𝜇 ∈ (0,∞), and 𝑁𝑇 ∕𝑇 is such that 𝑁𝑇 ∕𝑇 = 1∕𝜇 + 𝑜(1), a.s. However, even in this simpler case, existing (renewal) theory
oes not include stationary and ergodic 𝑥𝑖, and we provide the needed extensions to the theory here. On the other hand, if 𝜅 < 1,
ence E[𝑥𝑖] = ∞, then 𝑁𝑇 ∕𝑇 converges (a.s.) to zero as 𝑇 → ∞ and, in particular, the CLT does not apply to ∑𝑁𝑇

𝑖=1 𝜉𝑖. New tools are
equired for the asymptotic theory and, specifically, we establish the novel result that 𝑁𝑇 ∕𝑇 𝜅 converges in distribution to a random

variable with an unfamiliar distribution, and for which we provide an explicit expression in terms of a 𝜅-stable random variable.
These convergence results for 𝑁𝑇 are essential for establishing the asymptotic distribution of the QMLE. Specifically, we show

hat, provided 𝜇 = E[𝑥𝑖] < ∞, �̂�𝑇 − 𝜃0 (with 𝜃0 denoting the true value) is indeed asymptotically Gaussian when normalized by the
tandard deterministic

√

𝑇 -rate. However, while E[𝑥𝑖] < ∞ is indeed sufficient for
√

𝑇 -convergence to the Gaussian distribution,
the quality of the Gaussian approximation in finite samples is demonstrated to be very poor when E[𝑥2𝑖 ] = ∞, or 𝜅 < 2, and
deteriorating as the tail index 𝜅 approaches one. Hence even when E[𝑥𝑖] < ∞ these results question the usefulness of the

√

𝑇 -
Gaussian approximation for likelihood estimators in ACD models. In the case 𝜅 < 1, the fact that 𝑁𝑇 ∕𝑇 𝜅 converges in distribution

1 See, e.g., Drees et al. (2000) for guidance on how to estimate 𝜅 using the Hill-estimator; in particular on selecting the number of order statistics.
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Fig. 1. Left panel: duration time-series {𝑥𝑖(𝑗)}𝑖=1,…,𝑁𝑇
, 𝑗 = 1, 2, 3, 4. Right panel: corresponding histograms. Duration data sets: (𝑗 = 1) IBM transaction data

analyzed in Engle and Russell (1998), (𝑗 = 2) durations between tweets in Cavaliere et al. (2023), (𝑗 = 3) DJIA data from Embrechts et al. (2011), and (𝑗 = 4)
durations between GameStop stock trades from January to February 2021 (LOBSTER database).

– and not in probability – to a non-standard random variable implies that the derivation of the limiting distribution of �̂�𝑇 − 𝜃0 is
non-standard. In particular we show that the information is random in the limit, and that this results in a limiting mixed Gaussian
distribution of �̂�𝑇 − 𝜃0 with a convergence rate which depends on the value of tail index 𝜅 < 1. A further, novel result that follows
from our results is that the 𝑡-ratio for (univariate) hypotheses on 𝜃 is asymptotically normal provided 𝜅 > 1 or 𝜅 < 1. The local
power function of the test, however, crucially depends on 𝜅. The case 𝜅 = 1 is not covered by our theorem, and hence particular
attention should be paid to applications where estimated parameters are close to the boundary case E[𝑥𝑖] = ∞.

To sum up, our results show that, in contrast to ARCH models where the marginal distribution of the data does not play any role
in the asymptotic theory, for ACD models this is indeed crucial, as the tail index of the duration determines the speed of convergence
of the estimators as well as their asymptotic distribution. As already mentioned this is of empirical relevance, as both the case of
infinite and finite mean durations (𝜅 < 1 and 𝜅 > 1, respectively) are found in applications. Moreover, our findings are not specific
to ACD models, but apply to general econometric method where the number of observations over a given time span needs being
treated as a random process; see also Section 4.

The paper is structured as follows. In Section 2 we discuss the tail behavior of ACD processes, and provide new results for the
related counting process 𝑁𝑇 , 𝑇 ≥ 0. In Section 3 we present the main asymptotic theory. A discussion about the implications for
inference and some concluding remarks are given in Section 4. All proofs are provided in the Appendix. In the following, ‘

𝑝
→’, ‘

a.s.
→’,

and ‘
𝑑
→’ refer to convergence in probability, almost surely and in distribution, respectively, in all cases when 𝑇 → ∞. A generic

element of a strictly stationary sequence {𝑦𝑖} is denoted by 𝑦.

2. Preliminaries

In this section we derive the required results on the tail properties of the durations and on the asymptotic behavior of the random
number of durations 𝑁𝑇 . Results of this kind are neither present nor required in the classical ARCH case, where 𝑁𝑇 is deterministic.

2.1. Tail behavior of the ACD

We consider the sequence 𝑥𝑖 = 𝜓𝑖𝜀𝑖, 𝑖 ∈ Z, given as the solution to the ACD Eq. (1.2), and state explicit conditions for stationarity
and geometric ergodicity of {𝑥𝑖} as well as for power-law tails of 𝑥 with index 𝜅. The range of the values 𝜅 will be crucial for our
asymptotic theory.

The results are initially stated for general positive i.i.d. distributed innovations {𝜀𝑖}.

Lemma 2.1 (ACD Properties). Consider
{

𝑥𝑖
}

given by (1.2) with a strictly positive i.i.d. sequence {𝜀𝑖} with density 𝑓𝜀, and for which
E[𝜀] = 1 and 𝑠2 = E[𝜀2] <∞. Then

{

𝑥
}

is geometrically ergodic and has a stationary representation for 𝛼 ∈ (0, 𝑎 ), 𝑎 = exp −E[ln(𝜀)] > 1.
3
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Moreover, if the unique positive solution 𝜅 = 𝜅(𝛼) > 0 to the equation E[(𝛼𝜀)𝜅 ] = 1 exists, then P(𝑥 > 𝑧) ∼ 𝑐𝜅 𝑧−𝜅 , 𝑧→ ∞ , for some positive
onstant 𝑐𝜅 given in (A.2). In particular, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 < 𝜅 <∞ , for 𝛼 ∈ (0, 1∕𝑠)
𝜅 = 2 , for 𝛼 = 1∕𝑠
1 < 𝜅 < 2 , for 𝛼 ∈ (1∕𝑠, 1)
𝜅 = 1 , for 𝛼 = 1
0 < 𝜅 < 1 , for 𝛼 ∈

(

1, 𝑎𝑢
)

The results in Lemma 2.1 complement existing results on ARCH processes; see e.g. Embrechts et al. (1997), Buraczewski et al.
2016), Carrasco and Chen (2002), Fernandes and Grammig (2006), and allow in particular one to assess the existence of moments
f ACD processes. Thus, we find that for 𝛼 < 1 the mean is finite, E[𝑥] < ∞, while the variance V[𝑥] is finite for 𝛼 in the smaller
egion (0, 1∕𝑠), where 𝑠2 = E[𝜀2]. For 1 < 𝛼 < 𝑎𝑢, while {𝑥𝑖} is a strictly stationary and geometrically ergodic sequence, only fractional
oments (of order less than one) of 𝑥 are finite.

Next, we consider the benchmark model where 𝜀 is exponentially distributed (EACD).

emma 2.2 (EACD Properties). Consider
{

𝑥𝑖
}

given by (1.2) with an i.i.d. sequence {𝜀𝑖} exponentially distributed with E[𝜀] = 1. The
q. (1.2) has a strictly stationary geometrically ergodic solution {𝑥𝑖} if and only if 𝛼 ∈ [0, 𝑎𝑢), with 𝑎𝑢 = exp(𝛾) ≃ 1.8, where 𝛾 is Euler’s
onstant. The remaining results in Lemma 2.1 hold with 𝑠2 = E[𝜀2] = 2; with 𝛤 denoting the Gamma function, the equation E[(𝛼𝜀)𝜅 ] = 1
as in this case a unique implicit solution given by

𝛼 = [𝛤 (𝜅 + 1)]−1∕𝜅 . (2.1)

In particular, we observe the surprisingly simple explicit relationship between 𝛼 and 𝜅 = 𝜅 (𝛼) in (2.1) which comes from the
roperties of the exponential distribution. Such a simple relationship does not exist for general distributions of 𝜀 and more general
unctional forms of 𝜓𝑖.

.2. Asymptotics for the ACD counting process

In Lemma 2.3 below we collect some novel asymptotic results for the counting process 𝑁𝑇 , 𝑇 ≥ 0, which are needed for the
symptotic analysis of the QMLE of the ACD process.

Our results are general and of independent interest, in particular as the dependence of the durations sequence is an uncommon
ondition in the literature on renewal theory; there it is typically assumed that the durations are i.i.d. or at most 𝑚-dependent
e.g. finite moving average); see e.g. Gut (2009), Janson (1983). Moreover, and also new with respect to existing theory, we present
esults for the convergence of the counting process 𝑁𝑇 when durations have a tail index 𝜅 < 1.

Recall initially that 𝑁𝑇 is defined in terms of the dependent sequence
{

𝑥𝑖
}

, cf. (1.1), with 𝑥𝑖 defined in (1.2). As in Lemma 2.1
e consider here the general case of positive i.i.d. innovations

{

𝜀𝑖
}

with unit mean. The following result provides convergence rates
or 𝑁𝑇 as 𝑇 → ∞.

emma 2.3. Consider a strictly stationary geometrically ergodic positive solution {𝑥𝑖} to (1.2) with tail index 𝜅 > 0 and {𝜀𝑖} an i.i.d.
equence with 𝜀 > 0, E[𝜀] = 1. Then the following results hold for the counting process 𝑁𝑇 , 𝑇 ≥ 0, defined in (1.1).

(i) For 𝜅 > 1,

𝑁𝑇 ∕𝑇
a.s.
→ 1∕𝜇 , where 𝜇 = E[𝑥] <∞.

(ii) For 𝜅 > 2, the CLT holds:

𝑇 1∕2(𝑁𝑇 ∕𝑇 − 1∕𝜇)
𝑑
→ 𝑁(0, 𝜎2∕𝜇3),

where 𝜎2 = E[(1 + 𝑇∞)2 − 𝑇 2
∞]V[𝑥] and 𝑇∞ =

∑∞
𝑖=1 𝛼

𝑖(
∏𝑖

𝑗=1 𝜀𝑗 ). For 𝜅 = 2 the CLT holds with normalization 𝑐
√

𝑇 ln 𝑇 for some
positive constant 𝑐, and a standard normal limit distribution.

(iii) For 1 < 𝜅 < 2,

𝑇 (𝜅−1)∕𝜅 (𝑁𝑇 ∕𝑇 − 1∕𝜇)
𝑑
→ 𝛾𝜅 =

(

𝑐𝜅E
[

(1 + 𝑇∞)𝜅 − 𝑇 𝜅∞
]

∕𝜇
)1∕𝜅 𝜂𝜅 ,

where 𝜂𝜅 is a totally skewed to the right 𝜅-stable random variable whose characteristic function is given in (A.6), and 𝑐𝜅 is defined
in (A.2) .

(iv) For 0 < 𝜅 < 1, 𝑁𝑇 ∕𝑇
a.s.
→ 0 and

𝑁𝑇
𝑇 𝜅

𝑑
→ 𝜆𝜅 =

(

𝑐𝜅 E[(1 + 𝑇∞)𝜅 − 𝑇 𝜅∞]
)−1 𝜂−𝜅𝜅 , (2.2)

where 𝜂𝜅 is a totally skewed to the right 𝜅-stable random variable whose characteristic function is given in (A.6), and 𝑐𝜅 is defined
in (A.2) .
4
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It is worth noticing that for all cases (i)–(iv), 𝑁𝑇 → ∞ a.s. as a consequence of 𝑥 > 0. However, the convergence rates are quite
istinct, depending on 𝜅. Thus, 𝑁𝑇 ∕𝑇 → 1∕𝜇 a.s. for 𝜅 > 1, while, for 𝜅 < 1, 𝑁𝑇 ∕𝑇 𝜅 converges in distribution to the positive random
ariable 𝜆𝜅 , and in particular, 𝑁𝑇 ∕𝑇 → 0 a.s. For 𝜅 > 2, 𝑁𝑇 ∕𝑇 − 1∕𝜇 satisfies the CLT with standard

√

𝑇 -rate, while for 1 < 𝜅 < 2,
he rate 𝑇 (𝜅−1)∕𝜅 gets slower as 𝜅 gets closer to 1. We also note that the 𝜅-stable limiting random variable 𝜂𝜅 has power-law tail
ith index 𝜅. Importantly, for the novel result on the distributional convergence of 𝑁𝑇 ∕𝑇 𝜅 for 𝜅 < 1, the limiting variable 𝜆𝜅 has

exponentially decaying tails; cf. Theorem 2.5.2 in Zolotarev (1986).

3. Asymptotic theory for the QMLE

In this section we derive the asymptotic properties of the (Q)MLE �̂�𝑇 = argmax𝜃 𝐿𝑇 (𝜃), with 𝐿𝑇 (𝜃) defined in (1.3). Note that,
as is common practice, 𝐿𝑇 (𝜃) is defined without the additional term corresponding to the fact that no events are observed in the
end-period (𝑡𝑁𝑇 , 𝑇 ]. We show in Appendix B that this term has no influence on the asymptotic results.

We start in Section 3.1 by discussing the behavior of the score and information, which is key to the asymptotic analysis. Then,
in Section 3.2, we present the main results on the asymptotic behavior of �̂�𝑇 .

3.1. Convergence of the score and information

With the likelihood function 𝐿𝑇 (𝜃) as given in (1.3), the corresponding score and information functions, evaluated at the true
value 𝜃 = 𝜃0, are given by

𝑆𝑇 = 𝜕𝐿𝑇 (𝜃)
𝜕𝜃

|

|

|𝜃=𝜃0
=

𝑁𝑇
∑

𝑖=1
𝜉𝑖 , 𝜉𝑖 = (𝜀𝑖 − 1) 𝐯𝑖 , 𝐯𝑖 = (1, 𝑥𝑖−1)′∕𝜓𝑖 , (3.1)

𝐼𝑇 = − 𝜕2𝐿𝑇 (𝜃)
𝜕𝜃𝜕𝜃′

|

|

|

|𝜃=𝜃0
=

𝑁𝑇
∑

𝑖=1
𝜁𝑖 , 𝜁𝑖 = (2𝜀𝑖 − 1) 𝐯𝑖 𝐯′𝑖 , (3.2)

here 𝜓𝑖 = 𝜓𝑖(𝜃0). In what follows, we always assume that the conditions of Lemma 2.1 are satisfied. In particular, (1.2) has a
trictly stationary geometrically ergodic solution {𝑥𝑖} with tail index 𝜅 > 0.

Consider first the case 𝜅 > 1, where we have the following result on the large sample behavior of 𝑆𝑇 and 𝐼𝑇 at standard rates
of convergence.

Lemma 3.1. Assume that for 𝜃0 =
(

𝜔0, 𝛼0
)′, 𝜔0 > 0 and 𝛼0 > 0 such that

{

𝑥𝑖
}

in (1.2) is stationary and ergodic, with 𝜅 > 1. With
= V[𝜀] and 𝛺 = E[𝐯1𝐯′1] we have

𝑇 −1∕2𝑆𝑇
𝑑
→ (𝜏𝛺∕𝜇)1∕2 𝐙 and 𝑇 −1𝐼𝑇

a.s.
→ 𝛺∕𝜇, (3.3)

here 𝐙 is a bivariate standard Gaussian vector. Moreover, 𝑁−1
𝑇 𝐼𝑇

a.s.
→ 𝛺.

Next turn to the case 𝜅 < 1 such that E[𝑥] = ∞. As shown in the next, the score and information converge at slower rates than
sual. More specifically, turning to the information, it follows by Lemma 2.3 that 𝑁𝑇 ∕𝑇 𝜅

𝑑
→ 𝜆𝜅 and (see the proof of Lemma 3.2

below) 𝑁−1
𝑇 𝐼𝑇

a.s.
→ 𝛺. Hence,

𝑇 −𝜅𝐼𝑇
𝑑
→ 𝜆𝜅𝛺. (3.4)

hat is, the rate of convergence is indeed slower than standard when 𝜅 < 1, and the observed information is random in the limit
ue to the random variable 𝜆𝜅 . Similarly, non-standard convergence rates as a function of 𝜅 also apply to the score as we state the
ollowing lemma for the EACD.

emma 3.2. Assume that for 𝜃0 =
(

𝜔0, 𝛼0
)′, 𝜔0 > 0 and 𝛼0 > 0, such that

{

𝑥𝑖
}

in (1.2) is stationary and ergodic with 𝜅 < 1, and 𝜀𝑖
xponentially distributed with E[𝜀] = 1. With 𝛺 defined in Lemma 3.1 we have

(𝑇 −𝜅∕2𝑆𝑇 , 𝑇
−𝜅𝐼𝑇 )

𝑑
→

(

(𝜆𝜅𝛺)1∕2𝐙, 𝜆𝜅𝛺
)

,

here 𝐙 a bivariate standard Gaussian vector, independent of 𝜆𝜅 defined in (2.2). Moreover, 𝑁−1
𝑇 𝐼𝑇

a.s.
→ 𝛺.

.2. Limit theorems for the QMLE

We are now in the position to state the asymptotic distribution of the QMLE �̂�𝑇 of 𝜃. As for the score, the limit behavior of the
MLE depends on the tail behavior of the durations

{

𝑥𝑖
}

. As mentioned, the influence of the right power-law tail of 𝑥 on the QMLE
s in contrast to QMLE theory for ARCH and GARCH processes where the shape of the unconditional distribution does not matter.

e show here that for ACD processes the power-law tails determine the limiting distribution of the QMLE �̂�𝑇 as well as the rate of
onvergence. This result appears surprising, given that, apart from the random summation index, the ACD (log-)likelihood function
s identical to the ARCH Gaussian likelihood function.

Specifically, while
√

𝑇 -asymptotic normality holds when the tail index 𝜅 is above one, when 𝜅 < 1, the speed of convergence
nd the limiting distribution are non-standard. In particular, for the case 𝜅 > 1 the following result holds.
5



Journal of Econometrics 238 (2024) 105613G. Cavaliere et al.
Fig. 2. Finite mean case, 𝜅 > 1. Q-Q plots of 𝑇 1∕2(�̂�𝑇 − 𝛼0)∕𝜎𝛼 , with 𝜎2𝛼 the asymptotic variance of �̂�𝑇 , against the 𝑁(0, 1) distribution for different values of 𝑇
(rows) and 𝜅0 = 𝜅(𝛼0) (columns), finite mean case (𝜅 > 1). 𝑀 = 104 Monte Carlo replications.

Theorem 3.1. Under the assumptions of Lemma 3.1, with probability tending to one, there exists a local maximum �̂�𝑇 of 𝐿𝑇 (𝜃) which
satisfies �̂�𝑇

𝑝
→ 𝜃0 and 𝜕𝐿𝑇 (𝜃) ∕𝜕𝜃|

|𝜃=�̂�𝑇
= 0. Moreover,

𝑇 1∕2(�̂�𝑇 − 𝜃0)
𝑑
→ (𝛺∕𝜇)−1∕2 𝜏1∕2𝐙, (3.5)

with 𝐙 a bivariate standard Gaussian vector, 𝛺 = E[𝐯1𝐯′1], 𝜇 = E[𝑥] and 𝜏 = V[𝜀].

Theorem 3.1, which is based on combining classic likelihood expansions with the results for a random summation index 𝑁𝑇 in
Section 2, shows that asymptotic normality at the

√

𝑇 -rate holds even if the durations have infinite variance, E[𝑥2] = ∞. Note in
this respect that the difference between the asymptotic variance in (3.5) and the classic ARCH QMLE asymptotic variance is the
term 𝜇 = E[𝑥𝑖] = 𝜔0(1 − 𝛼0)−1. To see this, note that (3.5) can be rewritten as

𝑇 1∕2(�̂�𝑇 − 𝜃0)
𝑑
→ 𝑁 (0, 𝜇𝑉 ) , 𝑉 = 𝛺−1𝜏

where 𝑉 is identical to the classical ARCH QMLE asymptotic variance; see, e.g., Theorem 3 in Lee and Hansen (1994), with
𝐴0 = 𝜏𝛺∕𝜇 and 𝐵0 = 𝛺∕𝜇 using (3.3).

Importantly, the asymptotic approximation deteriorates as the tail index 𝜅 approaches one. This reflects the fact that the
asymptotic results for the QMLE when 𝜅 > 1 are essentially derived by replacing the random indices 𝑁𝑇 in the likelihood function
(and its derivatives) by the deterministic function 𝑇 ∕𝜇; this replacement, however, happens with a much larger error for 𝜅 ∈ (1, 2)
than in the finite variance case (𝜅 > 2), due to slow convergence rates of 𝑁𝑇 ∕𝑇 − 1∕𝜇 (cf. Lemma 2.3) and the widespread limit
distribution.

As an explanation to the fact that while the rate of convergence is standard
√

𝑇 for all 𝜅 > 1, the convergence to the Gaussian
limit for 𝜅 ∈ (1, 2) slows down when compared to the (finite variance) case 𝜅 > 2, consider here the score 𝑆𝑇 . By Lemma 2.3(iii),
for 𝜅 ∈ (1, 2)

𝑇 −1∕2𝑆𝑇 = [𝑇 (1−𝜅)∕𝜅 �̂�𝜅∕(2
√

𝜇) + 1∕
√

𝜇 + 𝑜𝑝 (1)]�̂�𝑇 ,

where �̂�𝜅 = 𝑇 (𝜅−1)∕𝜅 (𝑁𝑇 ∕𝑇 − 1∕𝜇
)

→𝑑 𝛾𝜅 (a 𝜅-stable random variable) and �̂�𝑇 = 𝑁−1∕2
𝑇 𝑆𝑇 →𝑑 (𝜏𝛺)1∕2 𝒁. Additionally, 𝛾𝜅 is

non-standard distributed with a power-law tail with index 𝜅, and is more widespread as 𝜅 diminishes. Thus, as 𝜅 approaches one,
𝑇 (1−𝜅)∕𝜅 �̂�𝜅∕(2

√

𝜇) converges to zero at a slower speed, and the convergence (in distribution) of 𝑇 −1∕2𝑆𝑇 to the Gaussian distribution
slows down. This is in contrast to the case 𝜅 > 2, where by Lemma 2.3 (ii), 𝑇 −1∕2𝑆𝑇 = [𝑇 −1∕2𝜂𝑇 ∕(2

√

𝜇) + 1∕
√

𝜇 + 𝑜𝑝 (1)]�̂�𝑇 , with
𝜂𝑇 = 𝑇 1∕2(𝑁𝑇 ∕𝑇 − 1∕𝜇) asymptotically Gaussian. In particular, the rate is independent of 𝜅 in this case.

We illustrate this in Fig. 2, where we report Q-Q plots of 𝑇 1∕2(�̂�𝑇 − 𝛼0)∕𝜎𝛼 , with 𝜎2𝛼 is the asymptotic variance of �̂�𝑇 , against the
Gaussian distribution when the data follows an EACD process with E[𝑥] = 1, for different values of 𝑇 and 𝜅. The figure clearly shows
how the tail index of the durations influences the quality of the Gaussian approximation in finite time intervals. It can also be seen
that as 𝜅 gets closer to one, the asymptotic approximation requires larger values of 𝑇 to be accurate. Unreported simulations show
6
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Fig. 3. Infinite mean case, 𝜅 = 0.5, for different values of 𝑇 with 𝜔0 selected such that the median of 𝑥𝑖 is about one. Q-Q plots against the 𝑁(0, 1) distribution.
Upper panel: 𝑇 𝜅∕2(�̂�𝑇 −𝛼0) (normalized by empirical standard deviation across Monte Carlo replications). Lower panel: 𝑡-ratios. 𝑀 = 104 Monte Carlo replications.

that if 𝜀 follows the Weibull distribution (with different shape parameters), the results in Fig. 2 for the QMLE remain unchanged;
the same holds when the Burr distribution (which generates non-monotonic hazard rates, see (Grammig and Maurer, 2000)) is used,
albeit larger sample sizes are required.

For 𝜅 < 1, as previously emphasized, �̂�𝑇 − 𝜃0 is not asymptotically Gaussian distributed.

Theorem 3.2. Under the assumptions of Lemma 3.2, with probability tending to one, there exists a local maximum �̂�𝑇 of 𝐿𝑇 (𝜃) which
satisfies �̂�𝑇

𝑝
→ 𝜃0 and 𝜕𝐿𝑇 (𝜃) ∕𝜕𝜃|

|𝜃=�̂�𝑇
= 0. Moreover,

𝑇 𝜅∕2(�̂�𝑇 − 𝜃0)
𝑑
→

(

𝜆𝜅𝛺
)−1∕2 𝐙, (3.6)

with 𝛺 = E[𝐯1𝐯′1] and 𝐙 a bivariate standard Gaussian vector, independent of 𝜆𝜅 defined in (2.2).

Thus, for 𝜅 < 1 the estimators are asymptotically mixed Gaussian; moreover, the rate of convergence 𝑇 𝜅∕2 is lower than the
standard 𝑇 1∕2 rate and depends on the value of 𝜅. The non-Gaussianity in (3.6) is clearly illustrated in the upper panel of Fig. 3,
which reports Q-Q plots of 𝑇 𝜅∕2(�̂�𝑇 − 𝛼0) (normalized by its empirical standard deviation). The lower panel reports 𝑡-ratios which
by Corollary 4.1 below are asymptotically Gaussian.

4. Discussion and implications for inference

In the previous section we have shown that, for the case of a finite mean of the durations, the (Q)MLE is indeed asymptotically
normal at the standard

√

𝑇 -rate while, for the case of infinite mean, the limiting distribution is a mixture and convergence attains
at a lower rate.

In terms of inference, from Theorems 3.1 and 3.2 we can derive the following new result, which shows that 𝑡-ratios are
asymptotically standard Gaussian distributed, irrespective of the tail index of the durations 𝜅 being above or below unity. That is,
while 𝜅 affects the distributional theory for of (Q)MLE, asymptotic inference based on 𝑡-tests (or likelihood ratio tests) is standard,
and asymptotic validity holds irrespective of the tail index of the marginal distribution of the durations {𝑥𝑖}.

Corollary 4.1. Under the assumptions of Theorem 3.1 (𝜅 > 1) or under the assumptions of Theorem 3.2 (𝜅 < 1), it holds that the 𝑡-ratio
𝑡𝑇 = se−1𝑇 (�̂�𝑇 − 𝛼0), where se2𝑇 = 𝜏𝑇 𝑎𝑇 , 𝑎𝑇 being the entry of 𝐼𝑇 (�̂�𝑇 )−1 = (− 𝜕2𝐿𝑇 (𝜃)

𝜕𝜃𝜕𝜃′
|

|

|

|𝜃=�̂�𝑇
)−1 corresponding to 𝛼, is standard normal as

𝑇 → ∞, provided 𝜏𝑇 is a consistent estimator of 𝜏.

Convergence of the 𝑡-ratios to the Normal distribution is illustrated in the lower panel of Fig. 3, where Q-Q plots of 𝑡𝑇 against the
𝑁(0, 1) distribution are reported for increasing sample sizes and for 𝜅 < 1. The figure clearly shows that extremely large observation
periods are required for the normal asymptotic approximation to be accurate. This implies that in empirical applications, and
7
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differently from inference in ARCH models, inspection of the tails of the marginal distribution of the data is a key step to be taken
prior to any empirical analysis.

Finally, we note that, in terms of theory, the result in Corollary 4.1 for 𝜅 < 1 is similar to the mixed Gaussian limit results as
employed, e.g., in the cointegration analysis of non-stationary variables; see Johansen (1991) and Phillips (1991).

5. Conclusions

Our results demonstrate the sensitivity of the limiting distribution of the QMLE in ACD models to the tail behavior, or equivalently
finiteness of unconditional moments, of the durations. The theory in Engle and Russell (1998) states that the estimators are
asymptotically Gaussian under the assumption of stationarity and ergodicity of the durations and, hence, as independent of the
duration’s tail behavior. Put differently, sampling over a fixed period of time (hence implying a random number of events) leads to
a new non-standard theory, while sampling over a fixed number of events (hence implying a random length of observation period)
leads to standard theory as in ARCH models.

As is well-known, estimation of the tail index 𝜅 is not an easy task, even with i.i.d. data. Our paper suggests that estimation of
tail indices for dependent time series such that for ACD models is a key issue. At present, we suggest to test for (in)finite moments
in the unconditional distribution of the durations by using results in, e.g., Trapani (2016) and Francq and Zakoïan (2022). Also note
that the bootstrap may be an advisable tool in this framework. For the case 𝜅 > 1, results in Cavaliere et al. (2023, Section 6) can
e applied such that a fully recursive bootstrap consistently estimate the asymptotic distribution of the MLE of the exponential ACD
odel. It is worth noticing that these results do not directly extend to cases where 𝜅 ≤ 1, nor to QMLE. Unreported, Monte Carlo

imulations seem to indicate that the recursive bootstrap is indeed applicable even for 𝜅 < 1.
All results have been stated for the tail index 𝜅 < 1 (infinite mean) or 𝜅 > 1 (finite mean). A tail index 𝜅 = 1, which corresponds

o the ‘integrated’ ACD, is not covered by our theory and in this case the asymptotic distribution of the QMLE remains unknown.
We note that our theory can be extended to more general ACD models, in particular to the much applied ACD(1,1) model where

𝑖 = 𝜔 + 𝛼𝑥𝑖−1 + 𝛽𝜓𝑖−1 – that is, the ACD analogue of the GARCH(1,1) – as well as its extensions. We have refrained from doing
o here to keep the presentation simple, and thereby focus on the main new insights. Note here that, as for GARCH(1,1) models,
he representation of 𝜓𝑖 as a stochastic recurrence equation as in Buraczewski et al. (2016) can be exploited (see also (Mokkadem,
990)).

Finally, it is worth noticing that our findings and arguments, are not specific to the models for time series of durations. Indeed,
hey apply to any econometric method where the number of observations needs being treated as random. For example, asymptotic
heory for daily realized volatility, see Li et al. (2014), treats summations such as ∑𝑁𝑇

𝑖=1(𝑝𝑡𝑖 − 𝑝𝑡𝑖−1 )
2, where 𝑝𝑡 is the (log-)price at

ime 𝑡. Since the number of trades within a day, 𝑁𝑇 , is random, our results could be applied to cases where 𝑥𝑖 = 𝑡𝑖 − 𝑡𝑖−1 have heavy
ails. Note in this context that a key challenge is to establish joint convergence in distribution of the score and information with
𝑇 random and 𝑁𝑇 → ∞ a.s. For the case of 𝜅 > 1, this can be based on standard asymptotic arguments. For the case of 𝜅 < 1,

his is more delicate and non-standard arguments are needed, as is clear from the proofs of Lemma 3.2 and Theorem 3.2. The key
ifference between the two cases is that in the former case, 𝑁𝑇 ∕𝑇 → 𝑐 > 0 in probability, while in the latter case, 𝑁𝑇 ∕𝑇 𝜅 → 𝜂 > 0,
n distribution, in particular with 𝜂 random. Li et al. (2014) (see also Bollerslev et al., 2020, 2022a,b) apply stable convergence in
istribution (cf. Theorem 1 in Li et al. (2014)). In essence, this would be equivalent in our setting to establish the much stronger
ondition that 𝑁𝑇 ∕𝑇 𝜅 → 𝜂 > 0, in probability (as opposed to distribution). For the case of 𝜅 > 1, the two approaches are equivalent.
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Appendix A. Proofs

Proof of Lemma 2.1

Observe that the ACD Eq. (1.2) can be formulated as a stochastic recurrence equation (SRE):

𝑥𝑖 = 𝐴𝑖 𝑥𝑖−1 + 𝐵𝑖, 𝑖 ∈ Z , (A.1)

with a sequence (𝐴𝑖, 𝐵𝑖) = (𝜔 , 𝛼)𝜀𝑖, 𝑖 ∈ Z, of random vectors with i.i.d. positive {𝜀𝑖}. Using the SRE representation, it follows that
{𝑥𝑖} is strictly stationary geometrically ergodic if and only if E[ln(𝛼𝜀)] < 0 by Theorem 2.1.3 and Proposition 2.2.4 in Buraczewski
et al. (2016), BDM henceforth. The power-law tail behavior P(𝑥 > 𝑧) ∼ 𝑐𝜅 𝑧−𝜅 , where

𝑐𝜅 =
E[(𝜔 + (𝛼 𝜀) 𝑥)𝜅 − ((𝛼 𝜀)𝑥)𝜅 ]

𝜅 E[(𝛼𝜀)𝜅 ln(𝛼𝜀)]
, (A.2)

follows from Theorem 2.4.4 in BDM. □

Proof of Lemma 2.2

Noting that for the exponential case

1 = E[(𝛼𝜀)𝜅 ] = 𝛼𝜅 ∫

∞

0
𝑥𝜅 exp(−𝑥) 𝑑𝑥 = 𝛼𝜅 𝛤 (𝜅 + 1) , (A.3)

the results hold by Lemma 2.1. □

Proof of Lemma 2.3

Convergence a.s. for 𝜅 > 1. Since 𝜅 > 1 we have 𝜇 = E[𝑥] <∞. We follow the argument in Theorem 5.1 in Gut (2009). Since {𝑥𝑖}
s ergodic 𝑇𝑛∕𝑛 =

∑𝑛
𝑖=1 𝑥𝑖∕𝑛

a.s.
→ 𝜇, hence 𝜈𝑇 =𝑁𝑇 +1

a.s.
→ ∞ and 𝑇𝜈𝑇 ∕𝜈𝑇

a.s.
→ 𝜇. But 𝑇 < 𝑇𝜈𝑇 ≤ 𝑇 + 𝑥𝜈𝑇 and

0 < 𝑇𝜈𝑇 ∕𝜈𝑇 − 𝑇 ∕𝜈𝑇 ≤ 𝑥𝜈𝑇 ∕𝜈𝑇
a.s.
→ 0 ,

hence 𝜈𝑇 ∕𝑇
a.s.
→ 1∕𝜇.

Convergence in distribution for 𝜅 ≥ 2. We start with 𝜅 > 2. We have

𝑇 −1∕2(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) ≤ 𝑇 −1∕2(𝑇 − 𝜇𝑁𝑇 ) ≤ 𝑇 −1∕2(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) + 𝑇 −1∕2𝑥𝜈𝑇 . (A.4)

First, we prove that 𝑇 −1∕2𝑥𝜈𝑇
𝑝
→ 0. For 𝑀, 𝛿 > 0 we have

P(𝑇 −1∕2𝑥𝜈𝑇 > 𝑀) ≤ P(𝑇 −1∕2𝑥𝜈𝑇 > 𝑀, |𝜈𝑇 ∕𝑇 − 1∕𝜇| > 𝛿) + P(𝑇 −1∕2𝑥𝜈𝑇 > 𝑀, |𝜈𝑇 ∕𝑇 − 1∕𝜇| ≤ 𝛿)

= 𝐼1 + 𝐼2 .

But 𝐼1 → 0 as 𝑇 → ∞ for every 𝛿 > 0 by virtue of the first part of the proof. On the other hand, by stationarity,

𝐼2 ≤ P
(

max
𝑇 (1∕𝜇−𝛿)≤𝑠≤𝑇 (1∕𝜇+𝛿)

𝑥𝑠 > 𝑇
1∕2𝑀

)

≤ P
(

𝑇 −1∕2 max
𝑠≤3𝛿𝑇

𝑥𝑠 > 𝑀
)

.

The right-hand side converges to zero since 𝑇 −1∕𝜅 max𝑠≤𝑇 𝑥𝑠 converges in distribution to a Fréchet distribution; see BDM, Theorem
3.1.1.

In view of (A.4) we thus proved that the distributional limits of 𝑇 −1∕2(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) and 𝑇 −1∕2(𝑇 − 𝜇𝑁𝑇 ) coincide if they exist.

owever, Theorem 3.3.1 in BDM yields 𝑛−1∕2(𝑇𝑛−𝜇 𝑛)
𝑑
→ 𝑁(0, 𝜎2) as 𝑛→ ∞ with 𝜎2 = E[(1+𝑇∞)2−𝑇 2

∞]V[𝑥] and 𝑇∞ =
∑∞
𝑖=1 𝛼

𝑖(
∏𝑖

𝑗=1 𝜀𝑗 ).
In what follows, we will frequently abuse notation: when sums are involved and their index is not a natural number we

nderstand these expressions as taken at their integer parts. Abusing notation, we then have as 𝑇 → ∞,

𝑇 −1∕2 (𝑇𝑇 ∕𝜇 − 𝑇
)

= 𝜇−1∕2 (𝑇 ∕𝜇)−1∕2
𝑇 ∕𝜇
∑

𝑖=1

(

𝑥𝑖 − 𝜇
) 𝑑
→ 𝑁

(

0, 𝜎2∕𝜇
)

.

hen the CLT for 𝑇 −1∕2(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) will follow if we can prove that for every 𝑀 > 0,

𝐼 = P
(

𝑇 −1∕2 |
|

|

(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) − (𝑇𝑇 ∕𝜇 − 𝑇 )
|

|

|

> 𝑀
)

→ 0 .

e apply an Anscombe type argument; see Gut (2009). For given 𝑀, 𝛿 > 0 we have

𝐼 ≤ P(|𝑁 ∕𝑇 − 1∕𝜇| > 𝛿) + P
(

𝑇 −1∕2 |
|(𝑇 − 𝜇𝑁 ) − (𝑇 − 𝑇 )|| > 𝑀 , |𝑁 ∕𝑇 − 1∕𝜇| ≤ 𝛿

)

= 𝐼 + 𝐼 .
9

𝑇
|

𝑁𝑇 𝑇 𝑇 ∕𝜇
|

𝑇 3 4
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As before, 𝐼3 → 0 as 𝑇 → ∞. On the other hand, by stationarity,

𝐼4 ≤ P
(

max
𝑇 (1∕𝜇−𝛿)≤𝑠≤𝑇 (1∕𝜇+𝛿)

|

|

|

𝑇𝑠 − 𝑇𝑇 ∕𝜇 − 𝜇(𝑠 − 𝑇 ∕𝜇)
|

|

|

> 𝑇 1∕2𝑀
)

≤ 2P
(

max
𝑢≤𝛿

|

|

𝑇𝑢 𝑇 − 𝜇 𝑢 𝑇 |
|

> 𝑇 1∕2𝑀
)

.

Since {𝑥𝑖} is geometrically ergodic we can apply the functional CLT with Brownian limit and the continuous mapping theorem; see
Theorem 19.1 in Billingsley (1999). Then the right-hand side vanishes by first letting 𝑇 → ∞ and then 𝛿 → 0.

The case 𝜅 = 2 is similar but we have to replace the normalization 𝑇 1∕2 by 𝐶(𝑇 ln 𝑇 )1∕2 for a suitable constant 𝐶 > 0. The proof
f 𝑥𝜈𝑇 ∕(𝑇 ln 𝑇 )1∕2

𝑝
→ 0 follows in the same way since 𝑛−1∕2 max𝑡=1,…,𝑛 𝑥𝑡 converges in distribution to a Fréchet distribution; see BDM,

heorem 3.1.1. A functional CLT with Brownian limit and normalization (𝑇 ln 𝑇 )1∕2 is given in Guivarc’h and Le Page (2008).
Convergence in distribution for 1 < 𝜅 < 2. Similar to the case of 𝜅 > 2, the starting point is the inequalities,

𝑇 −1∕𝜅 (𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) ≤ 𝑇 −1∕𝜅 (𝑇 − 𝜇𝑁𝑇 ) ≤ 𝑇 −1∕𝜅 (𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) + 𝑇 −1∕𝜅𝑥𝜈𝑇 . (A.5)

e observe that for 𝑀, 𝛿 > 0, by stationarity,

P(𝑥𝜈𝑇 > 𝑇
1∕𝜅𝑀) ≤ P(|𝜈𝑇 ∕𝑇 − 𝜇| > 𝛿) + P(𝑇 −1∕𝜅𝑥𝜈𝑇 > 𝑀 , |𝜈𝑇 ∕𝑇 − 𝜇| ≤ 𝛿)

≤ 𝑜(1) + P
(

𝑇 −1∕𝜅 max
𝑠≤3𝛿𝑇

𝑥𝑠 > 𝑀
)

,

nd the right-hand side converges to zero by first letting 𝑇 → ∞ and then 𝛿 → 0. In the last step one uses the Fréchet convergence
f 𝑇 −1∕𝜅 max𝑖=1,…,𝑇 𝑥𝑖.

Next we observe that by BDM, Theorem 3.3.4,

(𝑐𝜅𝑛)−1∕𝜅 (𝑇𝑛 − 𝜇 𝑛)
𝑑
→

(

E
[

(1 + 𝑇∞)𝜅 − 𝑇 𝜅∞
])1∕𝜅 𝜂𝜅 ,

here 𝑐𝜅 is the constant in (A.2), 𝑇∞ is defined in the lemma and 𝜂𝜅 is 𝜅-stable with characteristic function

𝜑𝜂𝜅 (𝑠) = exp
(

−∫

∞

0
(exp (𝑖𝑠𝑦) − 1 − 𝑖𝑠𝑦 I(1 < 𝜅 < 2)) 𝜅 𝑦−𝜅−1𝑑𝑦

)

, 𝑠 ∈ R . (A.6)

t remains to show that for every 𝑀 > 0.

𝐽 = P
(

𝑇 −1∕𝜅 |
|

|

(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) − (𝑇𝑇 ∕𝜇 − 𝑇 )
|

|

|

> 𝑀
)

→ 0 .

e have for every 𝛿 > 0,

𝐽 ≤ 𝑜(1) + P
(

𝑇 −1∕𝜅 |
|

|

(𝑇𝑁𝑇 − 𝜇𝑁𝑇 ) − (𝑇𝑇 ∕𝜇 − 𝑇 )
|

|

|

> 𝑀 , |𝑁𝑇 ∕𝑇 − 1∕𝜇| ≤ 𝛿
)

= 𝑜(1) + 𝐽1 .

busing notation, we have

𝐽1 ≤ P
(

max
𝑇 (1∕𝜇−𝛿)≤𝑠≤𝑇 (1∕𝜇+𝛿)

|

|

|

𝑇𝑠 − 𝑇𝑇 ∕𝜇 − 𝜇 (𝑠 − 𝑇 ∕𝜇)
|

|

|

> 𝑇 1∕𝜅𝑀
)

≤ 2P
(

max
𝑢≤𝑇 𝛿

|

|

𝑇𝑢 − 𝜇𝑢|| > 𝑇
1∕𝜅𝑀

)

n one hand, we observe that for fixed 𝜀 > 0,

P
(

max
𝑢≤𝑇 𝛿

|𝑇𝑢 − 𝜇𝑢| > 𝑇 1∕𝜅𝑀,max
𝑠≤𝑇 𝛿

𝑥𝑠 > 𝑇
1∕𝜅 𝜀

)

≤ 𝛿𝑇 P(𝑥 > 𝜀𝑇 1∕𝜅 ) ∼ const 𝛿 𝜀−𝜅 , 𝑇 → ∞.

The right-hand side converges to zero as 𝛿 → 0. Next we mimic the proof of Theorem 4.5.2 in BDM. Write

𝑋𝑇 = 𝑋𝑇 +𝑋𝑇 , 𝑋𝑇 = 𝑋𝑇 𝑓 (𝑇 −1∕𝜅𝑋𝑇 ) , 𝑇 𝑛 =
𝑛
∑

𝑖=1
𝑋𝑖 ,

with 𝑓 (𝑥) ∈ [0, 1] smooth, supp 𝑓 ⊂ {𝑥 ∶ |𝑥| ≤ 𝜀}, and 𝑓 (𝑥) = 1 for |𝑥| ≤ 𝜀∕2. Then

P
(

max
𝑢≤𝛿𝑇

|𝑇𝑢 − 𝜇𝑢| > 𝑇 1∕𝜅𝑀,max
𝑠≤𝛿𝑇

𝑥𝑠 ≤ 𝑇 1∕𝜅 𝜀
)

≤ P
(

max
𝑢≤𝛿𝑇

|𝑇 𝑢 − 𝑢E[𝑥]| + 𝛿𝑇 E[𝑥] > 𝑇 1∕𝜅𝑀
)

By Karamata’s theorem (see Bingham et al., 1987) for large 𝑇 ,

𝛿 𝑇 1−1∕𝜅 E[𝑥] ≥ const 𝛿𝜀1−𝜅
E[𝑥∕(𝜀𝑇 1∕𝜅 )I(𝑥 > 𝜀𝑇 1∕𝜅 )]

P(𝑥 > 𝜀𝑇 1∕𝜅 )
∼ const 𝛿𝜀1−𝜅 → 0 as 𝛿 → 0.

herefore it is suffices to show that the following quantity vanishes by first letting 𝑇 → ∞ and then 𝛿 → 0:

𝑄 = P
(

max
𝑢≤𝛿𝑇

|𝑇 𝑢 − 𝑢E[𝑥]| > 𝑇 1∕𝜅𝑀
)

.

With 𝑠(𝑇 ) = 𝛿 𝑇 1−𝛽 for 𝛽 ∈ (0, 1), (Here we assume without loss of generality that 𝑠(𝑇 ) is an integer).

𝑄 ≤ P
(

max |𝑇 𝑘𝑇 𝛽 − 𝑘𝑇
𝛽E[𝑥]| > 𝑇 1∕𝜅𝑀

)

10

𝑘=1,...,𝑠(𝑇 )
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+ P
(

max
𝑘=1,..,𝑠(𝑇 )

max
𝑢∈{(𝑘−1)𝑇 𝛽+1,…,𝑘𝑇 𝛽}

|(𝑇 𝑢 − 𝑇 (𝑘−1)𝑇 𝛽 ) − (𝑠 − (𝑘 − 1)𝑇 𝛽 )E[𝑥]| > 𝑇 1∕𝜅𝑀
)

= 𝑄1 +𝑄2 ,

gnoring the last incomplete block of indices as it does not contribute to the asymptotic theory. Observe that 𝑇 𝛽−1∕𝜅E[𝑥] → 0 as
𝑇 → ∞ for 𝛽 < 1∕𝜅. Hence by stationarity and for large 𝑇 ,

𝑄2 ≤ 𝑠(𝑇 )P
(

max
𝑢≤𝑇 𝛽

|𝑇 𝑢 − 𝑢E[𝑥]| > 𝑇 1∕𝜅𝑀
)

≤ 𝑠(𝑇 )P(𝑇 𝑇 𝛽 > 𝑇 1∕𝜅𝑀∕2)

≤ 𝑠(𝑇 )P(𝑇 𝑇 𝛽 − E[𝑇 𝑇 𝛽 ] > 𝑇 1∕𝜅𝑀∕3) ≤ const 𝛿𝑇 (1−(2∕𝜅))(1−𝛽)V[𝑇 −𝛽∕𝜅𝑇 𝑇 𝛽 ].

By the calculations on p. 211 in BDM, the variance on the right-hand side is bounded. Hence 𝑄2 → 0.
Now we turn to 𝑄1. For 𝑘 ≤ 𝑠(𝑇 ) we have for 𝜆 > 0,

P(|𝑇 𝑘𝑇 𝛽 − 𝑘𝑇 𝛽E[𝑥]| > 𝜆) ≤ 𝜆−2V[(𝑘𝑇 𝛽 )−1∕𝜅𝑇 𝑘𝑇 𝛽 ]𝑘2∕𝜅 𝑇 2𝛽∕𝜅 ≤ const 𝜆−2𝑘2∕𝜅𝑇 2𝛽∕𝜅 ,

where we again used the variance bounds on p. 211 in BDM. An application of Theorem 10.2 in Billingsley (1999) yields

𝑄1 ≤ const𝑀−2 𝑇 −2∕𝜅 𝑇 2𝛽∕𝜅 (𝛿𝑇 1−𝛽 )2∕𝜅 = const𝑀−2 𝛿2∕𝜅 → 0 , 𝛿 → 0 .

This finishes the proof in the case 𝜅 ∈ (1, 2).
Convergence a.s. and in distribution for 0 < 𝜅 < 1. We know that {𝑥𝑖} is ergodic and positive. Therefore for every 𝑀 > 0

lim inf
𝑛→∞

𝑇𝑛
𝑛

≥ lim
𝑛→∞

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖𝟏(𝑥𝑖 ≤𝑀) = E[𝑥1𝟏(𝑥1 ≤𝑀)] a.s.

Since E[𝑥] = ∞ we can let 𝑀 → ∞ to conclude that 𝑇𝑛∕𝑛 a.s. converges to ∞. Moreover, 𝑁𝑇 → ∞ a.s. using the fact that
{𝑁𝑇 > 𝑘} = {

∑𝑘
𝑖=1 𝑥𝑖 < 𝑇 }. Hence, we also have 𝑇𝑁𝑇 ∕𝑁𝑇 a.s. converges to ∞. Noting that

𝑇𝑁𝑇
𝑁𝑇

≤ 𝑇
𝑁𝑇

≤
𝑇𝑁𝑇 +1
𝑁𝑇 + 1

𝑁𝑇 + 1
𝑁𝑇

here the left- and right-hand expressions converge to ∞, it follows that 𝑁𝑇 ∕𝑇 a.s. converges to 0.
Next, using Theorem 3.3.4 in BDM, for 𝑧 > 0

P(𝑇 −𝜅𝑁𝑇 ≤ 𝑧) = P(𝑇𝑧𝑇 𝜅 > 𝑇 ) = 1 − P(𝑇𝑧𝑇 𝜅 ≤ 𝑇 ) = 1 − P
(

(𝑐𝜅𝑧𝑇 𝜅 )−1∕𝜅𝑇𝑧𝑇 𝜅 ≤ (𝑐𝜅 𝑧)−1∕𝜅
)

→ 1 − P
(

(

E
[

(1 + 𝑇∞)𝜅 − 𝑇 𝜅∞
])1∕𝜅 𝜂𝜅 ≤ (𝑐𝜅𝑧)−1∕𝜅

)

= P
(

1∕
(

𝑐𝜅E[(1 + 𝑇∞)𝜅 − 𝑇 𝜅∞]𝜂𝜅𝜅
)

≤ 𝑧
)

,

where 𝜂𝜅 has characteristic function (A.6). □

Proof of Lemma 3.1

The results for the score hold by using Lemma 2.3(i) and establishing, 𝑇 −1∕2𝑆𝑇 = 𝑇 −1∕2𝑆(𝑇 ∕𝜇) + 𝑜P (1), where 𝑆(𝑣) =
∑

⌊𝑣⌋
𝑖=1 𝜉𝑖. To

see that 𝑇 −1∕2𝑆𝑇 − 𝑇 −1∕2𝑆(𝑇 ∕𝜇) = 𝑜P (1), note that for every 𝑀 > 0 and 𝛿 ∈ (0, 𝜇−1),

P
(

𝑇 −1∕2 [𝑆𝑇 − 𝑆(𝑇 ∕𝜇)
]

> 𝑀
)

= P
(

𝑇 −1∕2 [𝑆𝑇 − 𝑆(𝑇 ∕𝜇)
]

> 𝑀, |𝑁𝑇 ∕𝑇 − 1∕𝜇| > 𝛿
)

+ P
(

𝑇 −1∕2 [𝑆𝑇 − 𝑆(𝑇 ∕𝜇)
]

> 𝑀, |𝑁𝑇 ∕𝑇 − 1∕𝜇| ≤ 𝛿
)

= 𝐾1 +𝐾2

Here, 𝐾1 ≤ P
(

|𝑁𝑇 ∕𝑇 − 𝜇| > 𝛿
)

→ 0, while, by stationarity,

𝐾2 ≤ P
(

𝑇 −1∕2 max
𝑇 (1∕𝜇−𝛿)≤𝑠≤𝑇 (1∕𝜇+𝛿)

|𝑆(𝑠) − 𝑆(𝑇 ∕𝜇)| > 𝑀
)

≤ 2P
(

𝑇 −1∕2 max
𝑢≤𝑇 𝛿

|𝑆(𝑢)| > 𝑀
)

→ 2P
(

max
𝑠≤𝛿

|𝐵(𝑠)| > 𝑀∕2
)

,

as 𝑇 → ∞, where 𝐵 is a Brownian motion. The right-hand side converges to zero as 𝛿 → 0. The result for the score then holds as
𝑇 −1∕2𝑆(𝑇 ∕𝜇)

𝑑
→ (𝜏𝛺∕𝜇)1∕2 𝐙 by standard application of a CLT for martingale differences.

Turning to the information, then by the ergodic theorem and as 𝑁𝑇
a.s.
→ ∞ it follows that 𝑁−1

𝑇 𝐼𝑇
a.s.
→ 𝛺; see Embrechts et al. (1997,

a.s. −1 a.s.
11

Lemma 2.5.3). On the other hand, we have by Lemma 2.3(i), 𝑁𝑇 ∕𝑇 → 1∕𝜇. Thus 𝑇 𝐼𝑇 → 𝛺∕𝜇. □
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Proof of Lemma 3.2

Write

𝐼𝑇 (𝜃) = −
𝜕2𝐿𝑇 (𝜃)
𝜕𝜃𝜕𝜃′

=
𝑁𝑇
∑

𝑖=1

(

2 𝜀𝑖
𝜓𝑖(𝜃0)
𝜓𝑖(𝜃)

− 1
)

𝐯𝑖(𝜃)𝐯𝑖(𝜃)′,

where 𝐯𝑖 (𝜃) = (1, 𝑥𝑖−1)′∕𝜓𝑖(𝜃). The summands constitute a strictly stationary ergodic sequence with values in the space C of
continuous functions of 𝜃 in a neighborhood 

(

𝜃0
)

of 𝜃0 equipped with the uniform distance. It is not difficult to see that the
sup-norm of these summands has finite expected value. Therefore the summands obey the ergodic theorem in C; see Theorem 2.1
in Section 4.2 of Krengel (1985). Since 𝑁𝑇

a.s.
→ ∞ we conclude that uniformly over 𝜃 ∈  (𝜃0),

𝑁−1
𝑇 𝐼𝑇 (𝜃)

a.s.
→ E

[(

2
𝜓1(𝜃0)
𝜓1(𝜃)

− 1
)

𝐯1(𝜃)𝐯1(𝜃)′
]

.

Moreover, together with Lemma 2.3 (iv) we conclude that, uniformly over 𝜃 ∈  (𝜃0),

𝑇 −𝜅𝐼𝑇 (𝜃) = (𝑁𝑇 ∕𝑇 𝜅 )(𝑁−1
𝑇 𝐼𝑇 (𝜃))

𝑑
→ 𝑊 (𝜃) = 𝜆𝜅 E

[(

2
𝜓1(𝜃0)
𝜓1(𝜃)

− 1
)

𝐯1(𝜃)𝐯1(𝜃)′
]

.

If 𝜃 − 𝜃0 = 𝑂(𝑇 −𝜅∕2) then we also have

sup
𝜃

|

|

|

𝑇 −𝜅 (𝐼𝑇 (𝜃) − 𝐼𝑇 (𝜃0)
)

|

|

|

=
(

𝑁𝑇 ∕𝑇 𝜅
)

sup
𝜃

|

|

|

𝑁−1
𝑇 (𝐼𝑇 (𝜃) − 𝐼𝑇 (𝜃0))

|

|

|

→ 0 ,

n probability. Thus we verified conditions C1 and C2 in Sweeting (1980) and, in turn, Theorem 1 applies, yielding as desired
(

𝑇 −𝜅∕2𝑆𝑇 , 𝑇
−𝜅𝐼𝑇

) 𝑑
→

(

(

𝜆𝜅𝛺
)1∕2 𝐙 , 𝜆𝜅𝛺

)

or a bivariate standard Gaussian vector 𝐙 independent of 𝜆𝜅 . □

roof of Theorem 3.1

The result follows by applications of Lemmas 11 and 12 in (Kristensen and Rahbek, 2010). With the notation there, set
𝑇 (𝜃) = 𝑇 −1𝐿𝑇 (𝜃), 𝑈𝑇 = 1, and 𝑣𝑇 = 𝑇 ; then conditions (i),(ii) and (iv) of Lemmas 11 and 12 in (Kristensen and Rahbek, 2010)
old by Lemma 3.1 above, as 𝜕2𝑄𝑇

(

𝜃0
)

∕𝜕𝜃𝜕𝜃′
𝑝
→ 𝛺∕𝜇, and 𝜕𝑄𝑇

(

𝜃0
)

∕𝜕𝜃
𝑑
→ (𝜏𝛺∕𝜇)1∕2 𝐙. Next, consider condition (iii) of Lemma 11

n Kristensen and Rahbek (2010); see also Jensen and Rahbek (2004). It follows that in a compact neighborhood 
(

𝜃0
)

of 𝜃0,

sup
𝜃∈ (𝜃0)

|

|

|

𝜕3𝑄𝑇 (𝜃) ∕𝜕𝛼3||
|

≤ 𝑇 −1
𝑁𝑇
∑

𝑖=1

[

2
𝑥𝑖𝑥3𝑖−1
𝜓4
𝑖 (𝜃)

+ 3

(

2
𝑥𝑖𝑥3𝑖−1
𝜓4
𝑖 (𝜃)

+
𝑥3𝑖−1
𝜓3
𝑖 (𝜃)

)]

(A.7)

≤ const 𝑇 −1
𝑁𝑇
∑

𝑖=1

(

1 + 𝜀𝑖
)

,

nd condition (iii) holds as 𝑁𝑇 ∕𝑇 and 𝑁−1
𝑇

∑𝑁𝑇
𝑖=1 𝜀𝑖 are 𝑂P (1). For the remaining third-order derivatives similar arguments apply. □

roof of Theorem 3.2

Similar to the proof of Theorem 3.1, set 𝑄𝑇 (𝜃) = 𝑇 −𝜅𝐿𝑇 (𝜃), 𝑈𝑇 = 1, and 𝑣𝑇 = 𝑇 𝜅 . As there, conditions (i),(ii) and (iv) of Lemmas
1 and 12 in Kristensen and Rahbek (2010) hold by Lemma 3.1. Likewise as in (A.7),

sup
𝜃∈ (𝜃0)

|

|

|

𝜕3𝑄𝑇 (𝜃) ∕𝜕𝛼3||
|

≤ const 𝑇 −𝜅
𝑁𝑇
∑

𝑖=1

(

1 + 𝜀𝑖
)

.

nd condition (iii) holds since 𝑁𝑇 ∕𝑇 𝜅 and 𝑇 −𝜅 ∑𝑁𝑇
𝑖=1 𝜀𝑖 are 𝑂P (1) . □

roof of Corollary 4.1

For 𝜅 > 1 the result follows from Theorem 3.1 by standard arguments. For 𝜅 < 1, the result holds by the proof of Theorem 1 and
12

orollary 1 in Sweeting (1980). □
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Appendix B. The remainder term

We noticed in Section 3 that the likelihood function in Eq. (1.3) in addition to the observed durations {𝑥𝑖}
𝑁𝑇
𝑖=1 in [0, 𝑇 ] misses

ut on a term for 𝑡𝑁𝑇 < 𝑇 , i.e., the term containing the information about no events occurring in (𝑡𝑁𝑇 , 𝑇 ] is ignored. Thus, strictly
peaking, �̂�𝑇 is not the MLE. While it is common practice to ignore this likelihood contribution in the ACD literature (as standard
RCH software is typically applied for estimation), this term is usually included in the related point process literature; cf. Daley and
ere-Jones (2008). By using the point process representation of the ACD process, as originally noted in Engle and Russell (1998), it
olds that the ACD conditional intensity 𝜆(𝑡|

{

𝑥𝑖
}𝑁𝑡
𝑖=0) = 1∕𝜓𝑁𝑡+1 which implies that the remainder term missing in (1.3), 𝑅𝑇 (𝜃) say,

s given by

𝑅𝑇 (𝜃) = −
𝑇−𝑡𝑁𝑇
𝜓𝑁𝑇 +1

. (B.1)

We now establish that under geometric ergodicity of {𝑥𝑖}, 𝑅𝑇 (𝜃) is asymptotically negligible.

emma B.1. Consider the remainder term 𝑅𝑇 (𝜃) given by B.1. Then for
{

𝑥𝑖
}

strictly stationary and geometrically ergodic, we have

𝑇 (𝜃) 𝑇 −1∕2 𝑝
→ 0 for 𝜅 > 1, and 𝑅𝑇 (𝜃) 𝑇 −𝜅∕2 𝑝

→ 0 for 𝜅 < 1.

roof. With 𝜈𝑇 = 𝑁𝑇 + 1 we have 𝑡𝑁𝑇 < 𝑇 < 𝑡𝜈𝑇 ,

max
(

𝑡𝜈𝑇 − 𝑇 , 𝑇 − 𝑡𝑁𝑇
)

< 𝑥𝜈𝑇 ,

nd 𝑅𝑇 (𝜃) = (𝑇 − 𝑡𝑁𝑇 )∕𝜓𝜈𝑇 ≤ 𝜀𝜈𝑇 . For 𝜅 > 1, lim𝑇→∞ 𝜈𝑇 ∕𝑇 = lim𝑇→∞𝑁𝑇 ∕𝑇 = 1∕𝜇 a.s. and

P(𝜀𝜈𝑇 >
√

𝑇 ) = P(𝜀𝜈𝑇 >
√

𝑇 , |
|

𝜈𝑇 ∕𝑇 − 1∕𝜇|
|

> 𝛾) + P(𝜀𝜈𝑇 >
√

𝑇 , |
|

𝜈𝑇 ∕𝑇 − 1∕𝜇|
|

≤ 𝛾)

= 𝐼1 + 𝐼2

for 𝛾 > 0. For every 𝛾 > 0, 𝐼1 ≤ P
(

|

|

𝜈𝑇 ∕𝑇 − 1∕𝜇|
|

> 𝛾
)

→ 0, while for small 𝛾,

𝐼2 ≤ P
(

max
(1∕𝜇−𝛾)≤𝑠≤𝑇 (1∕𝜇+𝛾)

𝜀𝑠 >
√

𝑇
)

≤ P
(

max
𝑠≤3𝛾𝑇

𝜀𝑠 >
√

𝑇
)

≤ 3𝛾𝑇 P(𝜀 >
√

𝑇 ) → 0 .

Next, for 𝜅 < 1, 𝑣𝑇 ∕𝑇 𝜅 and 𝑁𝑇 ∕𝑇 𝜅 converge in distribution to 𝜆𝜅 , and hence

P(𝜀𝜈𝑇 > 𝑇
𝜅∕2) = P(𝜀𝜈𝑇 > 𝑇

𝜅∕2, 𝜈𝑇 ∕𝑇 𝜅 > 𝑀) + P(𝜀𝜈𝑇 > 𝑇
𝜅∕2, 𝜈𝑇 ∕𝑇 𝜅 ≤𝑀) = 𝐾1 +𝐾2.

Here 𝐾1 ≤ P
(

𝜈𝑇 ∕𝑇 𝜅 > 𝑀
)

is arbitrarily small for large 𝑀 as 𝑇 → ∞ while

𝐾2 ≤ P
(

max
𝑠∈3𝑀𝑇 𝜅

𝜀𝑠 > 𝑇
𝜅∕2

)

≤ 3𝑀 𝑇 𝜅 P(𝜀 > 𝑇 𝜅∕2) ≤ const 𝑇 𝜅 P(𝜀 > 𝑇 𝜅∕2) → 0 ,

as desired. □
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