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A comparative analysis 
of 2D and 3D experimental 
data for the identification 
of the parameters of computational 
models
Marilisa Cortesi 1,2*, Dongli Liu 1, Christine Yee 3, Deborah J. Marsh 3 & Caroline E. Ford 1*

Computational models are becoming an increasingly valuable tool in biomedical research. Their 
accuracy and effectiveness, however, rely on the identification of suitable parameters and on 
appropriate validation of the in-silico framework. Both these steps are highly dependent on the 
experimental model used as a reference to acquire the data. Selecting the most appropriate 
experimental framework thus becomes key, together with the analysis of the effect of combining 
results from different experimental models, a common practice often necessary due to limited data 
availability. In this work, the same in-silico model of ovarian cancer cell growth and metastasis, 
was calibrated with datasets acquired from traditional 2D monolayers, 3D cell culture models or 
a combination of the two. The comparison between the parameters sets obtained in the different 
conditions, together with the corresponding simulated behaviours, is presented. It provides a 
framework for the study of the effect of the different experimental models on the development 
of computational systems. This work also provides a set of general guidelines for the comparative 
testing and selection of experimental models and protocols to be used for parameter optimization in 
computational models.

Computational models are becoming an increasingly important tool in biomedical research, allowing for the 
study of complex phenomena in controlled  environments1,2, the prediction of a system’s behaviour in multiple 
 conditions3,4, and the testing of  hypotheses5,6. Experimental corroboration, here defined as the combination of 
computational model calibration and validation, is a key aspect in the development of these tools, as it represents 
the connection between the in-silico and the in-vitro models.

Calibrating a computational model consists of the identification of its parameters so as to recapitulate the 
process of interest. Multiple search and optimisation algorithms can be used in this  phase3,7–9, although empiri-
cal parameters selection remains common when a small number of well constrained parameters needs to be 
identified. Validation is the procedure used to determine the accuracy of the computational model and generally 
involves the comparison between simulated results and experimental data not used during the calibration phase. 
This step is widely recognised as fundamental for the development of useful and effective computational models 
and a wealth of resources and guidelines are available from the recent scientific  literature4,10,11.

The effect of the experimental model on the results of the computational model’s corroboration, however, 
remains largely unexplored. This is a critical aspect, as multiple evidences point to a major role of the in-vitro 
model in determining cell behaviour, especially when considering 3D cell  cultures12–14. Maintaining cells in a 3D 
environment is becoming more and more common as their increased complexity tends to enable a more accurate 
replication of the behaviours observed in-vivo15,16. But availability of complete datasets acquired in comparable 
conditions can be a challenge. This often leads to the necessity of corroborating a computational model using 
data acquired on a combination of 2D and 3D settings. This practice has potentially deleterious effects on the 
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accuracy and reliability of the simulated results. To test this hypothesis, we here present a comparative study of 
the same computational model corroborated with datasets acquired using either a 2D monolayer culture, 3D 
experimental models, or a combination of the two, to characterise, in a controlled and thorough manner, the 
effect on the computational model parameters of combining experimental data acquired from different models.

As a case study, we chose to focus on transcoelomic metastasis, the major mechanism of metastasis (or cancer 
spread) in ovarian  cancer17. It occurs via the seeding of cancer cells onto the omentum, or other tissues within the 
abdominal cavity, following their detachment from the ovary and it is enabled by the ascites fluid which builds 
up in this region, and by the receptiveness of the surrounding tissues to  colonisation18–24.

The extensive cell-cell and cell-environment interactions involved in this process have led to the develop-
ment of a number of 3D cell culture models in order to research facets of this  phenomenon12,25–29. We selected 
a 3D organotypic  model30,31 used extensively to study the invasion and adhesion capabilities of ovarian cancer 
 cells32–36 and 3D bio-printed multi-spheroids for the quantification of proliferation.

Together, these experimental models allow us to study both the initial phases of metastasis, when cells floating 
within the abdominal cavity exhibit a phenotype associated with very little proliferation, and the later stages of 
this process, when sustained cancer cell proliferation is observed within the  omentum37. In all cases, standard 
assays performed on 2D monolayers were used as comparison.

The structure of the computational model was maintained constant throughout the analysis, to enable the 
comparison between the results obtained with different datasets. Changes in the parameter sets and the resulting 
simulations were analysed and used to draw general conclusions regarding the selection of the most appropriate 
experimental setting for the characterisation of each property. Validation of the computational model, through 
the comparison between the simulations and data not previously used during the calibration phase, provided 
a strategy to identify which combination of experimental data was associated with the most accurate in-silico 
representation of response to treatment in our model of high-grade serous ovarian cancer (HGSOC).

Methods
Cell culture
The HGSOC cell line PEO4 was used for this  study38. This cell line is characterised by resistance to platinum treat-
ment and can be considered a good model of recurrent  disease39. Cells were kindly gifted by Dr Simon Langdon 
(University of Edinburgh, Edinburgh, UK) and labelled with GFP (pLKO.1-Neo-computational modelV-tGFP 
vector from Sigma-Aldrich, USA) to enable their identification within the 3D organotypic model. Cells were 
maintained in RPMI medium (Thermo Fisher, Waltham, MA, USA), supplemented with 10% FBS (Sigma-
Aldrich, USA), 1% Pen-strep (Sigma-Aldrich, USA) and 1% GlutaMAX (Thermo Fisher, Waltham, MA, USA).

The 3D organotypic model, chosen to evaluate adhesion and invasion, was built co-culturing PEO4 cells 
with healthy omentum-derived fibroblasts and mesothelial cells collected from patients undergoing surgery 
for benign or non-metastatic conditions patients at the Royal Hospital for Women and Prince of Wales Private 
Hospital (site specific approval ethics # LNR/16/POWH/236). The South Eastern Sydney Local Health District 
Human Research Ethics Committee (SESLHD HREC approval #16/108) approved the collection of these samples. 
Informed consent was obtained from all the patients participating in the study and samples were processed and 
analysed in accordance with relevant guidelines and regulations.

The protocol for the realization of the organotypic model is fully described  in40. In brief, 100 µ l of a solution 
of media, fibroblast cells (4 ·104 cells/ml) and collagen I (5 ng/µ l, Sigma-Aldrich, USA) was added to the wells 
of a 96-well plate. After 4 hours of incubation at  37oC and 5%  CO2, 50 µ l of media containing 20,000 mesothe-
lial cells was added on top. The whole structure was maintained in standard culturing conditions for 24 h prior 
to seeding of cancer cells. PEO4 cells were added at a density of 1 ·106 cells/ml (100 µl/well) in 2% FBS media.

Proliferation was quantified in 3D multi-spheroids encapsulated in PEG-based hydrogels created using the 
Rastrum 3D bioprinter (Inventia Life Science, Alexandria, New South Wales)41,42. Three-thousands PEO4 cells per 
well were printed as an “Imaging model” using the Px02.31P matrix, atop an inert hydrogel base, and across an 
entire tissue culture-grade flat bottomed 96-well plate. The hydrogel matrix is characterised by a 1.1 kPa stiffness 
and by its functionalisation with arginylglycylaspartic acid (RGD), a peptide shown to promote cell  adhesion43. 
Printed spheroids were maintained at  37oC and 5%  CO2 for a week prior to each experiment.

Proliferation
Proliferation in 2D was measured via MTT assay (Thermo Fisher, Waltham, MA, USA), following the manu-
facturer’s protocol (Supplementary Fig. 1). Briefly, PEO4 cells were seeded in 96 wells plates at a density of 
10,000 cells per well. After 24 h, treatment with different concentrations of either cisplatin (50, 25, 12.5, 6.2, 3.1, 
1.6, 0.8, 0.4, 0 µ M) or paclitaxel (50, 25, 12.5, 6.2, 3.1, 1.6, 0.8, 0.4, 0 nM) was administered. Following 72 h of 
treatment a solution of 2 mg/ml of MTT was added to each well and incubated for 3 hours. The media-MTT 
solution was then discarded, and the formazan crystals solubilized in DMSO (Sigma-Aldrich, USA). Absorb-
ance was measured at 570 nm. All data were normalised with respect to the untreated condition and corrected 
for the absorbance of RPMI medium. A total of 3 biological replicates, each comprising 3 technical replicates 
was analysed for condition.

Real-time monitoring of PEO4 cell growth within the hydrogel multispheroids and in the absence of treatment 
was conducted using an IncuCyte S3 Live Cell Analysis System (Sartorius, Gottingen, Germany). Three cell densi-
ties (2000, 3000 and 4000 cells/well in hydrogel) were considered, and the phase count function of the device’s 
analysis software was used to determine the number of cells, every hour over 7 days. A total of 10 wells/condi-
tion were considered for this experiment. An evaluation of viability with CellTiter-Glo 3D (Promega, Madison 
WI, USA) was also conducted at the end of monitoring. Real-time monitoring and the end-point assays were in 
agreement and a density of 3000 cells per well was chosen for further experiments with only CellTiter-Glo 3D.
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Treatment with cisplatin and paclitaxel, in the same concentrations used for the 2D experiments, was admin-
istered 7 days after the printing, to allow for the establishment of a stable 3D culture. Measurements of viability 
using CellTiter-Glo 3D were conducted after 72 h following the manufacturer’s protocol. A total of 3 biological 
replicates, each comprising at least 3 technical replicates, was analysed for each condition (Supplementary Fig. 1). 
All data were corrected with respect to the signal produced by the matrix devoid of cells and normalised with 
respect to the average value measured for the untreated control.

Adhesion
Adhesion in 2D was evaluated as  in44. Briefly the wells of a 96-well plate were coated with 10 µg/ml of collagen I 
(Sigma-Aldrich, USA) or 3% BSA (Sigma-Aldrich, USA). 100,000 PEO4 cells were seeded on top of each coat-
ing and incubated for 2, 3 or 4 h at  37oC and 5%  CO2. Unattached cells were then washed away, prior to fixing 
with 96% ethanol and staining with 1% crystal violet (Supplementary Fig. 1). Cells were then lysed with 50% 
acetic acid and their density was quantified with an absorbance measurement (at 595 nm). A total of 3 biological 
replicates each comprising 2 technical replicates was considered for this analysis. Adhesion in 3D was quantified 
following the same procedure, just substituting the collagen coating with the organotypic  model40 (Supplemen-
tary Fig. 1). A limitation of this approach is that the measured absorbance integrates the signal from all the cell 
types present in the organotypic model. The amount of mesothelial and fibroblast cells is however assumed to 
be constant throughout the experiment.

Invasion
Invasion in 2D was measured using Matrigel-precoated transwell chambers (Corning Life Sciences, USA). PEO4 
cells were harvested with trypsin and diluted to a concentration of 1 ·106 cells/ml in 1% FBS media. 100 µ l of the 
cell solution was added to each transwell insert and incubated for 48 h (Supplementary Fig. 1).

Following the incubation, transwell inserts were gently washed with PBS and fixed in 4% paraformaldehyde 
for 10 minutes. Wells were washed again in PBS and mounted on a microscope slide using DAPI mounting 
medium (Fluoroshield, Sigma-Aldrich, USA). Slides were let dry for at least 1 h prior to imaging at the micro-
scope (Leica DM 2000 LED fitted with a Leica DFC450c camera). Ten images from different regions of the slide 
were acquired and the number of invaded cells counted using custom-made software further described in the next 
section. A total of 3 biological replicates each comprising 2 technical replicates was considered for this analysis.

Cancer cell invasion in 3D was measured in a substantially equivalent way, by substituting the Matrigel-
precoated chambers with regular transwell inserts (Corning Life Ssuch, the automatic count wasciences, USA) in 
which the organotypic model had been  seeded40 (Supplementary Fig. 1). Specific modifications in the counting 
software used for the 2D analysis allowed for the identification of the invaded cancer cells, which were produc-
ing a stable GFP signal.

Invasion quantification software
The number of cells in each image was quantified through custom-made software written in Python (v.3.9) and 
freely available at https:// github. com/ Maril isaCo rtesi/ cell_ count er. It uses the Otsu’s method to segment the 
nuclei and a labelling routine to identify each segmented region and thus determine the total number of cells 
(Supplementary Fig. 2a,b).The accuracy of this method was evaluated by comparing the number of cells retrieved 
by the software for each image, with the corresponding manual count obtained by an expert user using ImageJ 
(Supplementary Fig. 2c). The two measures are highly correlated  (R2 = 0.95), and their average percentage error 
is consistent with the inter-operator variability for this assay (about 18%45). As such, the automatic count was 
considered to be equivalent to the manual one.

For the images obtained during 3D experiments, two additional filters based on the average fluorescence 
intensity and area were used to separate cancer cells from fibroblasts and mesothelial cells. In particular, a cell 
was labelled as PEO4 if its area was between 50 and 5,000 pixels and its average fluorescence intensity was higher 
than that of the background (Supplementary Fig. 2d,e,f).

SALSA modelling and computational simulations
Computational simulations were conducted in  SALSA46–48, a hybrid continuous-discrete cellular automaton freely 
available at https:// www. mcbeng. it/ en/ categ ory/ softw are. html. The continuous component of the model solves 
the diffusion equation to retrieve the distribution of relevant variables (glucose, oxygen, drug concentration) 
throughout the simulated culture. The discrete one, on the other hand, models cell behaviour through a series 
of probabilistic rules describing macroscopic behaviours (e.g. migration, division, cell death). A cubic 3D lattice 
constitutes the main structure of the simulator (Fig. 1a). Cells can be positioned at each of the grid’s nodes and 
the values of the continuous variables are computed at the same locations. Specifically formatted configuration 
files (available as supplementary material) are used to formalize cell behaviour and initialise the experimental 
conditions. The simulation then proceeds for a set number of iterations, each corresponding to one hour. At 
each iteration the concentration of the continuous variables is updated, solving the diffusion equation and, for 
each cell, one of the behavioural rules is executed according to their probability. The reader is referred  to46 or 
https:// www. mcbeng. it/ en/ categ ory/ softw are. html for further details on the simulation structure and functioning.

Modifications to the SALSA seeding procedure were implemented to replicate the layered structure of the 
omentum (Fig. 1a). Fibroblasts cells were limited to the bottom half of the model, with mesothelial cells located 
immediately on top. Cancer cells were initially positioned above the mesothelial layer and were constrained to 
move toward the bottom, as the region above them represents the peritoneal cavity. The position of each cell, 
within the specific region, was randomly determined as in previous versions of SALSA.

https://github.com/MarilisaCortesi/cell_counter
https://www.mcbeng.it/en/category/software.html
https://www.mcbeng.it/en/category/software.html
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Figure 1b summarises the computational representation of the 3D organotypic model. It comprises 5 dif-
ferent cell states: (i) fibroblasts, (ii) mesothelial cells (iii) dead PEO4 cells, (iv) quiescent PEO4 cells and (v) 
proliferating PEO4 cells. Arcs within the graph in Fig. 1b represent the behavioural rules and are labelled with 
the equations describing their probability of occurrence (see Table 1 for the definition of each variable). These 
rules were determined collating multiple evidence from the scientific literature, with the aim of describing the 
behaviour of PEO4 cells. Parameters a–e (on the arcs in Fig. 1b) are scale factors that allow to modulate the 
likelihood of each rule independently of the value of the variables in its probability functions. They were empiri-
cally estimated through the procedure described in the following section. Fibroblasts and mesothelial cells don’t 
have a formalised behaviour and are assumed to maintain their status throughout the simulation. They however 
consume resources (glucose and oxygen), thus impacting indirectly the behaviour of the HGSOC cells.

Treatment with cisplatin and paclitaxel was modelled as described  in47. A sigmoid curve (S) was used to 
describe the probability of the drug affecting cell behaviour as a function of the local drug concentration (D). 
The parameters of this response curve were identified, using the  IC50 values and assuming no effect in absence of 
the drug. In both cases, only proliferation (PR) and the rate of cell death (CDR) were considered to be affected by 
the treatment, in accordance with the mechanism of action of these  agents49,50. Eqs. 1 and 2 show the modified 
probability functions for proliferating cancer cells doubling and the quiescent cancer cells death, while Supple-
mentary Fig. 3 reports the updated state graph.

Parameters estimation
Initially, the parameters describing the behaviour of the culture in absence of treatment (Fig. 1) were calibrated. 
A number of different values between 0 and 1 were considered for each parameter (0.001, 0.005, 0.01, 0.05, 0.1, 
0.5, 1) and every possible combination of these values was simulated 3 times for the equivalent of 72 h. Regular 
sampling was preferred to pseudo-random methods (e.g., Latin Hypercube) as it is associated with a more 
thorough exploration of the parameter space when a limited number of parameters with well-defined ranges 
need to be identified. The replicates were then averaged and a score comparing simulated and in-vitro data was 
computed (Eq. 3). Supplementary Fig. 4. shows an analysis of how the score varies (Eq. 3) with the distance from 
the optimal configuration. For this analysis, the distance from the optimal parameter set was computed as in Eq. 4 
where i is an index that varies between the parameters a and e, pc(i) is the value of the parameter i in the current 
configuration and po(i) the value of the same parameter in the optimal parameter set. The median and inter-
quartile range of the error distributions are largely conserved both across different parameter configurations and 
among computational models. While this might indicate that the computational models exhibit a limited range 
of behaviours, it also suggests that the exploration of the parameter space presented in this work is sufficient. 
Of note is the increase in the error range when considering the doubling rate measured in 3D (Supplementary 
Fig. 4e–h). While median and interquartile ranges are mostly consistent with those obtained for 2D proliferation 
data (Supplementary Fig. 4a–d), this might suggest an increased complexity of the behaviour measured in 3D, 
that fewer parameter configurations can recapitulate. Regular sampling, additionally, provides a general overview 
of the range of behaviours that the computational model can achieve. This characterisation was used to verify 
that the behavioural rules were suitable to describe transcoelomic metastasis in HGSOC. Maintaining the same 
possible values for all the parameters, additionally, simplifies the comparison among them and the determination 
of their relative importance for the recapitulation of specific behaviours.

(1)PD = a · TLD + c · (Glu+ O2)− f · S(D)

(2)CDR =
b · AGE

Glu+ O2
− g · S(D)

(3)S = Sp + Si + Sa

(4)Distance =

e∑

i=a

|pc(i)− po(i)|

Table 1.  Variables used to formalise cell behaviour and their definition.

Variable Definition

AGE Age of the cell normalised with respect to the length of the simulation

D Local drug concentration normalised with respect to the amount added in the media

D0 Distance between the position of the current cell and the bottom of the culture (normalised between 0 and 1)

Glu Local glucose level normalised with respect to its concentration in the media

O2 Local oxygen level normalised with respect to its concentration in the media

Tc Current time point normalised with respect to the length of the simulation

Td Time at which the current cell died normalised with respect to the length of the simulation

TLD Time elapsed since the last division of the current cell normalised with respect to the length of the simulation
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Sp,  Si and  Sa are defined as in Eqs. 5, 6 and 7, where  Cx is the number of simulated cancer cells at T = x. EG is the 
expected population growth. It was set to 2 for the monolayer cultures (based on a simulation length equivalent 
to 72 h and a doubling time between 36 and 46  h38) and to 0.87 for the 3D hydrogel multispheroids. This value 
was obtained as the number of cells counted in bright-field images obtained during a 7 day long experiment in 
the IncuCyte real-time cell imaging instrument (Supplementary Fig. 5a). Finally,  Isilico and  Ivitro are the number 
of invaded HGSOC cells and  Ax the measured amount of adherent PEO4 cells at T = x.

Sp measures the effectiveness of the computational model in recapitulating cancer cell proliferation.
Si achieves the same purpose, but it compares the number of invaded cells measured in-vitro with the average 

number of migration events recorded during the simulation.
Sa has a similar structure, but it compares the number of simulated PEO4 cells at iterations 2-4 to the cor-

responding results of the adhesion experiments.
These terms were assigned equal importance in the definition of the score (Eq. 3) to favour parameter con-

figurations modelling proliferation, invasion and adhesion with the same accuracy.
The time-points at which the experimental data were acquired were selected independently for each assay, 

as differences in timescale and duration of the characterised processes prevented the identification of a single 
experiment duration.

A total of 8 different computational models were identified, using every possible combination of 2D and 3D 
data (Table 2) and choosing the parameter set associated with the best (i.e., lowest) score value.

The same procedure was repeated for the two parameters recapitulating the drug treatment. In this case, 
treatment with  IC50 values of cisplatin and paclitaxel (10.4 µ M and 3.04 nM  respectively51), was simulated.  Sp 
(Eq. 5) was used to evaluate the performance of each configuration, with an expected population growth of 0.5, 
according to the definition of  IC50.

Computational model validation
The validation of the computational models was conducted by comparing the simulated dose response curves 
to cisplatin and paclitaxel, with the corresponding experimental data acquired in monolayer cultures and 3D 
multi-spheroids. No modification to the structure or parameters of the model was applied, with respect to the 
calibration stage, and the in-vitro data used for the comparison were not used to identify any of the parameters.

Statistical analysis
The Kolmogorov–Smirnov test was used, whenever appropriate, to evaluate whether the distribution underlying 
the two sets of samples was the same. This method was chosen as it does not make any assumption on the shape 
of the underlying distribution. A p-value of 0.05 was chosen as the threshold for significance.

Results
Our analysis is schematically described in Fig. 2. We considered three experimental models: 3D hydrogel multi-
spheroids, a 3D organotypic model and standard monolayer culture. The use of two 3D experimental models was 
required as the computational models describe both the first phases of metastasis, when cancer cells exhibit lim-
ited proliferation but readily adhere and invade and the later stages of disease progression when cells proliferate 
within the invaded tissue. The organotypic model is an accurate representation of the adhesion/invasion phase, 

(5)Sp =

C72

C0
− EG

EG

(6)Si =
Isilico − Ivitro

Ivitro

(7)Sa = �4

t=2

Ct
C4

− At
A4

At
A4

Table 2.  Combination of the 2D (white background) and 3D (gray background) data used for the analysis.
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but constraints on the length of the experiments and difficulties in separating the contribution of the different 
cell types limit its usefulness for the evaluation of proliferation. Hydrogel multi-spheroids, on the other hand, 
yield accurate proliferation measurements, but lack the multilayer structure useful for the study of invasion. As 
such, we decided to exploit the strengths of both systems and evaluate adhesion and invasion in the organotypic 
model and proliferation and drug response in the 3D hydrogel multi-spheroids. The same measures were also 
obtained in standard 2D cell cultures.

Adhesion, invasion and proliferation data were used to calibrate the computational models (right end side of 
Fig. 2). To test the effect of using different experimental models on the simulated results we considered all possible 
combinations of 2D and 3D data. The calibrated computational models allowed study of the in-silico behaviour 
of PEO4 cells both in absence and presence of treatment. The simulated dose response curves were compared 
with their experimental counterpart, acquired both in 2D monolayers and in the 3D hydrogel multi-spheroids, 
to determine which combination of calibration data yielded the computational model better replicating the 
treatment response of PEO4 cells (left end side of Fig. 2).

In-vitro quantification of adhesion and invasion
Figure 3a reports the results of the adhesion time course conducted in both 2D monolayers and the organotypic 
model. Very similar absorbance values were obtained for the two conditions, even though a 3D setting was asso-
ciated with increased variability. Additionally, the number of adherent cells remained approximately constant 
within the considered timeframe, even though a slight trend appears to be present for the 3D setting.

Changing the experimental model had a more pronounced effect when quantifying invasion (Fig. 3b). Here 
the use of the organotypic model resulted in a noticeable increase in the number of invading cells (Kolmogo-
rov–Smirnov test p = 0.005).

These results, together with the doubling time for PEO4  cells38 and their confluency measurement obtained 
with the IncuCyte (Supplementary Fig. 5), were used to calibrate the computational models, that is to identify 
which parameter sets better approximate the different combination of experimental data.

Computational models calibration
To determine the role of the experimental model in the identification of the computational model parameters we 
calibrated eight different computational models, each corresponding to a different combination of experimental 
data (Table 2). As described in the methods section, a score was computed for each simulated parameters con-
figuration (Eq. 3), and the one associated with the lowest value was selected.

Figure 4 reports the results of this analysis both as individual score components (panels a. to c.) and overall 
score value (panel d.). For each computational model the score values are reported as average and standard 
deviation (computed over 50 simulations). No statistical analysis was conducted on these data, as each compu-
tational model was compared to its own reference dataset. This change in experimental data, together with other 
factors (e.g., a different variability in the simulated data) could affect the shape of the cumulative distributions 
of the score and thus have a non-negligible effect on the results of the Kolmogorov–Smirnov test. Comparing 
the distribution averages, while limited to the available samples, is more robust to these changes and as such it 
was preferred.

The use of experimental data acquired in 3D seems to be associated with an overall lower score (1.7 for com-
putational model 8 vs 2.8 for computational model 1), but the main result of this analysis is the low relevance 
of the experimental model used to evaluate adhesion. Indeed, in most cases, both 2D and 3D experimental data 
yield the same parameter set (Table 3). The only exceptions are computational models 3 and 4, which are however 
associated with very similar configurations (Table 3) and overall score (Fig. 4).

The parameters describing drug response were determined in the same way. Table 4 reports the values of f and 
g (Eqs. 1 and 2) for each computational model and the corresponding score value. Again, the error associated with 
the use of 3D data is generally lower, even though no general association between use of specific experimental 
models and parameter values was observed.

Computational model validation
Following the identification of the computational models, we compared the simulated response to treatment 
with either cisplatin (Fig. 5) or paclitaxel (Fig. 6) to the experimentally measured values in a 2D or 3D setting. In 
particular, each computational model (bars color-coded as in Table 3) was independently analysed for its ability to 
recapitulate the experimental dose response curves (black and grey bars for 2D and 3D data respectively). Most of 
the computational models showed limited response to treatment and a statistically significant difference between 
the simulated and experimental data (Kolmogorov–Smirnov test, * p < 0.05, ** p<0.01), especially at the higher 
drug concentrations. The Kolmogorov–Smirnov test compares cumulative distributions and, as such, could be 
affected by a change in standard deviation between simulated and experimental data. Despite this drawback, we 
can conclude that computational model 4 recapitulates the dose response curve accurately.

It corresponds to using 3D data for both invasion and adhesion measurements and 2D measurements for 
proliferation (Table 2). This result is also confirmed by relative error between experimental and simulated data 
(Table 5). In this case the relative change between experimental (E([D])) and simulated (S([D])) results was 
computed (Eq. 8) for each drug concentration ([D]), and then summed to provide an indication of how well the 
model captures the entire dose response curve.

(8)Error([D]) =
|S([D])− E([D])|

E([D])
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3D data tend to be better approximated by the computational model, as the error is lower. This might be partly 
due to the more limited growth rate and response to treatment observed in 3D, which might be simpler to cap-
ture with the simulator. At the same time, this difference between treatment in 2D and 3D settings is commonly 
observed, both in terms of increased  IC50 and reduced overall  response52,53.

High resolution analysis of simulated cell behaviour
A key feature of SALSA is that it retains information on the position of each cell at each iteration. This enables 
study of the dynamic distribution of each population with sub-organoid resolution. In particular, the distribu-
tion of the average cell viability for each simulated cell type was computed as a function of time (x axis) and 
z coordinate (y axis). Cell viability was obtained, for each simulation, normalising the number of cells at each 
depth by the initial population cardinality. Averaging over the simulation yielded the heatmaps in Figs. 7, 8 and 9.

The difference between them is the treatment condition: Fig. 7 outlines the behaviour of the different com-
putational models in the absence of treatment while Figs. 8 and 9 refer to treatment with cisplatin and paclitaxel 
at a concentration equal to the simulated  IC50. Fibroblast and mesothelial cells are concentrated in very specific 

Table 3.  Optimal parameter configurations for each computational model in Table 2 computational models 
with identical parameters values (e.g. 1 and 2) will be considered as one condition (1/2) for the rest of the 
analysis. Each computational model has also been color-coded (last column of the table) throughout the 
analysis.

Computational 
model

Parameters

Coloura b c d e

1
1/2 1 0.1 0.1 0.01 0.1

 2

3 1 0.5 0.1 0.01 0.1  

4 1 0.5 0.1 0.1 0.1  

5
5/6 1 0.1 0.05 0.001 0.5

 6

7
7/8 1 0.5 0.05 1 0.5

 8

Table 4.  Optimal parameter configurations for treatment response simulation for each computational model.

Computational model

Cisplatin Paclitaxel

f g Score f g Score

1/2 0.5 0.01 1.2 0.05 0.001 1.42

3 0.5 0.5 0.16 0.005 0.5 0.05

4 1 0.005 0.26 1 0.01 0.37

5/6 0.05 0.001 0.16 0.005 0.01 0.16

7/8 1 0.01 0.05 0.01 0.005 0.05

Table 5.  Percentage difference between simulated and experimental data for each computational model and 
experimental model.

Computational model

Cisplatin Paclitaxel

2D 3D 2D 3D

1/2 59.29 4.88 21.42 7.21

3 60.89 5.61 17.84 6.78

4 24.81 2.13 7.33 1.85

5/6 71.34 6.36 24.70 8.59

7/8 51.82 4.14 18.71 4.92
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regions of the virtual organoid, in accordance with the definition of the experimental  model30,31 and their den-
sity is constant throughout the experiment, as per computational model definition (Fig. 1). Any variation in the 
colour shade is due to the fact that virtual cells are randomly assigned a position within the allowed area, and 
this will result in a non-uniform distribution even when the average density is computed. Additionally, as virtual 
PEO4 cells move through the organoid they have the power of displacing fibroblasts and mesothelial cells, hence 
producing the slight decrease in the density of these cells observed as time progresses.

The behaviour of virtual PEO4 cells is conceptually the same in all models: their initial location is on top of 
the mesothelial cells, and they progressively infiltrate the underlying layers. The different computational models 
are however characterised by varying degrees of infiltration and proliferation within the organoid.

Configurations calibrated with the 3D invasion data (computational models 3, 4, 7/8) result in a more exten-
sive infiltration (i.e., cancer cells present at lower depth values) while 2D proliferation (computational models 1/2, 
3 and 4) is associated with an overall higher number of cancer cells. 3D invasion is also connected with a higher 
rate of PEO4 cell death especially in the shallower layers of the organoid and the second half of the simulation. 
This might be connected to the dependence of cell death on the age of the cancer cells, which is likely to be higher 
toward the end of the simulation and in the region where this type of cells was initially located.

Comparing Fig. 7 with Figs. 8 and 9 highlights the effect of the treatments on the behaviours of the different 
cell types.

dead

mesothelialfibroblasts

cancer
quiescent

cancer
proliferant

a. b.

Figure 1.  Schematic representation of the SALSA model used within this work. (a) Cubic lattice representing 
the underlying structure of the simulator. Shaded areas distinguish the three main layers of the omentum 
lining (fibroblast in green, mesothelial in blue and cancer in red). (b) Flowchart of the states (nodes) and 
behaviours (arcs) formalised within the computational model. Beside transitions between different states (black 
solid arrows) proliferating cancer cells can duplicate (red arrow) and migrate (purple arrow), while dead cells 
can degrade (dotted arrow). The equations on each arc represent the probability of occurrence of each rule. 
These are functions of several environmental and cell-specific variables.  Tc is the current time point while  Td 
marks the time at which the current cell died. AGE is the age of the cells, while Glu and O2 represent the local 
concentrations of glucose and oxygen.  D0 is the distance between the position of the cell and the bottom of 
the culture. These definitions are also reported in Table 1. The behaviour of fibroblasts and mesothelial cells 
has not been formalised. They are assumed to maintain their status and affect the behaviour of cancer cells by 
consuming resources (oxygen and glucose) and occupying space within the virtual tissue.

Figure 2.  Flowchart of the analysis presented in this work. Different combinations of experimental data from 
2D monolayers and 2 3D experimental models (hydrogel multi-spheroids and an organotypic model) were used 
to calibrate the same computational simulator of transcoelomic metastasis. These computational models were 
then used to simulate the response to either cisplatin or paclitaxel. The comparison between the simulated and 
measured dose response curves enabled the validation of the computational models and thus the determination 
of which computational model yields the results more closely matching experimental data.
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Figure 3.  Experimentally measured adhesion and invasion in both 2D and 3D experimental models. (a) 
Adhesion measurements at 2, 3 and 4 h post seeding. In 2D a collagen coating was used as substrate while in 3D 
HGSOC cells were seeded on the organotypic model. (b) Average number of invaded PEO4 cells in 2D and 3D 
(Kolmogorov Smirnov p value = 0.005). In both panels error bars represent the standard deviation (n = 3).
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Figure 4.  Score values associated with the best parameter configuration for each computational model Panels 
(a–c) refer to one of the three score components (a.  Sp, b.  Si, c.  Sa), while panel d. shows each configuration 
overall score. As-per their definition (see Eqs. 3, 5, 6, 7) low score values are associated with higher accuracy of 
the computational model. Scores were computed independently for each simulation and then averaged (error 
bars represent the standard deviation). The experimental data used to calibrate each computational model are 
summarised in Table 2 and the corresponding colour coding is reported in Table 3.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15769  | https://doi.org/10.1038/s41598-023-42486-3

www.nature.com/scientificreports/

in-vitro data 3D experimental model
simulated data computational model 1/2
simulated data computational model 3
simulated data computational model  4
simulated data computational model  5/6
simulated data computational model  7/8

in-vitro data 2D experimental model

5/6

C
el

l v
ia

bi
lit

y 
[-]

0.4 0.8 1.6 3.1 6.2 12.5 25 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cisplatin [ M]

1 / 2

-0.5
0.0
0.5

1.0

1.5
2.0
2.5

3.0

C
el

l v
ia

bi
lit

y 
[-]

3.5

0.4 0.8 1.6 3.1 6.2 12.5 25 50
Cisplatin [ M]

3

0.8 1.6 3.1 6.2 12.5 25 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cisplatin [ M]

C
el

l v
ia

bi
lit

y 
[-]

0.4
0 4 0 8 1 6 3 1 6 2 12 5 25 50

4

Cisplatin [ M]
0.4 0.8 1.6 3.1 6.2 12.5 25 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
el

l v
ia

bi
lit

y 
[-]

7/8

0.4 0.8 1.6 3.1 6.2 12.5 25 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
el

l v
ia

bi
lit

y 
[-]

Cisplatin [ M]

*

****

*

**

*

*

**** *
****** ** **

** **

*

**
**

**

**
**

** **

*
** ** **

** ** **** **
** ** **

**
**

**

**
** **

*

**

*

** **

**

**

Figure 5.  Comparison between the simulated cisplatin response (colour coded for each model as in Table 3) 
and the experimental data acquired in 2D (black bars) and 3D (gray bars) experimental models. In all cases, 
the cell viability is normalised with respect to untreated condition and data are reported as mean +/− standard 
deviation (n = 3 for the experimental data, n = 50 for the simulated results) Statistical testing conducted using 
the Kolmogorov–Smirnov test and reported in black when comparing simulated and 2D data and in grey for 
simulated and 3D data, * p<0.05, **p<0.01.
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Simulated fibroblasts and mesothelial cells are not affected by the treatment, as their interaction with cisplatin 
and paclitaxel has not been formalised. PEO4 cells, on the other hand, have a generally reduced growth and 
more limited infiltration within the virtual organotypic model. This seems to be connected to a delay in both 
these processes, whose probability increases as the effective drug concentration decreases due to degradation.

Cell death is also increased in the presence of treatment and this process seems to be more sustained over 
time. Surprisingly however, the number of dead cells becomes relevant at about the same time as in the untreated 
condition, suggesting that, in our simulations, treatment alone is not sufficient to induce cell quiescence and 
death. This is consistent with the treatment resistant nature of PEO4 cells but might also reflect the need for a 
more detailed modelling of drug response.

Discussion
Computational modelling has acquired great relevance in biomedical and cancer research, both as a tool for 
fundamental  research54–56 and as an aid for clinical decision  making57–59. As such, an in-depth analysis of the 
calibration and validation procedures is necessary to maximise the utility and accuracy of these models.

The focus of this work has been the effect of using different experimental models to calibrate and/or validate 
the computational simulator and how this choice affects the in-silico results. To this end, we measured ovarian 
cancer cell proliferation, adhesion and invasion in both 2D monolayers and 3D cultures and evaluated the con-
sequences of using distinct combinations of these data for the corroboration of the same computational system, a 
virtual representation of transcoelomic metastasis realised in SALSA (Fig. 1). This biological process was chosen 
as it is highly dependent on the 3D interaction between different kinds of the cells and their environment, a 
feature expected to magnify the difference between more accurate experimental models and simplified systems.

The use of different datasets led to the identification of computational models characterised by distinct 
parameters (Tables 3, 4) and a varying degree of accuracy when compared with the experimental data (Fig. 4, 
Table 4). From these results, the use of at least some of data acquired in a 3D setting tends to be associated with a 
lower error, underscoring the importance of accurate in-vitro models for the corroboration of in-silico systems.
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Figure 7.  Analysis of the dynamic behaviour of simulated cell types with sub-organotypic model resolution. 
Each column corresponds to a different computational model, while each row is associated to a cell type. Every 
panel shows the average density of that cell type (over 50 simulations) over time and as a function of the z 
coordinate. Colour shading in each block represents cell viability (refer to scale on right end side), with dark 
blue and bright red representing the lower and higher cell densities. All values have been normalised with 
respect to total initial cell number. Heatmaps generated using a custom script in Python 3.9 and matplotlib 
3.5.1).
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It is also worth noticing the dependence of some rates on specific experimental data. The value of the b 
parameter, which modulates the death rate and the transition between proliferative and quiescent states (Table 3), 
is strictly associated with the experimental model used to evaluate invasion, suggesting that culture in the 
organotypic model increases the likelihood of both these phenomena. On the other hand, the values of c and e 
(Table 3) are mainly determined by the setting used to measure proliferation. As such, 2D monolayer seems to 
favour proliferation, while growing in 3D promotes migration and invasion. This is qualitatively coherent with 
with evidence from the  literature37 and is also confirmed by our experimental data, as the average number of 
cells able to invade through the organotypic model is almost double that measured in the 2D setting (Fig. 3b). 
These considerations are also supported by the results presented in Fig. 7, where simulated dynamic evolution 
of the density of the different cell types is presented as a function of their position within the organotypic model. 
computational models calibrated with 3D invasion data (computational models 3, 4, 7 / 8) are associated with 
a deeper infiltration of cancer cells and a higher density of dead cells. 3D proliferation (computational models 
5/6 and 7/8), on the other hand results in an overall lower number of cancer cells, in agreement with the in-vitro 
data used for the calibration.

The experimental model used to evaluate cell adhesion seems to be less relevant with 6 out of 8 models being 
invariant with respect to this property. This could be due to the similarity between the measurements obtained 
in the two experimental setups (Fig. 3a) but is also a reflection of the mainly surface nature of this phenomenon, 
which might resent less from the simplification in the experimental setting.

Another key difference between the experimental data measured in 2D and 3D is the increase in variability in 
the latter (Figs. 3, 5, 6). This is a phenomenon frequently observed when transitioning from monolayer cultures 
to more complex setups which has been linked to differences in the microenvironments experienced by each 
cell and have been shown to improve resilience and  adaptability60.

The validation of these computational models was conducted by comparing the simulated dose response 
curves to cisplatin and paclitaxel with the corresponding experimental results obtained in 2D monolayers and 3D 
hydrogel models (Figs. 5, 6). Data acquired in the multi-spheroid model are associated with a reduced response 
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Figure 8.  Analysis of the dynamic behaviour of simulated cell types with sub-organotypic model resolution 
following treatment with cisplatin at IC50 levels. Each column corresponds to a different computational model, 
while each row is associated to a cell type. Every panel shows the average density of that cell type (over 50 
simulations) over time and as a function of the z coordinate. Colour shading in each block represents cell 
viability (refer to scale on right end side), with dark blue and bright red representing the lower and higher cell 
densities. All values have been normalised with respect to total initial cell number. Heatmaps generated using a 
custom script in Python 3.9 and matplotlib 3.5.1).
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to the treatments (gray vs black bars in Figs. 5, 6) and with an increase in variability. Most computational models 
are also associated with a limited response to treatment and a low sensitivity to the change in drug concentration. 
This is likely dependent on the formalization of cancer cell behaviour and response to treatment used within 
this work, and further analysis on how changing the computational model structure and probabilities affects 
the simulated results is warranted. Beside potentially improving the simulated drug response, this perspective 
study would also shed light on the role of each simulated variable (e.g., nutrients availability, cell age) in deter-
mining cell behaviour, and could provide useful insights on the biology of HGSOC cells. One of the simulated 
computational models (computational model 4), however, was able to effectively recapitulate 2D and 3D dose 
response curves. It was calibrated using 2D proliferation data and 3D invasion and adhesion measurements. 
Furthermore, the drug response parameters for this configuration feature a high rate of proliferation inhibition 
and a comparatively low induction of cell death. Overall, these characteristics produce a response comparable 
to model 8, which was calibrated using only 3D data, at low and mid drug levels (Figs. 5, 6, 8, 9). It however 
produces a better response when higher concentrations of treatment are simulated. Particularly relevant is the 
comparison with computational model 3, which exhibited a substantially equivalent behaviour in absence of 
treatment (Fig. 4) but a much more drug-resistant phenotype (Figs. 5, 6). The values of parameters f and g for 
these configurations suggest that, at least in this configuration, inhibiting cell proliferation might be a more effec-
tive treatment strategy than inducing cell death. Of note is also the change score rank between calibration and 
validation (Fig. 4, Table 4). Differences in the experimental data used as reference, and the addition of treatment 
response in the latter computational model are likely responsible for this variation.

Overall, while the results of this work might not be directly transferrable to different experimental and com-
putational models, this analysis allows to draw three conclusions with general applicability.

Firstly, the interaction of multiple phenomena can result in different datasets producing similar results. This 
is a longstanding problem in stochastic computational  modelling61–63, known as model identifiability, which 
can limit the predictive power of the computational model. An example of this phenomenon can be observed in 
Figs. 8, 9, where computational models 4 and 7 / 8 yield comparable cancer cells densities, despite having been 
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Figure 9.  Analysis of the dynamic behaviour of simulated cell types with sub-organotypic model resolution 
following treatment with paclitaxel at IC50 levels. Each column corresponds to a different computational 
model, while each row is associated to a cell type. Every panel shows the average density of that cell type (over 
50 simulations) over time and as a function of the z coordinate. Colour shading in each block represents cell 
viability (refer to scale on right end side), with dark blue and bright red representing the lower and higher cell 
densities. All values have been normalised with respect to total initial cell number. Heatmaps generated using a 
custom script in Python 3.9 and matplotlib 3.5.1).
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calibrated with different datasets. In this case, a higher number of dead cells in computational model 4 compen-
sates for the faster proliferation of this configuration. The comparative analysis presented in this work can be a 
useful tool for the identification of these compensatory mechanisms, thus enabling a deeper understanding of 
the computational models and their mechanisms.

Secondly, maximising the similarity between the simulated and experimental setups is associated with a low 
error throughout all the analysis. Indeed, while a combination of 2D and 3D data most accurately captured the 
response to cisplatin and paclitaxel, exclusively using data measured in 3D settings resulted in the best score for 
the calibration stage (Fig. 3 and second best in the drug response (Tables 4, 5).

Thirdly, behaviours more strictly connected with the interaction between the cells and the 3D environment 
seem to be affected more deeply by simplifications of the experimental model. In our experiments, the number 
of invaded cells almost doubled shifting from a 2D to a 3D setting (Fig. 3b) and the behaviour of models cor-
roborated with 3D invasion data was markedly different from their 2D counterpart. On the other hand, quan-
tifying adhesion in a 2D or 3D setting had little effect on the computational model’s results. As such, should 
it not be possible to use exclusively 3D experimental models, properties characterised by limited cell-cell and 
cell-environment interactions are expected to be the less affected by the simplification of the experimental model.

Overall, many obstacles are still in the way of a complete integration of in-silico and in-vitro analyses, but 
this and other works provide important insights on how these issues can be addressed and workflows adapted 
to reap the benefits of computational analysis for the study of complex biological processes.

Data availability
The experimental and simulated data have been uploaded to Zenodo (doi: 10.5281/zenodo.7939591). SALSA 
can be downloaded at https:// www. mcbeng. it/ en/ while the image analysis software for the analysis of the inva-
sion assay is available at https:// github. com/ Maril isaCo rtesi/ cell_ count er. This work has also been uploaded to 
BioRxiv (https:// doi. org/ 10. 1101/ 2023. 05. 17. 541071).
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