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A Fast Score-Based Method for Robotic Task-Free
Point-to-Point Path Learning

Alex Pasquali, Kevin Galassi and Gianluca Palli

Abstract—The manipulation of deformable objects represents
an open research topic because of the difficulties in accurately
modeling the object behavior in real-world scenarios. This paper
presents a trajectory planning framework for the assembly
of wiring harnesses for the automotive and aerospace sector,
reducing the learning time and simultaneously presenting suitable
performance and reliability. A genetic algorithm is used to
generate new trajectories according to application constraints.
Those trajectories are then executed by the robot and evaluated
by means of proper sensor feedback. The proposed framework
enable to learn and autonomously improve the task execution,
while mantaining a significantly low programming time. Exper-
imental results are reported showing how the robot is capable
of optimizing the manipulation of the DLOs gaining experience
along the task repetition, while showing high success rate from
the very beginning of the learning phase.

Index Terms—Manipulation, Deformable Objects, Machine
Learning, Genetic Algorithm, Industrial Manufacturing

I. INTRODUCTION

Despite the recent advancements in automatic production
systems, the industrial manufacturing tasks involving manip-
ulation of deformable objects, like the electrical harness for
domestic appliances or automotive industries, have still very
limited automation. The robotic manipulation of Deformable
Linear Objects (DLOs) is a complex task [1]–[3]. In [4]
an algorithm to automatically generate trajectories for the
manipulation of electrical cables based on a limited a set of
instruction is proposed.

It results that industrial manufacturing tasks involving de-
formable object manipulation are still characterized by intense
human labor. On other hand, the introduction of easy-to-
program collaborative robots, enabling the possibility to reg-
ister the desired trajectory through the technique called kines-
thetic teaching, can surely produce a benefit for the automation
for these complex manipulation tasks. Recent research, in fact,
shows how human workers are starting to accept more easily
to be aided by robots [5], while others focus more on how
to interface the robot with humans in a safe environment [6].
EMGs signals can be used as well in order to further improved
the user experience during kinesthetic teaching [7].

Nowadays, another discussed trend in production plants is
the inclusion of learning techniques to improve the execution
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of a given task. In robotics trajectory planning, these methods
can be divided into supervised learning or Reinforcement
Learning (RL). In the first category, the autonomous system
uses a set of labeled data to learn a desired behavior or
trajectory [8]. However, in many applications, an adequate
annotated dataset cannot be easily created, and the problem
is even worsened when system reconfiguration is required or
a change of the execution path is needed. On the contrary,
RL does not require any knowledge of the desired trajectory
and utilizes a reward signal obtained from the interaction
between the robot and the environment to train and learn a
policy that describes the sequence of action to take based
on the state. Several attempts based on these techniques been
proposed, each of them having the following main limitations.
Firstly, it has been outlined how is more difficult to learn
policy when robots are involved, this is given by the high
dimensionality of the system and the possible control action
[9], [10]. Another key aspect is the safety of reinforcement
learning, in fact during the exploration of the possible solutions
the robot behavior may turn to be unsafe. For this reason,
recent research aims creating a safer environment for testing
proposing an intermediate solution between supervised and
reinforce [11]. Even in this case, changing the product and the
trajectory requires the complete re-training of the policy or the
network, increasing the time to deploy a robust solution [12]
and in general, the deployment of model-free RL techniques
on real robots is highly related to the hyper-parameters [13].
An assessment of reinforcement learning algorithm applied
to DLO manipulation were made in [14], while in [15] the
problems related to hyper-parametrization and training time
for a DLO manipulation system are discussed. The benefit that
RL can provide to improve trajectories recorded by kinesthetic
teaching are discussed in [16], [17].

In this context, the present work presents a framework
specifically adapted to the robotic manipulation of DLOs,
maintaining a significantly low programming time and, at the
same time, able to improve the task itself during execution.
The proposed framework can be used to improve the robot tra-
jectories specified by the user through waypoint definition or
kinesthetic teaching, optimizing the path and further reducing
the stress on the cable and the execution time.

II. METHODOLOGY

The proposed method, illustrated in Fig. 1, make uses of
genetic algorithms and is based on the usage of a user-
specified path as initial father (Sec. II-A), obtained either
from kinesthetic teaching or just from pre-defined points,



Fig. 1: This diagram illustrates the main components of this path learning algorithm, which consists of 4 main parts:
Initialization, Exploration, Learning Phase and Use of Memory.

characterized by the capability of achieving the task success-
fully. Despite being able to fulfill the task, this path may
not be optimal in terms of performance. Therefore, alternative
paths are generated through the application of the concept of
mutation, as detailed in Sec. II-B, enabling competition among
the solutions. During each iteration of the algorithm, all paths
are executed and evaluated using a predefined score function.
The winning paths are chosen as the breeding parents for the
generation of a new set of solutions (Sec. II-C). Through this
process, only the best paths are propagated, ensuring that only
a better result replaces the previous one.

A path is defined as a sequence of ordered three-dimensional
points connected by linear motion with predefined tools orien-
tation, as depicted in Fig. 2, ensuring a fully deterministic be-
havior of a robot. A point P is defined as P = [x, y, z]T ∈ R3

and a path T as T = {Ps, Pw,1, ..., Pw,n, Pe} where n is
the number of ordered waypoints and Ps, Pw,i, Pe ∈ R3 are
three-dimensional points that represent respectively the start-
point, the waypoint i and the end-point. Each Pw,i can be
designated as either mutable or non-mutable. The number n
and the locations of points Ps, Pw,i, Pe, used to characterize a
path, are considered to be user-defined variables. The number
n of waypoints Pw,i that characterize a path needs to be
balanced: too many points would lengthen the learning time,
while too few points may not be sufficient to characterize the
task properly, harming the performances. These waypoints can
be set, by the user, as mutable or non-mutable for the learning
phase.

A. Initialization

The path initialization is performed by the user either
by means of kinesthetic teaching or by using conventional
robot path design tools. As previously said, the user must
define the starting Ps and ending point Pe of the path,
which are already considered as definitive for the solution,
and the desired number n of intermediate ordered waypoints
Pw,i with a specific location number i. In case less than
n waypoints are fixed by the user, the remaining not-fixed

Fig. 2: Characterization of a path using both mutable and
non-mutable waypoints and the process of reconstructing a
waypoint in case the user does not provide all the necessary
points for the path.

waypoints are automatically set as mutable and reconstructed
by using a linear interpolation among the fixed ones (Fig. 2).
An advantage of the characterization of the points between
mutable and non-mutable is the possibility to specify areas in
which, for example due to possible collision, the optimization
should be limited. In this way, a complete first path is obtained,
that if it is set up correctly is already able to perform the task,
which will allow the learning phase to take place while the
application is running properly.

B. Exploration

The process of obtaining a new path is achieved through
mutation. A mutation refers to a random modification of a
mutable waypoint Pw,i of an existing path, referred to as the
father path. Through this modification, a new path, referred to
as the child path, is generated. In order to improve the overall
quality of the path, the waypoint Pw,i to be mutated is chosen
based on a probability pi that is proportional to its impact
on reducing the path’s score R(T ) (Fig. 3). A Score function



R(T ) of a path T can be seen as:

R(T ) =
kf∑

k=ki

f(k) (1)

where ki is the number of the first time iteration when the
path begins to be executed, kf the time iteration when it ends,
and f(k) a generic always negative user-definable function
(f(k) < 0 ∀k) that defines the contribution of the score at
each time iteration. The sum of these contributions defines
the score R(T ).

Note that the use of a generic score function R(T ), the
algorithm can be applied to a large variety of task like a
DLO manipulation described in this application, however with
the rearrange of the function it is possible to apply the same
method to an interaction task.

By subdivide the values provided by the score function f(k)
(Eq. (1)), it is possible to assign weights wi to the mutable
waypoints Pw,i. Through normalization of these weights wi,
probabilities of selection pi can be derived. In order to do
that it is possible to consider nT = n + 2 as the number of
points in a path, nk = kf − ki the number of iterations that a
path spends to be performed and a defined function f(k) < 0
∀k for the score function R(T ) which refers to Eq. (1). To
subdivide the value of the score function R(T ) it is possible
to define a base B and an offset O:

B = ⌊ nk

nT
⌋; O = ⌊ nk

2nT
⌋

The i-th weights wi, which will then be converted to proba-
bilities pi, are calculated as:

wi = −
iB+O∑

k=iB−O

f(k)

∀i ∈ [1, n] : Pw,i is mutable

The probabilities pi associated to the waypoint Pw,i:

pi =
wi∑
wk

∀i ∈ [1, n] : Pw,i is mutable ∀k ∈ [1, n] : Pw,k is mutable

When a point is selected for the mutation, it is spatially
displaced along one of its principal directions (x, y or z)
chosen at random to change its position. The displacement d
is also randomly chosen between two user-defined maximum
displacement dM and minimum displacement dL. This allows
the user to control the degree of exploration of the search
space and can be adjusted to balance the trade-off between
exploration and exploitation.

C. Learning Phase

The proposed strategy exploits the concept of father and
child. The mutation of a waypoint from in a father path F
generates a new child path C as detailed in Sec. II-B. The
approach therefore provides that, starting from the first path,
a number of user-defined child paths are generated, in such
a way that the number of overall paths np is even. This is

Fig. 3: The illustration shows graphically the influence that
the waypoints of a path T have on the −f(k) score values,
highlighting the score areas of interest for each point. This
example shows the negative of the score, then the −f(k)
function to enhance the visualization of the example.

because at each stage Si, that represent the set of paths to be
executed at the evolution number i, the robot will perform the
paths that have been defined and the algorithm will discard
half of them based on the scores obtained. The first stage S1

can be represented as:

S1 = {F,C1, ..., Cnp−1}

In this first stage the Children C1, ..., Cnp−1 are generated
using a totally random mutation since it is not available a score
value R(F ) for the initializing path F . On the next stage the
winning trajectories will become the fathers F1, ..., Fnp

2
; each

of these father paths generate a single child path C1, ..., C 1
np

,
using the mutation method explained in Sec. II-B, in such
a way at each stage there are the same number of paths
competing np. The i-th stage Si:

Si = {F1, ..., Fnp
2
, C1, ..., Cnp

2
}

In this way, only the best trajectories will be allowed to move
forward. Only a better result can replace an old one. A redun-
dant methodology was selected, in which the same trajectory
is repeated multiple times, in order to ensure the validity of the
results under the challenging conditions in which the learning
process must operate. This allows to minimize the occurrence
of false positive results. The results on the same path may be
different, as these scores, which are generated through a user-
chosen function f(k) that quantifies the goodness of a path,
often depend on physical parameters such as contact forces or
friction. An example of this can be seen in the next section,



Fig. 4: Progression that occurs during the learning phase
between np = 8 paths, with the advancement of winning paths.
Also highlighted is the first stage S1 = {F,C1, ..., CNp−1}
where there is the initializing path F (Father) and a np − 1
number of paths generated Ci (Children) with i ∈ [1, np − 1]

Algorithm 1 Score-Based Path Learning

1: if (Start from Memory) then
2: S ← Last Stage in Memory
3: else
4: S[0]← F
5: S[1 : Np − 1]← Generation of np − 1 Children
6: end if
7: while (Stop Criterion) do
8: for (T in S) do
9: Perform The Path T

10: R(T )← Collection of the Scores values f(k)
11: end for
12: S[0 :

Np

2 − 1]← Best Half Paths (new Fathers)
13: S[

Np

2 :Np − 1] ← Generation of a Children for Each
Father

14: Saving The Current Stage in Memory
15: end while

focused on manipulating objects such as DLOs (Deformable
Linear Objects). The learning process, shown in Fig. 4, can
be considered to have reached its termination point when the
scores obtained exhibit saturation, indicating that the path for
maximizing the score has been identified and a viable solution
to the task has been obtained. However, it is also possible to
continually run the algorithm in an effort to further improve
task execution while still successfully completing the task.

D. Use of Memory

The use of memory in a learning path method is impor-
tant for the ability to pause and restart the execution of
the algorithm. By using memory to store the stages (Si =
{F1, ..., Fnp

2
, C1, ..., Cnp

2
}) of the learning phase, the learning

process can be resumed from where it left off, rather than
having to start over from the beginning, saving time and
computational resources. It allows monitoring the progress,

and if needed, to adjust the parameters of the algorithm or the
system.

III. EXPERIMENTS

To evaluate the algorithm, it has been realized an exper-
imental setup to reproduce the operation of cable routing
for automotive harness manufacturing. The task consist in
the laying down of a wire or a sub-harness in a given
configuration to permit a taping gun to fix the multiple cable
together forming a harness ready to be used. Normally, the
aforementioned operations are performed by manual labor,
however there is a particular interested in the automatization
of such process and offer the possibility to test the algorithm
in a real industrial scenario. The robot used for the operation is
a collaborative 7DoF Panda Robot equipped with an external
force/torque sensor mounted on the end-effector. Additionally,
the gripper mounts specifically designed fingers with the tips’
surface covered by a material that permit the sliding of the
cable where the pressure is not exercised.

A. DLO Manipulation test

The application necessitates the proper organization of three
distinct groupings of cables in a specific harness configuration,
which are:

• Six-Poles Connector (SPC) cable group;
• Ten-Poles Connector (TPC) cable group;
• Eleven-Poles Connector (EPC) cable group.
The environment was specifically designed to accommo-

date this requirement, and the implementation of two clips
and an appropriate connector block arrangement was deemed
necessary, as can be seen from the Fig. 6. Each cable group
movement is decomposed into subsequent tasks, at first the
cable fixed on one end should be inserted in a clip, and after
that the movement occur between two clips.

The goal of this experiment is to develop a robot capable
of performing the manipulation tasks while maintaining bal-
anced the module of the forces |F |k =

√
F 2
x,k + F 2

y,k + F 2
z,k

obtained by the sensor placed between robot’s gripper and the
robot’s flange. The scoring function described in 1 is chosen
to consider the variance σ2

|F | = 1
nk

∑kf

k=ki
(|F |k − µ|F |)

2,

mean µ|F | = 1
nk

∑kf

k=ki
|F |k, and peak values |F |max of

the modules of the forces |F |k, with the aim of maintaining
balanced the forces and minimizing any force peaks as much
as possible, as we are dealing with fragile components that
could be damaged if handled improperly. The always negative
score function R(T ) is:

R(T ) = −σ2
|F |µ|F ||F |max

Considering SPC cable group as the first subject of the
experiment, the final user defines the path points providing the
start-point Ps, end-point Ps and the intermediate waypoints
Pw,i that can be set to be mutable or immutable. In this
specific case, it was decided to impose two non-mutable way-
points (Pw,8, Pw,9) near the end point (Pe) and one mutable
way-point (Pw,5) in the middle of the path. The starting



(a) Ps (b) Pw,5 (c) Pw,8 (d) Pw,9 (e) Pe

Fig. 5: Sequence of points chosen for the first experiment concerning the SPC cable group.

(a) (b)

Fig. 6: Fig. 6a shows the end result of the proper organization
of the three distinct cable group. Fig. 6b shows the top
view implementation idea of the set-up by highlighting the
arrangement of the clips and connector blocks.
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Fig. 7: First experiment on the SPC cable group. Fig. 7a shows
the desired result for the task in the top view. Fig. 7b graphs the
exchanged forces obtained during the learning phase. Fig. 7c
graphs the paths explored during the learning phase. Fig. 7d
shows the trend of the improvements function I during the
execution of the algorithm.

point (Ps) was chosen to ensure correct cable grip in the
proximity of the connector block. The intermediate way-point
Pw,5 chosen is used to strategically indicate which direction
of motion is favorable for performing the task, based on the

user’s experience (Fig. 5). The final sequence of points (Pw,8,
Pw,9) was chosen to ensure successful cable insertion, as
the endpoint Pe of the path is strictly defined by the user.
The orientation of the robot’s end-effector is kept constant
to maintain the gripping fingers orthogonal to the direction
of cable exit from the connector block and at the same time
parallel to the clips to facilitate the cable insertion. A total
of nT = 11 user defined path points were recorded, while
nP = 8 were the number of competing paths at each stage S.

The improvement value I(Fi,k) at stage Sk of a winner path
Fi can be seen as:

I(Fi,k) = I(F1,k−1) + 100
| 1
R(Fi,k)

| − | 1
R(F1,k−1)

|
| 1
R(F1,k−1)

|
(2)

∀k ∈ [2,+∞); ∀i ∈ [1,
np

2
]

where I(F1,1) = 0 in order to give the initial conditions to the
equation. By utilizing this expression, the function is able to
depict the improvement in a relative manner, thereby providing
a clear illustration of how the current solutions surpass those of
the predecessors. Regarding the experiment, in Fig.7 the result
obtained from the execution of the SPC. As it is possible to
see in Fig.7d, from the very first iteration, the algorithm is
capable to sensibly improve the improvement function I seen
in eq. 2

B. Trajectory improvement

The data in Fig. 8, shown how the algorithm is capable
to improve the trajectory along all the given path. In all the
six sample trajectories taken from the real case setup, the
algorithm was capable to sensibly improve the score, reducing
the force exchange, by approximately 9.13% up to 2934.17%
following the desired reduction offered by the cost function.
The table also presents data indicating relatively high peak
values for the application, such as a value of 28.47N in the
TPC T 2 I. These peaks are observed during the process of
inserting cables into clips. The clips are mechanically rigid
and require a considerable amount of force to be opened. The
best result were reported in the trajectory corresponding to
the TPC T 1 trait. The worst performance instead in TPC T 2
however, the result obtained are still better than the original
taught trajectory.
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Fig. 8: Red: Initial Path, Green: Last Path, Grey: Tested
trajectories. The figure shows snapshots taken during the
execution of the algorithm.

Path Paths
Performed |F |max [N] µ|F | [N] σ2

|F | Iabs

SPC T 1 I 488 9.70 4.33 4.06 +254.52%SPC T 1 L 6.95 3.83 1.81

SPC T 2 I 336 21.25 4.65 11.75 +555.38%SPC T 2 L 9.38 4.42 4.3

TPC T 1 I 416 10.32 7.31 3.57 +2934.17%TPC T 1 L 4.77 3.20 0.58

TPC T 2 I 208 28.47 6.76 45.94 +335.92%TPC T 2 L 18.93 5.24 20.43

EPC T 1 I 504 9.27 2.29 2.35 +9.13%EPC T 1 L 8.61 1.96 2.68

EPC T 2 I 312 8.69 3.57 4.98 +172.75%EPC T 2 L 6.72 3.40 2.49

TABLE I: Learning Results (I: Initial Path, L: Last path). Iabs
is the improvement in absolute terms between the I and L
paths of the same task.

IV. CONCLUSIONS

In this work, a framework for continuous learning of a
point-to-point trajectory has been implemented. The algorithm
takes as input a trajectory in the workspace, which can be
easily obtained through kinesthetic teaching or programming.
During task execution, the algorithm improves the trajectory in

order to minimize the effort required by the robot. The results
obtained from manipulation of deformable linear objects were
promising, and the framework is planned to be extended to
other industrial tasks, such as interaction tasks, in future work.
The focus on minimizing the effort required by the robot is
important for increasing efficiency and reducing operational
costs in industrial settings. By continuously learning and
refining the trajectory, the framework has the potential to
significantly improve the performance of robotic systems in
a variety of applications. As future application, the framework
will be tested in an interaction task in addition to the ’grasp
and drag’ approach proposed.
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