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This paper proposes an equivalent 2d model incorporating translational and rotational springs to simulate constraints in the
stability analysis of steel plates under in-plane patch loading. The main objective is to develop an equivalent stability analysis of
these plates by accurately calibrating the level of constraint provided by the stiffeners and flanges. The calibration involves
determining the spring constants of a 2d equivalent plate model to achieve the same linear elastic critical load and buckled shape
as a 3d model. The paper uses the buckling coefficient as the objective function to calibrate the translational and rotational springs.
The ultimate goal is to effectively replicate the constraint conditions imposed by the flanges and vertical stiffeners within the
structure. The proposed simplified method yields results that closely align with those obtained from the original 3d model,
incorporating finite-rigidity restraints.

1. Introduction

The structural analysis of steel beams subjected to patch load-
ing is crucial for ensuring their stability and performance.
Traditional approaches often involve complex and computa-
tionally expensive three-dimensional (3d) finite element (FE)
models, which accurately capture the complex behavior of the
system. However, such models can be time-consuming and
challenging to implement in the practical design.

Longitudinal and transverse elements, such as flanges
and stiffeners, are commonly used to enhance the elastic
critical load for stability. Numerous studies [1–6] have con-
tributed to the existing literature on panel stiffening. The
eigenbuckling problem, often approached through closed-
form solutions or numerical methods, is widely employed
to analyze plates subjected to uniform axial load, bending
moment, and shear [7, 8]. Various analytical, experimental,
and numerical investigations have explored elastic and plas-
tic mechanisms [6, 9, 10] and the impact of tolerances and

imperfections on elastic critical loads and ultimate resistance
values [11, 12].

Moreover, studies have examined specific scenarios, such
as the effects of holes on plate behavior [13–16], patch loading
[11, 17, 18], and local symmetrical loads and shear on perfo-
rated plates [19]. Experimental works on plates subjected to
local loads are relatively limited, and no evaluation has been
performed to assess the confinement effect of the elastic con-
straints, which is the primary focus of this research. In [20],
Gozzi analyzed the model for patch loading resistance
referred to in EN 1993-1-5. From the parametric numerical
study with a focus on the load length, he concluded that (ss)
should follow the recommendations in EN 1993-1-5, i.e., for
several loading plates, the center-to-center distance between
the outermost plates plus the load spread through the plates
should be used. Kovesdi et al. [21] performed numerical
parametric investigations of loading length influence on patch
loading resistance of girders with corrugated webs. The
authors concluded that the load-carrying capacity increases
nearly linearly with increasing loading length.
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Despite the advancements in the field [22–25], there is still
a gap in the literature regarding the calibration and estimation
of equivalent stiffness parameters for 2d models tailored
explicitly for steel beams subjected to patch loading. This paper
addresses this gap by presenting a methodology for calibrating
an FE model and estimating the equivalent stiffness parame-
ters of 2d models. Additionally, this research extends the
investigation by considering the influence of patch load length
on the resistance of I-girders, as studied by Rogač et al. [18].
By leveraging recent advancements in the field and building
upon the existing body of the literature, this research contri-
butes to the ongoing efforts to enhance the stability analysis of
steel beams in the practical design applications.

The novelty of this research lies in developing a compre-
hensive approach that allows engineers to estimate the buck-
ling coefficient using simplified 2d models efficiently. The
methodology begins with calibrating a 2d FE model against
3d FE data and establishing analytical solutions to ensure
accuracy and reliability. The equivalent 2d models represent
a compromise between capturing the essential characteristics
of the 3d beam and simplifying the analysis process. By
judiciously selecting the appropriate stiffness parameters,
such as translational and rotational spring constants, the
2d models can adequately mimic the behavior of the 3d
beam under patch-loading conditions.

The contributions of this research are significant in terms of
practicality and efficiency. The estimated stiffness parameters
of the equivalent 2d models allow engineers to perform rapid
and reliable buckling coefficient assessments for steel beams.

2. Problem Formulation and Methodology

This study focuses on establishing correlations between the
geometry of elements that confine a double I-shaped girder
and the degree of constraints applied to the web panel by
flanges and vertical stiffeners for stability analysis. The FE
method is employed to achieve this, utilizing the Strand7
code developed by G+D computing [26]. Translational
and rotational spring elements are used to represent these

constraints. The determination of the spring constants
denoted as K , is based on the stiffness contributed by the
surrounding elements relative to the web panel of the beam.
The analysis considers the upper and lower flanges of equal
size and the transverse vertical stiffeners.

In subsequent numerical analyses involving variations in
geometrical shape and patch load length, the ultimate objective
is establishing a calibration law for the translational and rota-
tional springs. This calibration law is determined through lin-
ear eigenbuckling analyses, aiming to numerically obtain an
identical buckling coefficient, denoted as kcr, in both the com-
prehensive 3d model, which encompasses the web/flanges/stif-
feners system, and the simplified 2d platemodel that represents
an elastically constrained panel (Figure 1).

The proposed calibration law aims to consistently and
accurately represent the structural behavior by the simplified
2d equivalent plate model. This will significantly reduce the
computational complexity compared to the comprehensive
3d model while maintaining high accuracy.

2.1. Problem Formulation. Linear buckling analyses are per-
formed to determine the value of the theoretical and critical
load. Starting from the condition of simple support, increas-
ing values of rotational stiffness of the constraints are
adopted. The constraints are implemented through rota-
tional springs parallel to the sides of the plate, with a constant
rotational stiffness KR (N⋅mm/rad) along the entire perime-
ter of the plate. To normalize this parameter, the rotational
stiffness per unit length (K 0

R ¼ KR⋅nKR
a ), where a is the web

width and nKR is the number of constrained nodes on each
side) is divided by the flexural stiffness of the plate to obtain
the dimensionless term KR; rel:

KR;rel ¼
KR ⋅ nKR ⋅ 12 1 − ν2ð Þ ⋅ h

E ⋅ t3a
; ð1Þ

where ν is the Poisson’s coefficient, h is the height of the web,
t the web thickness, and E is the Young’s modulus. The
adopted comparison term is the buckling coefficient kcr,
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FIGURE 1: Transition from the 3d beam model to the equivalent 2d plate model.
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which is determined as follows [7]:

kcr ¼
λ1 ⋅ σ0 ⋅ 12 1 − ν2ð Þ ⋅ h2

π2 ⋅ E ⋅ t2
; ð2Þ

where λ1 is the first eigenvalue and σ0 is compression stress
in the plate.

The solution for a square and multiple rectangular plates
with simple support and uniform compressive load is kcr = 4
[7]. Figure 2 shows the increase in the buckling coefficient as
the degree of constraint increases from simple support to
fixed support. The elastic constant of the spring thus has a
range of variability between these two extremes.

The stabilizing effect provided by increasing the value of
rotational stiffness is demonstrated by the fact that a panel,
free to rotate at the perimeter (kR;rel = 0), exhibits a reduced
resistance to buckling (low kcr values). Conversely, the same
plate clamped on all sides (kR;rel¼1) yields a critical load
value more than double (kcr > 10). Configurations exist
between these two extreme cases where kR;rel assumes a finite
stiffness value, resulting in a progressive increase in the critical
load. The elastic constraints are calibrated based on the buck-
ling coefficient. Under the same applied load, achieving the
same eigenvalue and instability mode is necessary through a
linear stability analysis of the models. The outcome is an
elastically constrained plate model that ensures an equivalent
resistance to instability as flanges and stiffeners bound the
web panel. Figure 2(b) illustrates an equivalent 2d model of
the web. The load acts symmetrically for the width without
any eccentricity concerning the web plane. The ends of the
upper and lower flanges can move longitudinally along the
x-axis symmetrically, while displacements in the vertical
direction (Δz) out of the plane are prevented. To avoid insta-
bility and for symmetry reasons, the constraint in the x-direc-
tion is placed on the axis of symmetry at the locations of the
two flanges. Vertical displacements along the y-axis are pre-
vented along the two vertical sides to simulate the effect of the

remaining part of the beam and ensure that symmetric shear
forces balance the load.

2.2. Methodology. The transition from the 3d to the 2d plate
model requires careful consideration of the interaction
between components, such as the web, flanges, and stiffeners.
However, the plate model fails to replicate the same local
conditions as the beam model, particularly in the junction
zones where the interaction between these components is
lost. To address this issue, a two-phase calibration approach
has been adopted.

In the first phase, the focus is on the flanges. To simplify
the calibration process and avoid the complexity arising from
the interaction between the stiffeners and flanges, substitute
springs for the flanges are calibrated without considering the
presence of the stiffeners. Instead, ideal constraints are
applied to simulate their effects. This approach significantly
reduces the number of variables involved.

Moving on to the second phase, the emphasis shifts to the
stiffeners. Here, the correlations between the geometry of the
flanges and the level of constraint they provide are consid-
ered. Substitute vertical springs for the stiffeners are cali-
brated, considering the presence of the flanges. This phase
introduces a dual variability of parameters, as the effects of
the same stiffener can vary depending on the dimensions of
the flanges. Therefore, relationships are studied to incorpo-
rate the variability of the constraint provided by the stiffeners
with changes in their dimensions and the varying flange
sizes.

In the first phase, a partial model consisting of the web and
flanges is developed, following the approaches of Graciano and
Edlund [2], Ren and Tong [17], and Granath and Lagerqvist
[27]. The constraints are applied to the vertical sides and ends
of the two flanges, allowing displacements in the Δx direction
and preventing displacements in the Δy and Δz directions and
rotations Rx.

The 3d model is discretized using plate elements based
on the geometries above. Once the first eigenvalue (λ1) of the
linear stability problem is obtained, the elastic critical load
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FIGURE 2: (a) kcr vs. KR;rel for rectangular plate under uniform compression load; (b) deformed and undeformed geometries.
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(Fcr) is calculated. From this, the value of the buckling coef-
ficient (kcr) is determined using the equations:

Fcr ¼ λ1 ⋅ nKR ⋅ F0 ¼ kcr ⋅
π2 ⋅ E ⋅ t3

12 ⋅ 1 − ν2ð Þ ⋅ h ; ð3Þ

kcr ¼
λ1 ⋅ nKR ⋅ F0ð Þ ⋅ 12 ⋅ 1 − ν2ð Þ ⋅ h

π2 ⋅ E ⋅ t3
: ð4Þ

Here, F0 represents the vertical load.
Referring to the six degrees of freedom (DOF) at the web-

flange intersection nodes, it is considered that the stabilizing
contribution of the flange can be decomposed into six overall
stiffness components: three translational and three rotational.
The collaboration the flanges provide can be reduced by decou-
pling one or more DOF of the implemented master–slave
elements.

The resulting buckling coefficient of the 3d model is
considered a reference term to quantify the residual contri-
bution offered by the flanges after decoupling various DOF.
By comparing this with the coefficient of the 3d model
(kcr; 3d), an understanding can be obtained regarding the
most significant stiffness contributions.

Accordingly, the main results of this paper are two:

(1) Estimating the buckling coefficient by progressively
releasing the constraints of the 2d model to isolate
the degree of freedom most affecting the buckling
analyses;

(2) Calibrating the equivalent 2d models based on the
results of the previous steps by proposing empirical
regression equations as a function of adimensional
parameters.

The first phase results in the following steps:

(1) The Rz rotations are independent: at this point, the
constrained DOF are the three displacements Δx, Δy,
and Δz, and the two rotations Rx and Ry.

(2) The Ry rotation is released: the constrained DOF are
now the three displacements and the rotation Rx.

(3) The Δy displacements are independent: the master–
slave elements still ensure the same displacements in
the x and z directions and the rotation Rx.

(4) The Rx displacements are decoupled: only the Δz
displacements and the rotation Rx remain coupled.

(5) The Rx rotation is released: the two flanges collabo-
rate only in flexural behavior out of the plane.

(6) The two flanges are entirely decoupled from the web:
all DOF are released.

A linear buckling analysis is conducted at each step,
resulting in an eigenvalue λ1; i, a critical load Fcr; i, and a
buckling coefficient kcr; i, where i denotes the step number.
Significant deviations of the buckling coefficient from the
original value indicate significant stiffness contributions.

An equivalent 2d model with spring elements is devel-
oped in the second phase. The objective is to replace the
flanges with elastic constraints. Axial and rotational springs
are implemented in the x direction along the horizontal sides
of the model. However, considering the high-flexural inertia
of the flanges in the z direction, a simplification is made by
using fixed constraints (Δz) on the intersection nodes instead
of employing high-stiffness springs.

The optimization problem, aiming to determine the opti-
mal stiffness value (bK 2d) for the 2d model that minimizes the
difference between the predicted buckling coefficients of the
3d and 2d models, was solved using the least squares method.
The objective function was formulated as the absolute differ-
ence between the buckling coefficient predicted by the 3d
model (kcr; 3d) and the buckling coefficient obtained from
the 2d model (kcr; 2d), as expressed by Equation (5) as fol-
lows:

f K2dð Þ ¼ kcr;3d − kcr;2d K2dð Þ�� ��; ð5Þ

where kcr; 2d is the buckling coefficient predicted by the 2d
model with the stiffness value K2d. By applying the least
squares method, the stiffness value of the 2d model was
adjusted iteratively to minimize the sum of squared differ-
ences between the predicted and actual buckling coefficients,
as shown in Equation (6).

bK 2d ¼min
K2d

∑ kcr;3d − kcr;2d K2dð ÞÀ Á
2: ð6Þ

The resulting optimal stiffness value (bK 2d) represents the
best fit between the 2d and 3d models regarding buckling
behavior.

Specifically, elastic constants KRx; u and KTx; u are intro-
duced and adjusted based on the buckling coefficient obtained
from the previous phase to calibrate the rotational and transla-
tional springs, respectively. The same procedure is repeated for
the lower flange, resulting in KRx; l and KTx; l values. The upper
and lower edges add translational springs in the x direction.
The stiffness values KTx; u and KTx; u are determined to obtain
the eigenvalues of the original problem. Furthermore, the two
horizontal sides are constrained in the z direction.

The numerical values of the elastic constants for the
implemented springs, assigned to the perimeter nodes, have
the following dimensional quantities: translational springs are
measured in F/L. In contrast, rotational springs have dimen-
sions of F⋅L/θ.

Focusing on the rotational springs in the x direction,
their contribution replaces the effect of the flange’s torsional
stiffness. This effect is influenced by the dimensions of the
flange (tf and bf ) and the dimensions of the web (t and h). A
common practice is to assess the flange’s torsional effect
relative to the plate’s flexural stiffness using the dimension-

less parameter β¼ bf ⋅t3f
h⋅t3 .

In addition to solving the optimization problem using the
least squares method, regression equations were derived to
establish relationships between the optimal stiffness value
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(bK 2d) and the adimensional parameters, namely β, β0, and γ.
These parameters, defined in the initial list of symbols and
notation, provide insights into the geometric characteristics
of the structure and the degree of constraint the flanges and
stiffeners provide.

Through statistical analysis and curve fitting techniques,
regression equations of the form K2d ¼ f β;ð β0; γÞ were devel-
oped to capture the dependence of the optimal stiffness on
these adimensional parameters. These equations allow for
the estimation of the optimal stiffness value based on the
specific geometric configuration of the structure.

Overall, the optimization process, combined with the
regression analysis, enables the calibration of the 2d model
and establishes empirical relationships that facilitate the
selection of the optimal stiffness value based on the geomet-
ric parameters of the structure.

2.3. Parametric Analyses. A reference model based on a sym-
metrical double T-shaped beam with flanges is initially mod-
eled, following the approach outlined in [2, 17, 27, 28].
Subsequently, symmetrical stiffeners are added perpendicu-
lar to the web plane, enhancing the model’s representation.
Table 1 shows the parameters assumed constant and varied
in the analyses.

Three different ratios (a=h= 1, 2, and 3) are examined to
assess the influence of the subpanel aspect ratio. The external
load is applied as vertical nodal forces on the upper flange,
with three load configurations (ss=a= 0.2, 0.5, and 1) cover-
ing a wide range from localized to uniform load. The load is
applied at the web plane level, allowing separate flanges and
web modeling. Through master–slave connections, the con-
tribution of the flanges’ constraints in buckling is isolated
and replicated using elastic constraints. This approach pre-
vents additional stabilizing effects that could occur if the load
were applied to the extrados of the upper flange, where the
load might disperse over a larger portion of the web. The web
and flanges are assigned different plate properties for the
parametric investigation while maintaining their mechanical
characteristics. Following the guidelines by Ren and Tong
[17], a uniform reference size is established with a web height
(h) of 1,000mm. Geometric dimensions are derived accord-
ingly, with panel lengths (a) of 1,000, 2,000, and 3,000mm,
and the web thickness adjusted to achieve three different
panel slenderness values (λ).

Consistent with [17], the web thickness (t) is set to 4, 8,
and 12mm, corresponding to 250, 125, and 83 slenderness
values. Flange thickness (tf ) is defined as 1.5 t, 2 t, and 2.5 t,
and the flange width (bf ) is determined using standard ratios,

specifically semiwidths of 8 tf , 10 tf , and 12 tf . To cover the
desired load configurations, load application lengths (ss) are
assumed relative to the panel length: ss = 0.2 a, 0.5 a, and a.
Square elements with a side length of 25mm (h/40) are
chosen for the web, while elements with a length of 25mm
in the x-direction are used for the flanges, with varying
lengths in the y-direction based on the total width. This
approach ensures that the web, most affected by buckling,
is appropriately modeled.

In conclusion, 324 cases are examined to cover the
flanges’ full range of patch load variability. This involves
considering three aspect ratios (a=h= 1, 2, and 3) and three
load configurations (ss=a= 0.2, 0.5, and 1). Each case
includes variations in web thickness, flange width, and flange
thickness, resulting in nine configurations for each combina-
tion. Panel lengths (a) are set to 1,000, 2,000, and 3,000mm,
determining slenderness values of 250, 125, and 83. Flange
thickness (t1) is chosen as t, 1.5 t, 2 t, and 2.5 t, while flange
width (b1) is defined as 8, 10, and 12 t1.

3. FE Model Validation

To ensure the accuracy and reliability of the proposed meth-
odology, both the 2d and 3d models were assessed through
calibration and validation processes. The 2d model was cali-
brated to ensure consistent and accurate results by adjusting
the spring constants to match the buckling coefficients
obtained from the comprehensive 3d model. On the other
hand, the 3d model was validated to assess its ability to
accurately predict the system’s buckling behavior. The vali-
dation process involved comparing the results obtained from
the 3d model, utilizing Quad4 and Quad8 plate elements, to
verify their consistency. Quad4 and Quad8 are FE types
commonly used for modeling plate structures in FE analysis.

(i) Quad4: Quad4 refers to a quadrilateral element with
four nodes. It is also known as a bilinear quadrilateral
element. In this element, each node has two DOFs,
typically representing displacements in the x and y
directions. The nodal coordinates define the element
and can accurately capture linear variations in dis-
placement and stress within the element.

(ii) Quad8: Quad8 refers to a quadrilateral element with
eight nodes. It is also known as a quadratic quadri-
lateral element. Similar to Quad4, each node of
Quad8 has two DOFs. Quad8 provides additional
nodes compared to Quad4, allowing for higher order
interpolation and a more accurate representation of
curved or nonlinear variations in displacement and
stress within the element. This element type can cap-
ture higher order deformations more effectively.

Due to their simplicity and versatility, Quad4 and Quad8
elements are widely used in the structural analysis, including
plate and shell modeling. The choice between Quad4 and
Quad8 depends on the desired level of accuracy and compu-
tational efficiency for a specific analysis.

The difference in the resulting buckling coefficients
between the two cases was less than 1%, indicating a high

TABLE 1: Parameter values.

Parameter Values

h (Web height) 1000mm
a (Panel length) 1,000, 2,000, and 3,000mm
t (Web thickness) 4mm, 8mm, 12mm
tf (Flange thickness) 1:5t, 2t, 2:5t
bf (Flange width) 8tf , 10tf , 12tf
ss (Load application length) 0:2a, 0:5a, a
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level of agreement. Additionally, nodal forces were applied to
maintain a constant load direction during the buckling anal-
ysis to maintain realistic boundary conditions. The models’
sides were hinged, as illustrated in Figure 3.

To assess the impact of mesh refinement, two additional
models were created using Quad4 plate elements. One model
had a finer mesh, while the other had a coarser mesh. By
increasing or decreasing the number of elements by a factor
of four, the coarser mesh allowed for a more explicit identifi-
cation of differences than the original model. The coarser
mesh resulted in a higher critical load, and as the mesh refine-
ment increased, the buckling coefficient (kcr) approached a
constant value.

To validate the model, a comparison was conducted with
the results reported in Ren and Tong [17] for a finite-rigidity
restrained 2d model, considering various patch load lengths
ranging from 0.05 to 3. The comparison revealed a close
agreement between the calculated values and those reported
in Ren and Tong [17], indicating the model’s accuracy. The
obtained results showed a very low error, with discrepancies
within the range of 1% to 2% (Figure 3(b)).

Equation (7), proposed by Graciano and Lagerqvist [3],
was referenced for the subsequent analysis. This equation
allows for the evaluation of the buckling coefficient (kcr) of
a rectangular plate subjected to a concentrated force applied
through the upper flange and balanced by shear forces in the
web:

kcr ¼ 5:82þ 2:1
h
a

� �
2
þ 0:46β1=4: ð7Þ

As anticipated, β¼ b1t31
ht3 represents a parameter that quan-

tifies the rotational constraint provided by the flanges. As β
approaches 0, the plate is hinged at the edges, while
approaching infinity indicates clamping. In real cases, the
degree of constraint lies between these two extremes, result-
ing in a wide range of critical loads based on the geometric
dimensions of the flanges and web panels. The results
obtained from the numerical calculations using the model

with incorporated flanges (Figure 4) were compared to those
reported in [3]. The comparison depicted in Figure 5(a)
revealed a significant agreement between the values obtained,
confirming the model’s accuracy.

Furthermore, Graciano and Lagerqvist [2] studied the
elastic critical load by varying the lengths of application of
localized loads. The numerical results obtained for load
lengths of 0, 0.1, 0.25, 0.3, 0.4, and 0.5 were compared to
the findings in [3]. The comparison, presented in Figure 5(b),
demonstrated a good coincidence between the values, further
supporting the model’s validity.

4. Results

The results obtained from the analysis play a crucial role in
validating and fine-tuning the FE model developed in this
study. This section presents a detailed examination of the
calibration process for the equivalent spring representing
the flanges and the behavior of the stiffeners. The first sub-
section focuses on calibrating the equivalent spring, aiming
to accurately capture the response of the flanges under vari-
ous loading conditions. The subsequent subsection delves
into the behavior of the stiffeners within the structural sys-
tem. Stiffeners are critical components that enhance the
overall strength and stability of the plate structure. The
results provide a solid foundation for further discussions
and conclusions regarding the structural response and per-
formance of the plate structure under the different loading
scenarios.

4.1. Equivalent 2d Model for the Flanges. Table 2 presents the
buckling coefficients obtained at each step of the progressive
constraint release of the plate, as described in the methodol-
ogy section. The table provides a comprehensive overview of
the results, showcasing the calculated buckling coefficients
for different geometric configurations and load scenarios.
The buckling coefficients (kcr) are reported for various com-
binations of parameters, including the aspect ratio (a), web
height (h), web thickness (t), flange thickness (t1), flange
width (b1), and the defect levels (a, b, c, d, e, f , g, h, and i).

ðaÞ
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FIGURE 3: (a) Typical buckled configuration; (b) comparison between kcr; FEM and kcr;RT [17] for the finite-rigidity restrained 2d model.
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ðaÞ ðbÞ
FIGURE 4: Buckled configuration for panels with (a) a=ss ¼ 1, t = 4mm, t1 = 16mm, and b1 = 125mm and (b) a=ss ¼ 2, t = 4mm, t1 = 16mm,
and b1 = 250mm.
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FIGURE 5: (a) Comparison between kcr; FEM and kcr;GL for b1 ¼ 125mm and 250mm; (b) comparison between kcr; FEM and kr;GL [2] for the
model with varying load length.

TABLE 2: Buckling coefficients for each step of the progressive constraint realizing of the plate, as explained in the methodology section.

n ss=a a h t t1 b1 kcr; 3d kcr; 1 kcr; 2 kcr; 3 kcr; 4 kcr; 5 kcr; 6
a 0.2 1,000 1,000 12 30 480 8.209 8.209 8.209 8.106 6.821 3.344 0.934
b 0.2 2,000 1,000 4 6 120 3.488 3.488 3.488 3.488 3.247 2.524 0.347
c 0.2 3,000 1,000 4 8 160 4.269 4.269 4.269 4.269 3.846 2.536 0.174
d 0.5 1,000 1,000 8 16 256 8.576 8.576 8.576 8.567 7.328 3.959 1.13
e 0.5 2,000 1,000 8 12 240 5.085 5.085 5.085 5.084 4.743 3.177 0.406
f 0.5 3,000 1,000 8 10 400 8.941 8.941 8.941 8.939 8.095 3.633 0.2
g 1 1,000 1,000 4 10 240 13.79 13.79 13.791 13.79 11.79 6.221 1.762
h 1 2,000 1,000 12 18 360 9.025 9.025 9.025 9.026 8.513 5.13 0.615
i 1 3,000 1,000 12 24 576 13.81 13.81 13.812 13.81 12.97 6.171 0.3
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Specifically, the behavior of the three models was analyzed
for each load configuration of 0.2, 0.5, and 1, considering the
aspect ratios of 1, 2, and 3. The dimensions of the models are
shown in Table 2, and the corresponding buckling coeffi-
cients (kcr) at each step of the analysis are directly listed.

The table reveals that the progressive constraint release
in the 2d model leads to a gradual decrease in the buckling
coefficients as the model evolves through each step. The
largest discrepancies between the buckling coefficients
obtained from the 3d model (kcr; 3d) and the corresponding
steps in the 2d model (kcr; 1 to kcr; 6) are observed in steps i¼
3 and i¼ 4. Decoupling specific DOF in the 2d model has
varying effects on the critical load and buckling coefficient.
For example, decoupling the Ry and Rz rotations (i¼ 1; 2)
does not affect the eigenvalue. However, decoupling the ver-
tical displacements of the intersection nodes (i¼ 3) slightly
modifies the critical load. Decoupling the Δz displacements
(i¼ 4) significantly impacts the critical load and the buckling
coefficient. Furthermore, decoupling the Rx and Dz DOFs at
step i¼ 6 allows the web to rotate and move out of its plane,
substantially affecting the critical load.

These discrepancies in the buckling coefficients highlight
the significance of the calibration process and the progressive
inclusion of constraints in the 2d model. They demonstrate
the importance of accurately capturing the interaction
between different components of the plate and the influence
it has on the overall buckling behavior. In conclusion, the
significant stiffness provided by the two flanges is related to
the degrees of freedom Δx, Δy, and Rx. Replacing the flanges
with elastic constraints involved setting axial and rotational
springs in the x direction. However, it was found that it is
better to assign a fixed constraint Δz¼ 0 rather than using
high elastic constants for the springs, considering the high
flexural inertia of the flanges in the z direction.

To investigate the rotational effect of the flange in com-
parison to the bending stiffness of the plate, the dimension-
less parameter β was used. The relative rotational stiffness,
denoted as kR;rel, can be calculated using Equation (8), where
KR represents the rotational stiffness per unit length.

kR;rel ¼ 12 ⋅ KR ⋅ nkr ⋅ 1 − ν2ð Þ h
E ⋅ t3 ⋅ a

: ð8Þ

Similarly, the translational effect of the flange was exam-
ined concerning the axial stiffness of the plate using the
dimensionless parameter γ¼ b1⋅t1

h⋅t . The relative translational
stiffness, denoted as kT;rel, is determined by Equation (9),
with KT representing the axial stiffness per unit length.

kT;rel ¼ 12 ⋅ KT ⋅ nK
h

E ⋅ t ⋅ a
: ð9Þ

In the analysis, a fixed constraint was applied in the z
direction to restrict any out-of-plane movement. To ensure
an equal number of nodes on the two horizontal sides (nk),
the element sizes were scaled to match the magnitude of h,
considering three scaling factors (0.5, 0.25, and 1.5).

Table 3 and Figure 6 present the correlation results
between the rotational springs kR;rel and the dimensionless
parameter β for the upper and lower flanges. The table
demonstrates the strong relationship between these vari-
ables, as indicated by the high quality of the regression mod-
els with R 2 higher than 0.95.

A comprehensive analysis of the obtained numerical
values reveals the following key observations:

(i) With the panels transition from square to elongated
shapes, there is a consistent decrease in KR;rel while
maintaining a constant load condition and β param-
eter. This trend is captured accurately by the regres-
sion models.

(ii) The relative rotational stiffness (KR;rel) is found to be
more sensitive to the parameter γ (flange width-to-
web thickness ratio) than the specific loading
configuration. The regressions exhibit excellent per-
formance in capturing this sensitivity.

(iii) For aspect ratios of 2 and 3, the rotational stiffness
around the upper flange decreases with increasing γ.
In contrast, the rotational stiffness around the lower
flange decreases from 0.2 to 0.5 and then increases
between 0.5 and 1. The regressions accurately repre-
sent these variations.

(iv) The behavior of the square panel differs from that of
the two rectangular panels. For an aspect ratio of 1,
with load configurations of 0.2 and 0.5, the relative
stiffness of the upper flange is greater than that of
the lower flange. However, this trend is reversed
when transitioning to an aspect ratio 1. The regres-
sion models successfully capture these trends.

The quality of the regression models can be assessed by
various metrics, including the coefficient of determination
(R2). The R2 values exceed 0.95 in all cases, indicating a
strong correlation between the rotational springs (kR;rel)
and the dimensionless parameter β. The excellent R2 values
suggest that the regressions provide accurate and reliable
estimates of the rotational stiffness based on the geometric
parameters.

These findings highlight the robustness and reliability of
the regression models in capturing the relationship between
the rotational stiffness and the adimensional parameters,

TABLE 3: Determination of KR;rel for upper and lower flanges.

a=h ss=a Upper flange Lower flange

1 0.2 KR;rel = 14.2890 β KR;rel = 13.1840 β
1 0.5 KR;rel = 13.5510 β KR;rel = 13.2590 β
1 1 KR;rel = 14.81200 β KR;rel = 14.0620 β
2 0.2 KR;rel = 14.3450 β KR;rel = 4.5440 β
2 0.5 KR;rel = 14.2880 β KR;rel = 4.2160 β
2 1 KR;rel = 14.4850 β KR;rel = 4.0810 β
3 0.2 KR;rel = 14.7551 β KR;rel = 3.4313 β
3 0.5 KR;rel = 14.4703 β KR;rel = 2.7307 β
3 1 KR;rel = 14.6496 β KR;rel = 1.9030 β
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providing valuable insights into the system’s behavior under
different geometric configurations and load conditions.

Table 4 and Figure 7 presents the relationship between
the translational springs KT;rel and the dimensionless param-
eter γ for the upper and lower flanges. The table provides
valuable insights into the relationship between these vari-
ables, shedding light on the system’s behavior under different
geometric configurations and load conditions.

A comprehensive analysis of the numerical values reveals
the following key observations:

(i) Varying the aspect ratio of the panels results in dif-
ferent behaviors regarding the translational stiffness.
As the panels’ shape changes from a square to elon-
gated, there is a consistent decrease in KT;rel while

maintaining a constant load condition and γ param-
eter. This trend, captured by the regression models,
demonstrates the sensitivity of the translational stiff-
ness to the aspect ratio.

(ii) The relative translational stiffnesses (KT;rel) are
found to be more sensitive to the parameter γ (flange
width-to-web thickness ratio) than to the specific
loading configuration. The regressions accurately
capture this sensitivity, highlighting the importance
of the ratio γ in determining the translational behav-
ior of the flanges.

(iii) When the load is distributed over the length a, the
translational contribution of the two flanges
becomes more uniform. This indicates that a more
distributed load leads to a more balanced sharing of
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FIGURE 6: Plots of kR; rel against β for different values of ss=a and a=h. The three subfigures represent the different upper (U.F.) and lower
flanges (L.F.) scenarios given a=h¼ 1; 2 and 3, respectively.
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FIGURE 7: Plots of kT;rel against γ for different values of ss=a and a=h. The three subfigures represent the different upper (U.F.) and lower
flanges (L.F.) scenarios given a=h¼ 1; 2 and 3, respectively.

TABLE 4: Determination of KT;rel for upper and lower flanges.

a=h ss=a Upper flange Lower flange

1
0.2 KT;rel = 0.489 γ3 − 4.279 γ2 + 11.372 γ KT;rel = 0.310γ3 − 3.411 γ2 + 9.870 γ
0.5 KT;rel = 0.364 γ3−3.710 γ2 + 10.438 γ KT;rel = 0.314γ3−3.421 γ2 + 9.873 γ
1 KT;rel = 0.253 γ3 − 3.103γ2 + 9.288 γ KT;rel = 0.302γ3 − 3.391 γ2 + 9.854 γ

2
0.2 KT;rel =− 0.440 γ2 + 3.364 γ KT;rel =− 0.348 γ2 + 2.627 γ
0.5 KT;rel =− 0.345 γ2 + 2.722 γ KT;rel =− 0.338 γ2+2.558 γ
1 KT;rel =− 0.325 γ2 + 2.399 γ KT;rel =− 0.331 γ2+2.502 γ

3
0.2 KT;rel = 1.551 γ KT;rel = 1.204 γ
0.5 KT;rel = 1.142 γ KT;rel = 1.082 γ
1 KT;rel = 1.037 γ KT;rel = 1.033 γ
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the translational stiffness between the upper and
lower flanges. The regressions effectively represent
this relationship.

(iv) For each observed geometric configuration with
load configurations of 0.2 and 0.5, it is observed
that the relative stiffness of the upper flange is gen-
erally more significant than that of the lower flange.
However, this trend may be reversed when transi-
tioning to an aspect ratio 1. The regression models
accurately capture these variations, providing valu-
able insights into the relative stiffnesses of the
flanges.

(v) For aspect ratios 2 and 3, the relative translational
stiffness of the flanges decreases with increasing γ,
indicating a stronger contribution of the flanges to
the overall stiffness. Interestingly, when aspect ratio
3 is compared with aspect ratio 1, both flanges
exhibit similar values of the relative translational
stiffness. This observation emphasizes the impor-
tance of considering the geometric configuration
in understanding the translational behavior of the
flanges.

These findings provide valuable insights into the rela-
tionship between the translational springs and the adimen-
sional parameter γ. The high quality of the regression models
is evident in their ability to accurately capture the behavior of
the translational stiffness of the geometric parameters. Over-
all, the results demonstrate the effectiveness of the regres-
sions in characterizing the translational behavior of the
flanges and their contribution to the overall system stiffness.

4.2. Equivalent 2dModel for the Transverse Stiffening. Table 5
displays the buckling coefficients (kcr) for each stage of anal-
ysis, represented by kcr; i, where i goes from 1 to 6. These
stages correspond to the systematic release of constraints
across six phases previously outlined. The table provides
insights into how the 2d model responds to the step-by-
step relaxation of constraints. Both geometric changes and
steel defect levels influence the buckling coefficients. For
reference, the buckling coefficients for the 3d model
(kcr; 3d) are included, while coefficients kcr; 1 to kcr; 6 detail
the results for each of the six phases.

Analyzing the numerical values, several noteworthy
observations can be made:

(i) The most significant variations in buckling coeffi-
cients are observed in square panels. As the aspect
ratio (a=h) increases, the panels become less sensitive
to the characteristics of the stiffeners. This indicates
that the stiffeners’ influence on the panel’s buckling
behavior decreases as the aspect ratio increases.

(ii) Additionally, the data in the table suggests that the
most considerable reductions in buckling coefficients
occur for higher aspect ratio values. This implies that
higher aspect ratio panels exhibit a more significant
reduction in their sensitivity to the lateral boundary
conditions imposed by the stiffeners.

These findings highlight the influence of the aspect ratio
and the stiffeners’ characteristics on the panels’ buckling
behavior. The observed variations in buckling coefficients
provide insights into the sensitivity of the panels to different
geometric and boundary conditions. As the aspect ratio
increases and the influence of the stiffeners decreases, the
panels exhibit reduced sensitivity to lateral boundary condi-
tions. In conclusion, the results fromTable 5 demonstrate that
the sensitivity of the panels to the lateral boundary conditions
increases with a decrease in aspect ratio and a corresponding
increase in the influence of the stiffeners. These findings con-
tribute to a better understanding of the relationship between
geometric parameters, boundary conditions, and the buckling
behavior of the panels, providing valuable insights for the
design and analysis of similar structures.

Rotational springs around the y-axis were introduced to
incorporate the stiffness of the stiffeners. The rotational stiff-
ness is influenced by the dimensions of the stiffening ele-
ments, specifically t2 and b2, as well as the size of the web
panel represented by t and a. To evaluate the rotational
rigidity of the plate stiffness, a term denoted as the relative
rotational stiffness, KR;rel, was introduced. The relationship
between β0 and KR;rel in the z-direction, where out-of-plane
movements were eliminated, is established and presented in
Table 6.

Table 6 provides the determination of KR;rel for the stif-
feners, presenting the variation in relative rotational stiffness

TABLE 5: Buckling coefficients of the 2d model for each step-wise constraint releasing method phase.

No. ss=a a h t t1 b1 t2 b2 kcr; 3d kcr; 1 kcr; 2 kcr; 3 kcr; 4 kcr; 5 kcr; 6
a 0.2 1,000 1,000 12 24 480 12 144 8.685 8.685 8.685 8.684 8.684 7.915 6.218
b 0.2 2,000 1,000 4 8 160 6 48 4.74 4.74 4.74 4.74 4.74 4.681 4.652
c 0.2 3,000 1,000 8 12 240 12 96 3.873 3.873 3.873 3.873 3.873 3.853 3.845

d 0.5 1,000 1,000 8 16 320 8 96 9.573 9.573 9.573 9.573 9.573 8.807 6.427
e 0.5 2,000 1,000 12 12 240 18 114 4.194 4.194 4.194 4.194 4.194 3.953 3.829
f 0.5 3,000 1,000 4 6 72 10 200 7.485 7.485 7.485 7.485 7.485 7.465 7.444

g 1 1,000 1,000 4 6 120 6 58 11.437 11.44 11.44 11.44 11.44 9.712 6.16
h 1 2,000 1,000 8 20 400 12 96 13.68 13.68 13.68 13.68 13.68 13.23 12.18
i 1 3,000 1,000 12 18 360 18 144 9.623 9.623 9.623 9.624 9.623 9.389 9.146
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for different values of the aspect ratio (a=h), stiffener slen-
derness (ss=a), and β values.

Several key observations can be made from the table:

(i) For an aspect ratio of a=h= 1, the relative rotational
stiffness is minimally affected by the size of the
flanges, irrespective of the load configuration and
panel slenderness. This implies that the contribution
of the stiffener to the rotational stiffness remains
relatively constant for this aspect ratio.

(ii) For aspect ratios of a=h= 2 and 3, the values of KR;rel
exhibit significant variations depending on β0 and β.

This indicates that the impact of the stiffeners on the
rotational stiffness becomes more pronounced as the
aspect ratio increases. The characteristics of the two
flanges influence the contribution of the stiffeners,
leading to variations in the relative rotational
stiffness.

5. Discussion

The following insights can be derived from the results:
The aspect ratio of the panel has a more significant influ-

ence on the relative rotational stiffness than the length of the

TABLE 6: Determination of KR;rel regressions for stiffeners.

a=h ss=a λ β KR;rel a=h ss=a λ β KR;rel

1
0.2 83.3 >0.08 KR;rel = 21.462 β0 3 0.2 250 0.08 KR;rel = 340.560 β0

0.5 250 <9.38 KR;rel = 21.811 β0 0.41 KR;rel = 136.300 β0

1 KR;rel = 22.383 β0 1.28 KR;rel = 148.020 β0

2 0.2

250 0.08 KR;rel = 61.643 β0 3.13 KR;rel = 187.00 β0

0.41 KR;rel = 62.265 β0 3 0.2 125 0.16 KR;rel = 171.490 β0

1.28 KR;rel = 67.674 β0 0.81 KR;rel = 141.050 β0

3.13 KR;rel = 77.813 β0 2.56 KR;rel = 169.520 β0

2 0.2

125 0.16 KR;rel = 60.955 β0 6.25 KR;rel = 291.530 β0

0.81 KR;rel = 64.410 β0 3 0.2 83.3 0.24 KR;rel = 136.460 β0

2.56 KR;rel = 72.475 β0 1.22 KR;rel = 141.940 β0

6.25 KR;rel = 84.964 β0 3.84 KR;rel = 187.300 β0

2 0.2

83.3 0.24 KR;rel = 62.126 β0 9.38 KR;rel = 460.380 β0

1.22 KR;rel = 65.252 β0 3 0.5 250 0.08 KR;rel = 404.090 β0

3.84 KR;rel = 73.919 β0 0.41 KR;rel = 142.030 β0

9.38 KR;rel = 86.035 β0 1.28 KR;rel = 156.720 β0

2 0.5

250 0.08 KR;rel = 62.993 β0 3.13 KR;rel = 211.780 β0

0.41 KR;rel = 63.773 β0 3 0.5 125 0.16 KR;rel = 175.990 β0

1.28 KR;rel = 68.870 β0 0.81 KR;rel = 145.870 β0

3.13 KR;rel = 78.280 β0 2.56 KR;rel = 183.00 β0

2 0.5

125 0.16 KR;rel = 62.467 β0 6.25 KR;rel = 375.560 β0

0.81 KR;rel = 65.672 β0 3 0.5 83.3 0.24 KR;rel = 140.250 β0

2.56 KR;rel = 73.090 β0 1.22 KR;rel = 148.840 β0

6.25 KR;rel = 83.600 β0 3.84 KR;rel = 214.110 β0

2 0.5

83.3 0.24 KR;rel = 63.577 β0 9.38 KR;rel = 500.340 β0

1.22 KR;rel = 66.308 β0 3 1 250 0.08 KR;rel = 313.880 β0

3.84 KR;rel = 73.898 β0 0.41 KR;rel = 153.360 β0

9.38 KR;rel = 83.289 β0 1.28 KR;rel = 171.400 β0

2 1

250 0.08 KR;rel = 65.707 β0 3.13 KR;rel = 221.810 β0

0.41 KR;rel = 67.284 β0 3 1 125 0.16 KR;rel = 168.700 β0

1.28 KR;rel = 72.916 β0 0.81 KR;rel = 158.200 β0

3.13 KR;rel = 82.345 β0 2.56 KR;rel = 196.000 β0

2 1

125 0.16 KR;rel = 65.519 β0 6.25 KR;rel = 290.520 β0

0.81 KR;rel = 69.215 β0 3 1 83.3 0.24 KR;rel = 150.830 β0

2.56 KR;rel = 76.875 β0 1.22 KR;rel = 161.260 β0

6.25 KR;rel = 85.875 β0 3.84 KR;rel = 215.310 β0

2 1

83.3 0.24 KR;rel = 66.648 β0 9.38 KR;rel = 321.250 β0

1.22 KR;rel = 69.801 β0

3.84 KR;rel = 76.944 β0

9.38 KR;rel = 84.165 β0
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FIGURE 8: Continued.
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applied load. This suggests that the geometric configuration
of the panel plays a more significant role in determining the
rotational stiffness behavior.

Holding other factors constant, the value of KR;rel tends
to increase with an increase in the aspect ratio. This indicates
that larger aspect ratios result in higher relative rotational
stiffness, reflecting the enhanced rotational confinement pro-
vided by the stiffeners.

Based on these findings, it can be concluded that the size
and configuration of the stiffeners and the panel’s aspect
ratio have a notable influence on the relative rotational
stiffness.

It must be remarked that the regression analysis con-
ducted to determine the relative rotational stiffness (KR;rel)
for the stiffeners exhibits excellent quality, making it mean-
ingful to omit the reporting of error metrics. The obtained
regression equations accurately capture the relationship
between the input parameters (β0, β) and the resulting rela-
tive rotational stiffness values. The high quality of the regres-
sions is reflected in the consistency and reliability of the
predicted KR;rel values across the different combinations of
aspect ratio, stiffener slenderness, and β values.

Figure 8 illustrates several buckled configurations, and it
is evident that the deformed panels exhibit qualitative simi-
larities in both models.

It is worth noting that employing a nonlinear buckling
analysis might enhance the validation of our results. Relying
solely on the linear buckling analyses can be nonconserva-
tive, especially when addressing local instabilities. Drawing a
comparison between the proposed method and a compre-
hensive nonlinear buckling analysis—which incorporates
both material and geometric nonlinearities—would shed
light on the considered buckling phenomena

5.1. Working Example. The working example presented in
this section aims to demonstrate the application of a 2d plate

model in determining the stiffness values of a structural
system. The system under consideration consists of a panel
constrained by stiffeners, and the rotational stiffness of the
stiffeners is considered using rotational springs around the
y-axis. In this example, we focus on a specific configuration
with defined input variables such as the aspect ratio of the
panel (a=h), the dimensions of the panel and stiffeners, and
the slenderness ratio (ss=a). These variables play a signifi-
cant role in influencing the rotational stiffness of the
stiffeners.

Following the prescribed procedure, which involves
intermediate calculations based on the input variables,
we determine the relative rotational and translational stiff-
ness values for the upper and lower flanges and the stiffen-
ers. The 2d plate model allows us to quantify the stiffness
contributions of each component within the system. To
validate the accuracy of the 2d plate model, a comparison
is made with results obtained from a more detailed 3d
model. The comparison helps assess the reliability of the
simplified 2d approach in predicting the stiffness behavior
of the system.

Overall, this working example is an illustrative case, dem-
onstrating the application of the 2d plate model and
highlighting the agreement between the 2d and 3d models’
stiffness results.

Input variables:

(i) a=h= 2
(ii) t= 12mm
(iii) t1 = 24mm
(iv) b1 = 480mm
(v) t2 = 18mm
(vi) b2 = 216mm
(vii) ss=a= 0.2
(viii) λ= 83.333

ðeÞ ðfÞ
FIGURE 8: Deformed configurations of 3d and 2d models.

14 Advances in Civil Engineering



Intermediate calculations:

(i) β¼ b1t31
ht3 ¼ 3:84

(ii) γ¼ b1t1
ht ¼ 0:96

(iii) β0 ¼ 2b2t32
at3 ¼ 0:729

Stiffness values:

(i) Upper flange relative rotational stiffness: KR;rel; u¼
3:3450β0 ¼ 12:8448Nmm/rad

(ii) Lower flange relative rotational stiffness: KR;rel; l ¼
4:5440β0 ¼ 17:4489Nmm/rad

(iii) Upper flange relative translational stiffness:
KT;rel; u ¼ − 0:44γ2 þ 3:364γ¼ 2:8239Nmm/rad

(iv) Lower flange relative translational stiffness:
KT;rel; l ¼ − 0:348γ2 þ 2:627γ¼ 2:2012Nmm/rad

6. Conclusions

In the design of I-section beamwebs for stability, it is custom-
ary to assume hinged boundary conditions along the panel’s
perimeter to ensure safety. However, the critical load values of
the system exhibit significant variations depending on the
relative stiffness of the edge restraints.

By analyzing the correlation between the relative transla-
tional stiffness (KT;rel) and dimensional axial stiffness (γ), as
well as between the rotational stiffness (KR;rel) and adimensional
bending stiffness (β and β0) within the web/flanges/stiffeners
system, it becomes possible to treat the web panels as 2d models
confined by constraints with variable stiffness. This approach
allows for substituting finite-rigidity constraints with elastically
deformable translational and rotational elements, enabling a
rapid determination of the spring constants.

Decoupling the translational and rotational restraints
provides further insights into the behavior of plates subjected
to patch loading. Based on the numerical results, the follow-
ing conclusions can be drawn:

(i) When the load is distributed over the entire length
(a) of the panel, the rotational contribution of the
two flanges becomes more evenly distributed.

(ii) For a ratio of a=h= 1 and load values of ss=a= 0.2
and 0.5, the upper flange exhibits higher relative
stiffness than the lower flange. However, this trend
is reversed when transitioning to a ratio of 1.

(iii) For ratios a=h= 2 and 3, the rotational stiffness around
the upper flange decreases as the ratio (ss=a) increases.
On the other hand, the rotational stiffness of the lower
flange decreases when transitioning from a load value
of 0.2–0.5 but then increases between 0.5 and 1.

These findings contribute to a better understanding of
the behavior of the web/flanges/stiffeners system under
patch-loading conditions. By considering the variable stiff-
ness constraints and their impact on the system, engineers
can make more informed design decisions and ensure
I-section beam webs’ structural integrity and stability.

Nomenclature

a: Width of the web
b1: Width of the flange
b2: Width of the stiffener
Dx;Dy;Dz: Displacements in the x; y; z directions,

respectively
E: Young’s modulus of steel
Fcr: Elastic critical load
Fcr; i: Critical load at step i
i: Step number in the decoupling procedure
kcr: Buckling coefficient
kcr; i: Buckling coefficient at step i
K 0: Elastic stiffness per unit of spring length
KR: Stiffness of rotational constraint
KT : Stiffness of translational constraint
KT;rel:

KT
E⋅t

À Á
Ratio between the adimensional transla-

tional stiffness and the axial stiffness of the
plate. The subscripts u and l indicate the upper
and lower flanges

h: Height of the web
KR: Value of the rotational springs along the plate

perimeter
K 0
R:

KR⋅nKR
a

À Á
Rotational stiffness per unit of length

KR;rel: KR⋅nKR⋅12 1−ν2ð Þ⋅hw
E⋅t3a

� �
Ratio between the adimen-

sional rotational stiffness and the bending stiff-
ness of the plate

nKR: Number of nodes
Rx;Ry;Rz: Rotations about the x; y; z axes, respectively
ss: Patch load length
t: Thickness of the 2d equivalent plate
t1: Thickness of the flange
t2: Thickness of the stiffener
x; y: Axes
β: b1t31

ht3

� �
Ratio between rotational stiffness of

flange and flexural rigidity of web panel
β0: 2b2t32

at3

� �
Ratio between rotational stiffness of ver-

tical stiffener and flexural rigidity of web panel
γ: b1t1

ht

� �
Adimensional geometric parameter

λ: Slenderness of the plate
λ1: First eigenvalue of the stability problem
λ1; i: Eigenvalue at step i
ν: Poisson’s coefficient
σ0: Compression stress in the plate.

Appendix

Validation of a 2d Fully Constrained Model

Based on the provided expressions, Tables 7–9 present a com-
prehensive comparison between the critical buckling loads
(kcr; 3d) obtained using the proposed procedure and the cor-
responding values (kcr; 2d) obtained from a simplified 2d
spring model in the case of the fully clamped plate. The tables
facilitate a comparison of different parameters, including the
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TABLE 7: Comparison between kcr; 3d and kcr; 2d spring following the proposed procedure for a=h¼ 1.

a=h¼ 1 ss=a¼ 0:2 ss=a¼ 0:5 ss=a¼ 1

l β β0 kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

250

0.08
0.06 4.202 4.203 1.000 4.969 4.965 1.001 7.799 7.784 1.002
0.08 4.256 4.240 1.004 5.043 5.016 1.005 7.931 7.874 1.007
0.26 4.571 4.532 1.009 5.477 5.434 1.008 8.693 8.622 1.008

0.41

0.06 5.633 5.591 1.008 6.596 6.551 1.007 10.243 10.182 1.006
0.1 5.766 5.668 1.017 6.774 6.661 1.017 10.553 10.377 1.017
0.32 6.171 6.006 1.027 7.332 7.157 1.024 11.532 11.274 1.023
0.39 6.282 6.075 1.034 7.486 7.262 1.031 11.802 11.468 1.029

1.28

0.06 7.173 7.156 1.002 8.319 8.307 1.001 12.763 12.759 1.000
0.1 7.303 7.249 1.007 8.493 8.433 1.007 13.065 12.976 1.007
0.32 7.765 7.658 1.014 9.121 9.005 1.013 14.151 13.982 1.012
0.49 7.995 7.810 1.024 9.437 9.226 1.023 14.699 14.381 1.022

3.13

0.06 7.988 7.988 1.000 9.239 9.250 0.999 14.095 14.133 0.997
0.1 8.117 8.089 1.003 9.410 9.384 1.003 14.390 14.360 1.002
0.32 8.609 8.550 1.007 10.068 10.006 1.006 15.513 15.425 1.006
0.49 8.836 8.758 1.009 10.378 10.251 1.012 16.050 15.856 1.012

125

0.16
0.13 4.937 4.824 1.023 5.860 5.719 1.025 9.221 8.989 1.026
0.15 5.034 4.877 1.032 5.992 5.797 1.034 9.452 9.130 1.035
0.51 5.408 5.236 1.033 6.521 6.328 1.030 10.397 10.102 1.029

0.81

0.13 6.887 6.778 1.016 8.059 7.935 1.016 12.484 12.299 1.015
0.19 7.118 6.898 1.032 8.368 8.106 1.032 13.013 12.603 1.033
0.65 7.615 7.317 1.041 9.064 8.730 1.038 14.249 13.743 1.037
0.78 7.742 7.379 1.049 9.238 8.827 1.047 14.546 13.926 1.045

2.56

0.13 8.141 8.080 1.008 9.456 9.395 1.006 14.491 14.420 1.005
0.19 8.353 8.222 1.016 9.738 9.587 1.016 14.973 14.750 1.015
0.65 8.914 8.742 1.020 10.508 10.311 1.019 16.321 16.021 1.019
0.97 9.135 8.883 1.028 10.809 10.515 1.028 16.845 16.390 1.028

6.25

0.13 8.629 8.554 1.009 10.003 9.940 1.006 15.263 15.230 1.002
0.19 8.833 8.703 1.015 10.274 10.145 1.013 15.722 15.566 1.010
0.65 9.425 9.259 1.018 11.071 10.907 1.015 17.105 16.883 1.013
0.97 9.631 9.414 1.023 11.355 11.127 1.020 17.605 17.274 1.019

83.33

0.24
0.19 5.537 5.302 1.044 6.592 6.317 1.044 10.388 9.946 1.044
0.23 5.664 5.360 1.057 6.765 6.408 1.056 10.686 10.110 1.057
0.77 6.032 5.706 1.057 7.294 6.959 1.048 11.643 11.135 1.046

1.22

0.19 7.630 7.448 1.024 8.933 8.722 1.024 13.825 13.508 1.023
0.29 7.908 7.587 1.042 9.305 8.919 1.043 14.458 13.858 1.043
0.97 8.402 8.024 1.047 10.000 9.569 1.045 15.703 15.047 1.044
1.18 8.521 8.077 1.055 10.157 9.651 1.052 15.966 15.200 1.050

3.84

0.19 8.622 8.477 1.017 10.026 9.884 1.014 15.360 15.190 1.011
0.29 8.871 8.637 1.027 10.358 10.102 1.025 15.925 15.563 1.023
0.97 9.420 9.170 1.027 11.112 10.844 1.025 17.267 16.874 1.023
1.46 9.596 9.280 1.034 11.351 11.010 1.031 17.684 17.174 1.030

9.38

0.19 9.020 8.808 1.024 10.450 10.274 1.017 15.920 15.752 1.011
0.29 9.264 8.973 1.032 10.770 10.496 1.026 16.462 16.141 1.020
0.97 9.847 9.531 1.033 11.555 11.269 1.025 17.842 17.490 1.020
1.46 10.009 9.654 1.037 11.777 11.446 1.029 18.233 17.806 1.024
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TABLE 8: Comparison between kcr; 3d and kcr; 2d spring following the proposed procedure for a=h¼ 2.

a=h¼ 2 ss=a¼ 0:2 ss=a¼ 0:5 ss=a¼ 1

l β β0 kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

250

0.08
0.03 2.803 2.847 0.985 3.48 3.54 0.983 5.624 5.719 0.983
0.04 2.81 2.85 0.986 3.49 3.548 0.984 5.657 5.741 0.985
0.13 2.854 2.884 0.990 3.58 3.619 0.988 5.858 5.925 0.989

0.41

0.03 3.529 3.517 1.003 4.35 4.342 1.003 7.007 6.996 1.002
0.05 3.546 3.523 1.007 4.39 4.357 1.006 7.082 7.039 1.006
0.16 3.598 3.551 1.013 4.48 4.425 1.013 7.312 7.239 1.010
0.2 3.614 3.557 1.016 4.51 4.44 1.016 7.378 7.282 1.013

1.28

0.03 4.705 4.679 1.006 5.82 5.792 1.005 9.35 9.316 1.004
0.05 4.718 4.682 1.008 5.85 5.803 1.008 9.419 9.36 1.006
0.16 4.762 4.699 1.013 5.93 5.857 1.013 9.648 9.553 1.010
0.24 4.793 4.705 1.019 5.99 5.877 1.019 9.785 9.628 1.016

3.13

0.03 5.904 5.885 1.003 7.35 7.33 1.003 11.78 11.76 1.002
0.05 5.913 5.887 1.004 7.37 7.336 1.004 11.84 11.804 1.003
0.16 5.94 5.897 1.007 7.43 7.379 1.007 12.05 11.996 1.004
0.24 5.959 5.901 1.010 7.47 7.395 1.011 12.16 12.068 1.008

125

0.16
0.06 3.075 3.076 1.000 3.82 3.817 1.000 6.19 6.183 1.001
0.08 3.088 3.082 1.002 3.84 3.829 1.003 6.246 6.217 1.005
0.26 3.142 3.123 1.006 3.94 3.918 1.006 6.486 6.452 1.005

0.81

0.06 4.211 4.173 1.009 5.21 5.162 1.009 8.407 8.338 1.008
0.1 4.242 4.18 1.015 5.27 5.181 1.016 8.538 8.401 1.016
0.32 4.305 4.206 1.024 5.38 5.254 1.024 8.821 8.633 1.022
0.39 4.328 4.211 1.028 5.42 5.266 1.029 8.909 8.672 1.027

2.56

0.06 5.676 5.635 1.007 7.06 7.012 1.007 11.36 11.301 1.005
0.1 5.696 5.639 1.010 7.1 7.026 1.011 11.48 11.362 1.010
0.32 5.741 5.654 1.015 7.2 7.08 1.016 11.74 11.582 1.014
0.49 5.78 5.658 1.022 7.26 7.096 1.024 11.9 11.645 1.022

6.25

0.06 6.712 6.682 1.004 8.38 8.355 1.003 13.45 13.428 1.001
0.1 6.722 6.685 1.006 8.41 8.367 1.005 13.54 13.488 1.004
0.32 6.746 6.695 1.008 8.47 8.412 1.007 13.77 13.7 1.005
0.49 6.764 6.699 1.010 8.51 8.426 1.010 13.87 13.759 1.008

83.33

0.24
0.1 3.292 3.267 1.008 4.09 4.055 1.009 6.658 6.588 1.011
0.11 3.312 3.274 1.012 4.13 4.07 1.014 6.739 6.627 1.017
0.39 3.368 3.315 1.016 4.23 4.162 1.016 6.978 6.874 1.015

1.22

0.1 4.709 4.641 1.015 5.85 5.758 1.015 9.462 9.324 1.015
0.14 4.752 4.647 1.023 5.92 5.778 1.025 9.639 9.392 1.026
0.49 4.82 4.67 1.032 6.05 5.845 1.035 9.935 9.62 1.033
0.59 4.85 4.673 1.038 6.1 5.855 1.041 10.04 9.652 1.040

3.84

0.1 6.201 6.145 1.009 7.74 7.679 1.008 12.47 12.392 1.006
0.14 6.223 6.149 1.012 7.78 7.696 1.011 12.6 12.457 1.011
0.49 6.264 6.162 1.017 7.87 7.746 1.016 12.85 12.671 1.014
0.73 6.307 6.165 1.023 7.94 7.758 1.023 13.01 12.72 1.023

9.38

0.1 7.06 7.007 1.008 8.82 8.787 1.003 14.16 14.144 1.001
0.14 7.069 7.01 1.008 8.84 8.8 1.005 14.25 14.211 1.003
0.49 7.09 7.02 1.010 8.9 8.843 1.006 14.46 14.415 1.003
0.73 7.106 7.022 1.012 8.93 8.853 1.009 14.55 14.462 1.006
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TABLE 9: Comparison between kcr; 3d and kcr; 2d spring following the proposed procedure for a=h¼ 3.

a=h¼ 3 ss=a¼ 0:2 ss=a¼ 0:5 ss=a¼ 1

l β β0 kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

kcr; 3d kcr; 2d
kcr; 3d
kcr; 2d

250

0.08
0.02 2.687 2.783 0.966 3.361 3.519 0.955 5.173 6.69 0.773
0.03 2.69 2.783 0.967 3.371 3.52 0.958 5.199 6.698 0.776
0.09 2.708 2.785 0.972 3.436 3.526 0.974 5.361 6.762 0.793

0.41

0.02 3.35 3.349 1.000 4.49 4.513 0.995 7.452 7.582 0.983
0.03 3.353 3.349 1.001 4.499 4.515 0.996 7.49 7.601 0.985
0.11 3.362 3.35 1.004 4.525 4.523 1.000 7.601 7.684 0.989
0.13 3.365 3.35 1.004 4.533 4.525 1.002 7.633 7.701 0.991

1.28

0.02 4.291 4.274 1.004 5.764 5.744 1.003 9.607 9.633 0.997
0.03 4.294 4.274 1.005 5.772 5.744 1.005 9.642 9.652 0.999
0.11 4.304 4.274 1.007 5.796 5.747 1.009 9.746 9.734 1.001
0.16 4.312 4.274 1.009 5.815 5.749 1.011 9.814 9.764 1.005

3.13

0.02 5.45 5.432 1.003 7.473 7.441 1.004 12.56 12.558 1.000
0.03 5.452 5.432 1.004 7.478 7.442 1.005 12.59 12.58 1.000
0.11 5.458 5.433 1.005 7.493 7.443 1.007 12.68 12.667 1.001
0.16 5.464 5.433 1.006 7.506 7.443 1.008 12.73 12.696 1.003

125

0.16
0.04 2.967 3.002 0.988 3.968 4.088 0.971 6.525 6.896 0.946
0.05 2.969 3.002 0.989 3.977 4.089 0.973 6.561 6.909 0.950
0.17 2.979 3.005 0.991 4.012 4.102 0.978 6.711 6.999 0.959

0.81

0.04 3.866 3.854 1.003 5.168 5.159 1.002 8.626 8.671 0.995
0.06 3.873 3.854 1.005 5.186 5.161 1.005 8.691 8.697 0.999
0.22 3.887 3.855 1.008 5.219 5.167 1.010 8.82 8.789 1.004
0.26 3.893 3.855 1.010 5.233 5.169 1.012 8.863 8.804 1.007

2.56

0.04 5.188 5.158 1.006 7.058 7.01 1.007 11.86 11.831 1.002
0.06 5.194 5.159 1.007 7.071 7.011 1.009 11.92 11.858 1.005
0.22 5.206 5.159 1.009 7.099 7.012 1.012 12.03 11.946 1.007
0.32 5.22 5.159 1.012 7.129 7.013 1.017 12.13 11.97 1.013

6.25

0.04 6.446 6.416 1.005 9.009 8.966 1.005 15.28 15.273 1.000
0.06 6.448 6.416 1.005 9.014 8.967 1.005 15.32 15.304 1.001
0.22 6.453 6.417 1.006 9.025 8.97 1.006 15.41 15.399 1.000
0.32 6.46 6.417 1.007 9.041 8.97 1.008 15.47 15.421 1.003

83.33

0.24
0.06 3.129 3.148 0.994 4.198 4.263 0.985 7.003 7.212 0.971
0.08 3.132 3.148 0.995 4.208 4.265 0.987 7.043 7.228 0.974
0.26 3.142 3.15 0.997 4.238 4.277 0.991 7.166 7.323 0.979

1.22

0.06 4.259 4.229 1.007 5.713 5.667 1.008 9.577 9.551 1.003
0.1 4.27 4.23 1.009 5.739 5.671 1.012 9.667 9.581 1.009
0.32 4.288 4.23 1.014 5.779 5.676 1.018 9.805 9.669 1.014
0.39 4.297 4.23 1.016 5.798 5.677 1.021 9.86 9.681 1.018

3.84

0.06 5.758 5.713 1.008 7.918 7.852 1.008 13.38 13.328 1.004
0.1 5.765 5.713 1.009 7.933 7.852 1.010 13.45 13.355 1.007
0.32 5.778 5.714 1.011 7.961 7.854 1.014 13.56 13.439 1.009
0.49 5.798 5.714 1.015 8.002 7.855 1.019 13.68 13.456 1.016

9.38

0.06 6.945 6.903 1.006 9.789 9.762 1.003 16.67 16.716 0.997
0.1 6.947 6.903 1.006 9.793 9.763 1.003 16.71 16.747 0.998
0.32 6.951 6.904 1.007 9.803 9.766 1.004 16.79 16.834 0.997
0.49 6.96 6.904 1.008 9.82 9.766 1.006 16.84 16.848 1.000
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ratio of web thickness to height (a=h) and the ratio of stiffener
spacing to web spacing (ss=a).

The comparison is presented in Table 7 for the fully
constrained case where a=h is 1. The values of kcr;3d and
kcr; 2d are provided for various combinations of l, β, and β0.
The results showcase the calculated critical buckling loads for
both the 3d model and the 2d spring model. Specifically, the
values of kcr; 3d obtained from the proposed procedure are
compared with those of kcr; 2d obtained from the simplified
2d spring model.

Similarly, in Tables 8 and 9, the fully constrained com-
parison is presented for the case where a=h is 2 and 3,
respectively.

For a=h¼ 1, the kcr;3d is greater than kcr;2d. This indicates
that the estimated 2d value is slightly underestimated. The
relative percentage reduction is consistently below 6%. The
peak errors, approximately 5%, are generally observed for
larger values of β, particularly for the cases when λ¼ 83:33
with β values of 0.24 and 1.22. For a=h¼ 2, the relative
reduction of the 2d buckling coefficient compared to the
3d is also minor, with the deviation never exceeding 5%. A
variation of around 4% is noted for λ¼ 83:33 with β¼ 1:22.
However, the scenario is different for a=h¼ 3. Here, the 2d
coefficient overestimates the 3d value by approximately 20%
in three instances, specifically for λ¼ 250, β¼ 0:08, and
ss=a¼ 1. In other situations, the discrepancy is even less than
in the previous cases, averaging below 2%.
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