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ABSTRACT Additive cellular automata over a finite abelian group are a wide class of cellular automata (CA)
that are able to exhibit most of the complex behaviors of general CA and they are often exploited for designing
applications in different practical contexts.We provide an easy to check algebraic characterization of positive
expansivity for Additive Cellular Automata over a finite abelian group. We stress that positive expansivity is
an important property that defines a condition of strong chaos for CA and, for this reason, an easy to check
characterization of positive expansivity turns out to be crucial for designing proper applications based on
Additive CA and where a condition of strong chaos is required. First of all, in the paper an easy to check
algebraic characterization of positive expansivity is provided for the non trivial subclass of Linear Cellular
Automata over the alphabet (Z/mZ)n. Then, we show how it can be exploited to decide positive expansivity
for the whole class of Additive Cellular Automata over a finite abelian group.

INDEX TERMS Cellular automata, additive cellular automata, chaos, positive expansivity.

I. INTRODUCTION
Cellular automata (CA) are well-known formal models that
find application in several disciplines and their different sub-
domains. This is essentially due to three reasons: the huge
variety of distinct CA dynamical behaviors; the emergence of
complex behaviors from simple local interactions; the ease of
their implementation (even at a hardware level).

In practical applications one needs to know if the CA
used for modelling a certain system exhibits some specific
property. However, this can be a severe issue. Indeed, a strong
result by Jarkko Kari [6] states that all non-trivial dynamical
behaviors are undecidable. From this seminal result, a long
sequence followed.

Luckily, the undecidability issue can be tackled by impos-
ing some constraints on the model. In the specific case of
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this paper, the alphabet and the global updating map are
constrained to be a finite abelian group and an additive func-
tion, respectively, giving rise to Additive CA over a finite
abelian group or, briefly, Additive CA (see [1], [2], [12],
e.g., for studies regarding linear and group CA). We stress
that such requirements do not prevent Additive CA at all
from being successfully used for practical purposes. On the
contrary, since Additive CA are able to exhibit most of the
complex behaviors of general CA, they are often exploited
for designingmany applications (see, for instance, [11], [13]).
Moreover, Additive CA are more expressive and they give
rise to muchmore complex dynamics than the already investi-
gated subclass of Linear Cellular Automata over the alphabet
(Z/mZ)n with n = 1.
Among the dynamical properties, positive expansiv-

ity received and still receives a significant attention by
researchers since it is a stronger form of sensitive dependence
on the initial conditions, the latter being the essence of a
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chaotic behavior. Moreover, in CA settings positive expan-
sivity plays an important role since it is just a condition
of strong chaos, since positively expansive CA are chaotic
besides exhibiting sensitive dependence on the initial condi-
tions. While the related (un)decidability issue is still an open
problem for general CA, positive expansivity turns out to be
decidable as far as Additive CA are concerned. Indeed, this
decidability result follows from a combination of two known
facts: i) positive expansivity is decidable for CA with sofic
traces [5]; ii) the traces of any Additive CA are subshifts
of finite type (and, hence, they are sofic), a consequence of
the classical result by Kitchens and Schmidt that all group
subshifts are of finite type [7]. However, the decidability
result is not useful for practical purposes at all, i.e., the
corresponding algorithm is impractical. Thus, besides being
of theoretical interest, an easy to check characterization of
positive expansivity for Additive CA would turn out to be
crucial for designing proper applications based on such CA
and in situations where, as often happens, a condition of
strong chaos is required.

In this paper we provide an easy to check characterization
of positive expansivity for Additive CA over a finite abelian
group. First of all, an easy to check algebraic characterization
of positive expansivity is provided for the non trivial subclass
of Linear Cellular Automata over the alphabet (Z/mZ)n,
wherem is any natural greater than 1. Namely, for any Linear
CA over (Z/mZ)n such a characterization is expressed as an
easy to check condition on the degrees of the coefficients (that
are Laurent polynomials) of the characteristic polynomial of
the matrix associated with the Linear CA. Then, we show
how it can be exploited to decide positive expansivity for
the whole class of Additive Cellular Automata over a finite
abelian group.

The main and more difficult part of this work consists
of the proof of an easy to check algebraic characterization
of positive expansivity for Linear Cellular Automata over
(Z/pZ)n, where p is any prime number (Theorem 1). To reach
that result

1) first of all, we provide an easy to check algebraic
characterization of positively expansive Linear Cellular
Automata over (Z/pZ)n with associated matrix that
is (the traspose of one) in a rational canonical form
consisting of only one block; this is the heart of our
work;

2) then, we prove that such an algebraic characterization
turns out to hold also for positively expansive Lin-
ear Cellular Automata over (Z/pZ)n with associated
matrix that is in a rational canonical form possibly
consisting of more than one block;

3) finally, we prove that such an algebraic characterization
turns out to hold also for all positively expansive Linear
Cellular Automata over (Z/pZ)n.

Afterwards, the easy to check algebraic characterization of
positive expansivity is extended first from Linear Cellular
Automata over (Z/pZ)n to Linear Cellular Automata over

(Z/pkZ)n, where k is any non zero natural (Theorem 2). If the
prime factor decomposition of m is assumed to be known,
that characterization immediately extends to Linear Cellular
Automata over (Z/mZ)n (Corollary 1). However, since the
prime factor decomposition is a well-known difficult task
(i.e., no algorithm has been published yet that can factor
any natural in polynomial time), it should be avoided, espe-
cially for practical purposes. Actually, we have gone one step
further: in Section III-B we show how the easy to check
characterization of positive expansivity for Linear Cellular
Automata over (Z/pZ)n can be exploited to decide positive
expansivity for Linear Cellular Automata over (Z/mZ)n in
an efficient way (i.e., without decomposing m into its prime
factors and by only making use of gcd operations) and, at the
end, for whole class of Additive Cellular Automata over a
finite abelian group (Theorem 3).

The paper is structured as follows. Next section introduces
all the necessary background and notions. Section III contains
our results. Section IV is entirely devoted to the proof of
Theorem 1. In the last section we draw our conclusion.

II. BASIC NOTIONS
Let K be any commutative ring and let A ∈ Kn×n be an n×n-
matrix overK. We denote byAT the transposematrix ofA and
by χA the characteristic polynomial det (tIn − A) ∈ K [t] of
A, where In always stands for the n× n identity matrix (over
whatever ring we are considering). Furthermore, K[X ,X−1]
and K[[X ,X−1]] denote the set of Laurent polynomials and
series, respectively, with coefficients in K. In particular,
whenever K = Z/mZ for some natural m > 1, we will write
Lm and Sm instead of Z/mZ[X ,X−1] and Z/mZ[[X ,X−1]],
respectively.

Let K = Z/mZ for some natural m > 1 and let q be
a natural with q < m. If P is any polynomial from K[t]
(resp., a Laurent polynomial from Lm) (resp., a matrix from
(Lm)n×n), Pmod q denotes the polynomial (resp., the Laurent
polynomial) (resp., the matrix) obtained by P by taking all its
coefficients modulo q.
Let 6 be a finite set (also called alphabet). A CA configu-

ration (or, briefly, a configuration) is any function from Z to
6. Given a configuration c ∈ 6Z and any integer i ∈ Z, the
value of c in position i is denoted by ci. The set 6Z, called
configuration space, is as usual equipped with the standard
Tychonoff distance d defined as

∀c, c′ ∈ 6Z, d(c, c′) =

{
0, if c = c′,

2−min{|j| : j∈Z, cj ̸=c
′
j}, otherwise.

Whenever the term linear is involved the alphabet 6 is Kn,
where K = Z/mZ for some natural m > 1. Clearly, in that
case both Kn and (Kn)Z become K-modules in the obvious
(i.e., entrywise) way. On the other hand, whenever the term
additive is involved the alphabet 6 is a finite abelian group
G and the configuration space turns GZ turns out to be an
abelian group, too, where the group operation of GZ is the
componentwise extension of the group operation of G, both
of them will be denoted by +.
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A one-dimensional CA (or, briefly, a CA) over 6 is a pair
(6Z,F), where F : 6Z

→ 6Z is the uniformly continuous
transformation (called global rule) defined as ∀c ∈ 6Z,∀i ∈
Z,F(c)i = f (ci−r , . . . , ci+r ), for some fixed natural number
r ∈ N (called radius) and some fixed function f : 62r+1

→

6 (called local rule of radius r). In the sequel, when no
misunderstanding is possible, we will sometimes identify any
CA with its global rule.

We recall that a CA (6Z,F) is positively expansive if
for some constant ε > 0 it holds that for any pair of
distinct configurations c, c′ ∈ 6Z there exists a natural
number ℓ such that d(Fℓ(c),Fℓ(c′)) ≥ ε. We stress that CA
positive expansivity is a condition of strong chaos. Indeed,
on a hand, positive expansivity is a stronger condition than
sensitive dependence on the initial conditions, the latter being
the essence of the chaos notion. On the other hand, any
positively expansive CA is also topologically transitive and,
at the same time, it has dense periodic orbits. Therefore, any
positively expansive CA is chaotic according to the Devaney
definition of chaos (see [4], for the definitions of chaos,
sensitive dependence on the initial conditions, topological
transitivity, and denseness of dense periodic orbits). Finally,
we recall that if a CA F is positively expansive then F is
surjective.

A. LINEAR AND ADDITIVE CA
Let K = Z/mZ for some natural m > 1 and let n ∈ N with
n ≥ 1. Let G be a finite abelian group.

A local rule f : (Kn)2r+1
→ Kn of radius r is said to be

linear if it is defined by 2r+1 matrices A−r , . . . ,Ar ∈ Kn×n

as follows: ∀(x−r , . . . , xr ) ∈ (Kn)2r+1, f (x−r , . . . , xr ) =∑r
i=−r Ai · xi. A one-dimensional linear CA (LCA) over Kn

is a CA F based on a linear local rule.
The Laurent polynomial (or matrix)

A =

r∑
i=−r

AiX−i
∈ Kn×n[X ,X−1] ∼= (Lm)n×n

is said to be the the matrix associated with F .
We now recall the notion of Additive CA, a wider class

than LCA. An Additive CA over G is a CA (GZ,F) where
the global rule F : GZ

→ GZ is an endomorphism of GZ.
We stress that the local rule f : G2r+1

→ G of an Additive
CA of radius r over a finite abelian group G can be written
as ∀(x−r , . . . , xr ) ∈ G2r+1, f (x−r , . . . , xr ) =

∑r
i=−r fi(xi),

where the functions fi are endomorphisms of G. Moreover,
as a consequence of the application of the fundamental the-
orem of finite abelian groups to Additive CA (see [3], for
details), without loss of generality we can assume that
G = Z/pk1Z × . . .× Z/pknZ for some naturals k1, . . . , kn

with k1 ≥ k2 ≥ . . . ≥ kn.
Let Ĝ = (Z/pk1Z)n and letψ : G → Ĝ be the map defined

as ∀h ∈ G,∀i = 1, . . . , n, ψ(h)i = hi pk1−ki , where, for a
sake of clarity, we stress that hi denotes the i-th component
of h, while pk1−ki is just the (k1 − ki)-th power of p. Let 9 :

GZ
→ ĜZ be the componentwise extension of ψ , i.e., the

function defined as ∀c ∈ GZ,∀j ∈ Z, 9(c)j = ψ(cj). The
function 9 turns out to be continuous and injective.
We recall that for any Additive CA over G an LCA over

(Z/pk1Z)n associated with it can be defined as follows. With
a further abuse of notation, in the sequel we will write p−m

with m ∈ N even if this quantity might not exist in Z/pkZ.
However, we will use it only when it multiplies pm

′

for some
integerm′ > m. In such away pm

′
−m is well-defined inZ/pkZ

and we will note it as product p−m
· pm

′

.
Let (GZ,F) be any Additive CA and let f : G2r+1

→ G be
its local rule defined, by 2r + 1 endomorphisms f−r , . . . , fr
of G. For each z ∈ {−r, . . . , r}, let Az = (a(z)i,j )1≤i≤n, 1≤j≤n ∈

(Z/pk1Z)n×n be the matrix such that ∀i, j ∈ {1, . . . , n}, a(z)i,j =

pkj−ki · fz(ej)i. The LCA associated with the Additive CA
(GZ,F) is (ĜZ,L), where L is defined by A−r , . . . ,Ar or,
equivalently, by A =

∑r
z=−r AzX

−z
∈ Z/pk1Z

[
X ,X−1

]n×n
.

We stress that the following diagram commutes

i.e., L ◦9 = 9 ◦F . Therefore, (ĜZ,L) is said to be the LCA
associated with (GZ,F) via the embedding 9. In general,
(GZ,F) is not topologically conjugated (i.e., homeomorphic)
to (ĜZ,L) but (GZ,F) is a subsystem of (ĜZ,L) and the latter
condition alone is not enough in general to lift dynamical
properties from a one system to the other one. Despite this
obstacle, in the sequel we will succeed in doing such a lifting,
as far as positive expansivity is concerned.

III. RESULTS
The following two notions are fundamental throughout this
paper.
Definition 1 (Positive and Negative Degree): The positive

(resp., negative) degree of any given polynomial α ∈ Lm with
α ̸= 0, denoted by deg+(α) (resp., deg−(α)), is the maximum
(resp, minimum) value among the degrees of the monomials
of α. Such notions extend to any element υ ̸= 0 of Snm when
υ is considered as a formal power series with coefficients in
(Z/mZ)n instead of a vector of n elements from Sm and with
the additional defining clause that deg+(υ) = +∞ (resp.,
deg−(υ) = −∞) if that maximum (resp., minimum) does not
exist. Furthermore, the previous notions are extended to both
α = 0 and υ = 0 as follows: deg+(0) = −∞ and deg−(0) =

+∞.
Example 1: The following are the values of the positive

and negative degree of some polynomials:
deg+(X−3

+ X−2) = −2, deg+(X−3
+ X−2

+ 1) = 0,
deg+(X−3

+ X−2
+ 1 + X4) = 4, deg+(1) = 0

deg−(X3
+ X2) = 2, deg−(X3

+ X2
+ 1) = 0, deg−(X−3

+

1 + X4) = −3, deg−(1) = 0
Definition 2 (ExpansivePolynomialandExpansiveMatrix):

Let π (t) = α0+α1t+· · ·+αn−1tn−1
+ tn be any polynomial

121248 VOLUME 11, 2023



A. Dennunzio et al.: Easy to Check Characterization of Positive Expansivity

fromLm[t]. We say that π (t) is expansive if both the following
two conditions are satisfied:

(i) deg+(α0) > 0 and deg+(α0) > deg+(αi) for every i ∈

{1, . . . , n− 1};
(ii) deg−(α0) < 0 and deg−(α0) < deg−(αi) for every i ∈

{1, . . . , n− 1};
A matrix A ∈ Ln×n

m is said to be expansive if its characteristic
polynomial is expansive.
Remark 1: We stress that if a polynomial π (t) = α0 +

α1t+· · ·+αn−1tn−1
+tn is expansive then it must necessarily

hold that α0 ̸= 0.
Lemma 1: For any three polynomials π, ρ, τ ∈ Lp[t] such

that π = ρ · τ it holds that π is expansive if and only if ρ and
τ are both expansive.

Proof: Choose arbitrarily three polynomials

π (t) = α0 + α1t + · · · + αn−1tn−1
+ tn

ρ(t) = β0 + β1t + · · · + βn1−1tn1−1
+ tn1

τ (t) = γ0 + γ1t + · · · + γn2−1tn2−1
+ tn2

such that π = ρ · τ . Obviously,

αi =

∑
i1≤i,i2≤i:i=i1+i2

βi1γi2 (1)

for every i ∈ {0, . . . , n− 1} and, in particular, α0 = β0γ0.
Assume that both ρ and τ are both expansive. Hence, α0 =

β0γ0 ̸= 0 and

deg+(α0) = deg+(β0γ0) = deg+(β0) + deg+(γ0)

> deg+(βi1 ) + deg+(γi2 ) = deg+(βi1γi2 ),

for every i1 ∈ {1, . . . , n1 − 1} and i2 ∈ {1, . . . , n2 − 1}
such that βi1 ̸= 0 and γi2 ̸= 0 (by Definition 2 a symmetric
inequality regarding deg− also holds). Let i ∈ {1, . . . , n− 1}
be any index such that αi ̸= 0. We can write

deg+(αi) ≤ deg+(βi1γi2 ) < deg+(α0)

for every i1 ∈ {1, . . . , n1 − 1} and i2 ∈ {1, . . . , n2 − 1} such
that i = i1 + i2, βi1 ̸= 0 and γi2 ̸= 0. Clearly, condition (ii)
from Definition 2 also holds, as far as deg−(αi) is concerned.
Thus, π is expansive.
We prove now that if π is expansive then ρ and τ are both

expansive. Assume that the consequent is not true. We deal
with the two following cases: (1) ρ is expansive but τ is not
(by symmetry, we do not consider the situation in which τ is
expansive but ρ is not); (2) neither ρ nor τ are expansive.
(1) Suppose that ρ is expansive but τ is not. If γ0 =

0 then it trivially follows that π is not expansive.
Otherwise, let min be the minimum index such that
deg+(γmin) = max0≤i2<n2{deg

+(γi2 ) : γi2 ̸= 0}. Since
ρ is expansive,β0γmin is the (only) addend ofmaximum
degree in the sum from Equation (1) considered for i =
min. Thus, deg+(αmin) = deg+(β0γmin). Furthermore,
deg+(αmin) = deg+(β0) + deg+(γmin) ≥ deg+(β0) +

deg+(γ0) = deg+(β0γ0) = deg+(α0). In a symmetric

way, one also gets that deg−(αi) ≤ deg−(α0) for some
i ∈ {1, . . . , n− 1}.

(2) Suppose that neither ρ nor τ are expansive. If β0 = 0∨

γ0 = 0 then it trivially follows that π is not expansive.
Otherwise, letmax1 andmax2 be the maximum indexes
such that deg+(βmax1 ) = max0≤i1<n1{deg

+(βi2 ) :

βi2 ̸= 0} and deg+(γmax2 ) = max0≤i2<n2{deg
+(γi2 ) :

γi2 ̸= 0}, respectively. Consider now Equation (1) for
i = max1 +max2. Take any pair of indexes i1, i2 of the
sum such that i1 ̸= max1, i2 ̸= max2, βi1 ̸= 0, and
γi2 ̸= 0. If i1 < max1 (and then i2 > max2), resp.,
if i1 > max1 (and then i2 < max2), we get that

deg+(βi1 ) + deg+(γi2 ) < deg+(βi1 ) + deg+(γmax2 )

≤ deg+(βmax1 ) + deg+(γmax2 ),

resp.,

deg+(βi1 ) + deg+(γi2 ) < deg+(βmax1 ) + deg+(γi2 )

≤ deg+(βmax1 ) + deg+(γmax2 ).

Hence, deg+(βi1γi2 ) < deg+(βmax1γmax2 ). This implies
that deg+(αmax1+max2 ) = deg+(βmax1γmax2 ). More-
over, deg+(αmax1+max2 ) = deg+(βmax1γmax2 ) ≥

deg+(β0γ0) = deg+(α0) and in a symmetric way, one
also gets that deg−(αi) ≤ deg−(α0) for some i ∈

{1, . . . , n− 1}.
Therefore, in both cases it follows that π is not expansive and
this concludes the proof. □
In the sequel, we will often make use of the following
Definition 3: Let K ⊆ Snm. For any s ∈ Z we define the

following sets:
Right(K , s) = {υ ∈ K : deg−(υ) = s},
Right∗(K , s) = {υ ∈ K : deg−(υ) ≥ s},
Left(K , s) = {υ ∈ K : deg+(υ) = s},
Left∗(K , s) = {υ ∈ K : deg+(υ) ≤ s}.

Definition 3 along with the notion of positively expan-
sive CA when reformulated for LCA and the compactness
of the configuration space immediately allow stating the
following
Lemma 2: Let F be any LCA over (Z/mZ)n and let A ∈

Ln×n
m be the matrix associated with F , where m and n are

any two naturals with m > 1 and n > 1. The LCA F is
not positively expansive if and only if there exists an integer
s > 0 such that at least one of the following two conditions
holds

- ∃υ ∈ Left(Snm, 0) \ {0} : ∀ℓ > 0, Aℓυ ∈ Left∗(Snm, s)
- ∃υ ∈ Right(Snm, 0) \ {0} : ∀ℓ > 0, Aℓυ ∈

Right∗(Snm,−s)
On the contrary, the LCAF is positively expansive if and only
if there exists a natural number ℓ̂ > 0 such that for any d ∈ Z
and any υ ∈ Left(Snm, d) it holds that Aℓυ ∈ Left(Snm, d + 1)
for some ℓ ≤ ℓ̂ and, symmetrically, for any d ∈ Z and any
υ ∈ Right(Snm, d) it holds that Aℓυ ∈ Right(Snm, d − 1) for
some ℓ ≤ ℓ̂.
Lemma 3: LetF be any surjective LCA over (Z/mZ)n and

let A ∈ Ln×n
m be the matrix associated with F , where m and n
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are any two naturals with m > 1 and n > 1. Then there exists
an integer constant c ≥ 0 (that only depends on A) such that
all the following conditions C1, C2, C3, and C4 hold.
C1: ∀υ ∈ Left(Snm, 0) ∃ω ∈ Left(Snm, h) for some−c ≤ h ≤

c such that Aω = υ

C2: ∀υ ∈ Right(Snm, 0) ∃ω ∈ Right(Snm, h) for some −c ≤

h ≤ c such that Aω = υ

C3: ∀υ ∈ Left(Snm, 0), Aυ ∈ Left(Snm, h) for some −c ≤

h ≤ c
C4: ∀υ ∈ Right(Snm, 0), Aυ ∈ Right(Snm, h) for some −c ≤

h ≤ c
Proof: It is an immediate consequence of the fact

that F is open and, hence, it is both left and right closing
(see [8]). □
We now state the result that is the heart of our work,

i.e., providing an easy to check characterization of positive
expansivity for LCA over (Z/pZ)n. Since its proof is very
long, we place it in Section IV.
Theorem 1: LetF be any LCA over (Z/pZ)n where p and n

are any two naturals such that p is prime and n > 1. The LCA
F is positively expansive if and only if the matrix associated
with F is expansive.

A. AN EASY TO CHECK CHARACTERIZATION OF POSITIVE
EXPANSIVITY FOR LCA OVER (Z/pkZ)n

The following Theorem extends the characterization result
provided by Theorem 1 from LCA over (Z/pZ)n to LCA over
(Z/pkZ)n.
Theorem 2: Let G be any LCA over (Z/pkZ)n and let B ∈

Ln×n
pk be the matrix associated with G, where p, k, n are any

three naturals such that p is prime, k > 1, and n > 1. The
LCA G is positively expansive if and only if the LCA F over
(Z/pZ)n having A as associated matrix is too, where A =

(Bmod p) ∈ Ln×n
p . Equivalently, G is positively expansive if

and only if the matrix Bmod p is expansive.
Proof: We start to prove that if G is positively expan-

sive then F is too. Let us suppose that F is not positively
expansive and the first condition from Lemma 2 holds, i.e.,
there exists υ ∈ Left(Snp, 0) with υ ̸= 0 such that Aℓυ ∈

Left∗(Snp, s) for every natural ℓ > 0, where s > 0 is some
integer constant depending on F (the proof is symmetric
if one supposes that the second condition holds). Set ω =

pk−1υ. Clearly, ω ∈ Left(Snpk , 0) and ω ̸= 0. Since B can be

written as A + pN for some matrix N ∈ Ln×n
pk−1 , it holds that

for every natural ℓ > 0

Bℓω = (A+ pN )ℓpk−1υ = pk−1Aℓυ,

where all the sums and products of coefficients of the Laurent
polynomials/series inside the previous equalities are now
meant in Zpk . Hence, although A ∈ Ln×n

p and υ ∈ Snp,
in general Aℓυ now belongs to Snpk instead of Snp and, as a

consequence, we can not immediately conclude that Bℓω =

pk−1Aℓυ ∈ Left∗(Snpk , s) immediately follows just from the

hypothesis as it is, i.e., Aℓυ ∈ Left∗(Snp, s) when Aℓυ is
considered as an element of Snp. However, since Aℓυ ∈ Snpk
can be written as (Aℓυ) mod p + pω′ for some ω′

∈ Sn
pk−1

and, by hypothesis, (Aℓυ) mod p ∈ Left∗(Snp, s), we get that
Bℓω = pk−1[(Aℓυ) mod p + pω′] = pk−1[(Aℓυ) mod p] ∈

Left∗(Snpk , s) for every natural ℓ > 0. Therefore, by Lemma 2,
G is not positively expansive.
We now prove that if F is positively expansive then G is

too. Let us suppose that G is not positively expansive and the
first condition from Lemma 2 holds, i.e., there exists ω ∈

Left(Snpk , 0) with ω ̸= 0 such that Bℓω ∈ Left∗(Snpk , s) for
every natural ℓ > 0, where s > 0 is some integer constant
depending onG (again, the proof is symmetric if one supposes
that the second condition holds). We deal with the following
two mutually exclusive cases.

If there is no ω′ such that ω = pω′, then set υ =

ωmod p. Clearly, υ ̸= 0 and υ ∈ Left(Snp, h) for
some integer h ≤ 0. Moreover, it holds that Aℓυ =

(Bmod p)ℓ(ωmod p) = (Bℓω) mod p ∈ Left∗(Snp, s) for
every natural ℓ > 0.
Otherwise, let j ∈ {1, . . . , k − 1} and ω′

∈ Snpk be such
that ω = pjω′, where j is the largest natural such that
all the coefficients of the n Laurent series forming ω are
multiple of pj. Set υ = ω′ mod p. Clearly, υ ̸= 0 and
υ ∈ Left(Snp, h) for some integer h ≤ 0. Since pjBℓω′

=

Bℓω ∈ Left∗(Snpk , s), either B
ℓω′

∈ Left∗(Snpk , s) or

Bℓω′ /∈ Left∗(Snpk , s) happens, but, in both situations

it must hold that (Bℓω′) mod p ∈ Left∗(Snp, s). There-
fore, it follows that Aℓυ = (Bmod p)ℓ(ω′ mod p) =

(Bℓω′) mod p ∈ Left∗(Snp, s) for every natural ℓ > 0.

In both cases, the first condition of Lemma 2 is satisfied as
far asF is concerned. Thus,F is not positively expansive and
this concludes the proof that G is positively expansive if and
only if F is positively expansive. By Theorem 1, it follows
that G is positively expansive if and only if the matrix Bmod p
is expansive. □
At this point, we are able to extend the characterization

result regarding positive expansivity to the whole class of
LCA over (Z/mZ)n where m is any natural with m > 1.
Corollary 1: Any LCA F over (Z/mZ)n is positively

expansive if and only if Amod pj is expansive for every j ∈

{1, . . . , l}, where A is the matrix associated with F and
p1, . . . , pl are all the primes appearing in the prime factor
decomposition of m (i.e., m = pk11 · · · pkll is the prime factor
decomposition of m).

Proof: For each j ∈ {1, . . . , l}, let Fj be the LCA
over (Z/(pj)kjZ)n having (Amod (pj)kj ) ∈ Ln×n

(pj)
kj
as associated

matrix. Since F is positively expansive if and only if every
LCA Fj is too, by Lemma 2 and Theorem 1, it follows
that F is positively expansive if and only if every matrix
(Amod pj) ∈ Ln×n

pj is expansive. Therefore, the statement is
true. □
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B. BYPASSING THE PRIME FACTOR DECOMPOSITION OF
m IN THE CHARACTERIZATION OF POSITIVE EXPANSIVITY
FOR LCA OVER (Z/mZ)n

The characterization of positively expansive LCA over
(Z/mZ)n provided by Corollary 1 requires that the prime
factor decomposition of m is known. We now illustrate how
deciding positive expansivity without decomposing m into
prime factors and by only making use of gcd operations.

Letm = pk11 · · · pkll be the prime factor decomposition ofm
and let A be the matrix associated with a given LCA F over
(Z/mZ)n. By Corollary 1, F is positively expansive if and
only if both the following conditions are satisfied:

(C1) for every j ∈ {1, . . . , l} it holds that
deg+(α0mod pj) > 0 and deg−(α0mod pj) < 0;

(C2) for every i ∈ {1, . . . , n− 1} it holds that

(C2a) for every j ∈ {1, . . . , l},
deg+(α0mod pj) > deg+(αimod pj)

and
(C2b) for every j ∈ {1, . . . , l},

deg−(α0mod pj) < deg−(αimod pj),

where π (t) = α0 + α1t + · · · + αt−1t t−1
+ tn is the

characteristic polynomial of A.
It is not difficult to see that, by the characterization of pos-

itively expansive LCA over Z/mZ provided in [9], condition
(C1) can be rewritten in an equivalent form as follows:

α0 ∈ Lm is the 1 × 1 matrix associated with
a positively expansive LCA over Z/mZ,

i.e.,

gcd(m,A1, . . . ,Ar ) = gcd(m,A−1, . . . ,A−r ) = 1,

where A−r , . . . ,Ar ∈ Z/mZ define α0. Therefore, (C1) is an
efficiently testable condition.

We are now going to provide a method that checks condi-
tion (C2) without decomposing m in prime factors and under
the assumption that condition (C1) is satisfied. To proceed,
for any a ∈ Z/mZ define

ya =


∏
j∈Pa

p
kj
j , if Pa ̸= ∅

1, otherwise,

where Pa = {j ∈ {1, . . . , l} : gcd(a, pj) = 1}. We empha-
size that ya is the greatest divisor of m having as prime
factors all (and only) those prime factors of m that are not
prime factors of a. Moreover, ya can be computed without
knowing p1, . . . , pl and k1, . . . , kl , i.e., without the need of
decomposing m into its prime factors. Indeed, consider the
elements of the sequence mℓ recursively defined by mℓ+1 =

mℓ/ gcd(mℓ, a), where m0 = m. Clearly, there exists ℓ∗ such
that mℓ∗+1 = mℓ∗ and it holds that ya = mℓ∗+1 = mℓ∗ .
In the sequel, we will deal with how to test condition (C2a)

for every i ∈ {1, . . . , n−1} (the argument regarding condition
(C2b) is symmetric). For any i ∈ {0, 1, . . . , n − 1} and any
monomial a(i)d X

d of degree d inside αi, with a little abuse of

notation, let us denote by yi,d the quantity ya(i)d
. Clearly, for

every j ∈ Pa(i)d it holds that a(i)d mod pj ̸= 0.
Fix now i ∈ {1, . . . , n − 1}. The following procedure

to be repeated for every i ∈ {1, . . . , n − 1} tests condi-
tion (C2a), i.e., as far as αi is concerned, it checks whether
deg+(α0mod pj) > deg+(αimod pj) for every j ∈ {1, . . . , l}.
The procedure consists of the following steps:

(S1) Let a(0)d0 X
d0 be the monomial of maximum degree

inside α0 with y0,d0 ̸= 1. If condition (C1) is satis-
fied then d0 > 0. We stress that a(0)d0 mod pj ̸= 0 for
every j ∈ Pa(0)d0

.

(S2) Consider the monomials a(i)d X
d of degree d ≥

d0 inside αi (while jump to step (S3.2) if deg+(αi) <
d0). For each of such monomials compute yi,d and
gd = gcd(y0,d0 , yi,d ).

(S3.1) If gd > 1 for some d ≥ d0, it means that there exists
j ∈ Pa(0)d0

∩ Pa(i)d ̸= ∅ such that deg+(α0mod pj) ≤

deg+(αimod pj) and, hence, (C2a) is not satisfied.
(S3.2) Otherwise, since a(0)d0 mod pj ̸= 0 and a(i)d mod pj =

0 for every j ∈ Pa(0)d0
and every d ≥ d0, the inequality

inside condition (C2a) holds for every j ∈ Pa(0)d0
.

To check if it also holds for every j /∈ Pa(0)d0
, replace

m by m/y0,d0 , and, referring to this new value of
m, if m ̸= 1, restart from step (S1) with (α0 −

a(0)d0 X
d0 ) modm and α1modm in place of α0 and α1,

respectively, inside the new background Z/mZ. If,
on the contrary,m = 1, it means that condition (C2a)
is satisfied.

C. AN EASY TO CHECK CHARACTERIZATION OF POSITIVE
EXPANSIVITY FOR ADDITIVE CA OVER A FINITE
ABELIAN GROUP
Finally, we lift the characterization result regarding positive
expansivity for LCA over (Z/mZ)n to the whole class Addi-
tive CA over any finite abelian group. We stress that although
the characterization result is stated for Additive CA overG =

Z/pk1Z × . . .× Z/pknZ, this is not a restriction. Indeed, any
finite abelian group is isomorphic to a direct sum of a certain
number of its subgroups (with pairwise coprime cardinality),
each of them being as such a G, and an Additive CA over a
finite abelian group splits into the direct sum of Additive CA
over those subgroups. Hence, the former CA turns out to be
positively expansive if and only if all the CA components of
that sum are positively expansive.
Theorem 3: Let F : GZ

→ GZ be any Additive CA over a
finite abelian group G, where G = Z/pk1Z × . . . × Z/pknZ
for some prime p and some non zero naturals k1, . . . , kn with
k1 ≥ k2 ≥ . . . ≥ kn. Let L be the LCA over Ĝ associated
with F via the embedding 9, where Ĝ = (Z/pk1Z)n. It holds
that F is positively expansive if and only if L is positively
expansive if and only if A is expansive, where A is the matrix
associated with L.
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Proof: We are going to show that F is positively expan-
sive if and only if L is too. By Theorem 2, this is enough to
conclude that the statement is true.

We start to prove that if L is positively expansive then F
is too. Let us suppose that F is not positively expansive.
Choose an arbitrary ε > 0. So, there exist c, c′ ∈ GZ

with c ̸= c′ such that d(Fℓ(c),Fℓ(c′)) ≤ ε for every
natural ℓ. Consider the two configurations9(c), 9(c′) ∈ ĜZ.
Clearly, 9(c) ̸= 9(c′). Moreover, for every natural ℓ it holds
that d(Lℓ(9(c)),Lℓ(9(c′))) = d(9(Fℓ(c)), 9(Fℓ(c′))) =

d(Fℓ(c),Fℓ(c′)) ≤ ε. Hence, L is not positively expansive.
We now prove that if F is positively expansive then L

is too. Let us suppose that L is not positively expansive.
Choose an arbitrary ε > 0. So, there exist b, b′

∈ ĜZ with
b ̸= b′ such that d(Lℓ(b),Lℓ(b′)) ≤ ε for every natural ℓ.
Let min be the minimum natural such that pmin · (b − b′) ̸=

0 and pmin+1
· (b − b′) = 0. We get that pmin · b, pmin ·

b′
∈ 9(GZ) and pmin · b ̸= pmin · b′. Let c, c′ ∈ GZ

be the two configurations such that 9(c) = pmin · b and
9(c′) = pmin · b′. Clearly, c ̸= c′. For every natural ℓ it
holds that d(Fℓ(c),Fℓ(c′)) = d(9(Fℓ(c)), 9(Fℓ(c′))) =

d(Lℓ(9(c)),Lℓ(9(c′))) = d(Lℓ(b),Lℓ(b′)) ≤ ε. Hence F
is not positively expansive. □

IV. PROOF OF THEOREM 1
We now recall some useful notions and known fact from
abstract algebra. In the sequel, the standard acronyms PID
and UFD stand for principal ideal domain and unique factor-
ization domain, respectively.

Let P be PID and let A ∈ Pn×n. The elementary divi-
sors, or invariants, or invariant factors associated with A
are the elements a1, . . . , an ∈ P defined as follows: ∀i ∈

{1, . . . , n}, ai = 1i(A)/1i−1(A), where 1i(A) is the greatest
common divisor of the i-minors of A and 10(A) = 1.

The companion matrix of a monic polynomial π (t) = α0+

. . .+ αn−1tn−1
+ tn is

Cπ =


0 0 0 −α0
1 · · · 0 −α1
...
. . .

...
...

0 · · · 1 −αn−1

 .

AmatrixC is in rational canonical form if it is block diagonal

C =


Cπ1 O · · · O
O Cπ2 · · · O
...

...
. . .

...

O O · · · Cπs

 ,

where each Cπi is the companion matrix of some monic
polynomial πi of non null degree and πi divides πj for i ≤ j.
It is well-known that if A ∈ Fn×n is any matrix where F is a
field all the following facts hold:

- A is similar to a unique matrix in rational canonical
form and this latter is called the rational canonical form
of A;

- the monic polynomials π1, . . . , πs defining the blocks
of the rational canonical form of A are the nonconstant
invariant factors of tI − A;

- χA(t) =
∏s

i=1 πi(t), where πs is the minimal polyno-
mial of A;

- there exist v1, . . . , vs ∈ Fn such that

{v1,Av1, . . . ,Ad1−1v1, . . . , vs,Avs, . . . ,Ads−1vs}

is a basis of Fn with respect to which A becomes in
rational canonical form C , i.e., A = P−1CP, where
di = deg(πi) and P is the matrix having the elements
of that basis as columns.

We now report the following known result which will be very
useful in the sequel (see [10, Proposition 1], for instance).
Lemma 4: Let U be a UFD and let FU be the field of

fractions of U. For any monic polynomials π ∈ U [t] and
ρ, τ ∈ FU [t], it holds that if π = ρ · τ then ρ, τ ∈ U [t].
The following is an important consequence of Lemma 4.
Lemma 5: Let U be a UFD and let FU be the field of

fractions of U. Let A = Un×n and let π1, . . . , πs ∈ FU [t]
be the invariant factors of tI − A when A is considered as an
element of Fn×nU . Then, for every i ∈ {1, . . . , s} it holds that
πi ∈ U [t].

Proof: Since π1, . . . , πs, χA are all monic and χA(t) =∏s
i=1 πi(t) ∈ U [t], by a repeated application of Lemma 4,

we get that every πi ∈ U [t]. □
We now deal with the algebraic structures of our interest,

namely, the PID Lp and the UFD Lp[t]. Clearly, Lp is also an
UFD, but, since Lp is not a field, Lp[t] is not a PID, while
Fp[t] is, where Fp is the field of fraction of Lp. Therefore,
we can not refer to invariant factors when the involved set is
Lp[t], while we can as far as Fp[t] is concerned.
Lemma 6: For any matrix A ∈ Ln×n

p with det(A) ̸= 0 there
exist two matrices Q,C ∈ Ln×n

p such that det(Q) ̸= 0, C is in
rational canonical form, QA = CQ, and χA = χC .

Proof: Choose arbitrarily a matrix A ∈ Ln×n
p . Cleary,

it holds that A ∈ Fn×np , where Fp is the field of fractions of
Lp. Hence, there exist v1, . . . , vs ∈ Fn such that, A = P−1CP,
C ∈ Fn×np is the matrix in canonical rational form, the blocks
of which are defined by the invariant factors π1, . . . , πs ∈

Fp[t] of tI −A, and P is the matrix having the elements of the
basis {v1,Av1, . . . ,Ad1−1v1, . . . , vs,Avs, . . . ,Ads−1vs} of Fnp
as columns, where di = deg(πi). Clearly, χA = χC .
Let α ∈ Lp be such that v′i = αvi ∈ Lp for each i ∈

{1, . . . , s}. Set Q = αP. It is clear that Q ∈ Ln×n
p , as desired.

Furthermore, by Lemma 5, it follows that C ∈ Ln×n
p , too.

Moreover, we get that A = P−1CP = αα−1P−1CP =

α−1P−1CαP = Q−1CQ. Therefore, QA = CQ and this
concludes the proof. □
Lemma 7: For any A,B,Q ∈ Ln×n

p such that det(Q) ̸=

0 and AQ = QB it holds that the LCAF over (Z/pZ)n having
A as associated matrix is positively expansive if and only if
the LCA G over (Z/pZ)n having B as associated matrix is,
too.

121252 VOLUME 11, 2023



A. Dennunzio et al.: Easy to Check Characterization of Positive Expansivity

Proof: First of all, it is easy to see that AℓQ = QBℓ

for every natural ℓ > 0. Moreover, det(A) = 0 if and only
if det(B) = 0. So, the thesis turns out to be trivially true if
det(A) = det(B) = 0. Therefore, in the sequel of the proof,
we will assume that det(A) ̸= 0 and det(B) ̸= 0, i.e., both F
and G are surjective.
We now start to prove that if F is positively expansive

then G is too. Suppose that G is not positively expansive
and the first condition from Lemma 2 holds, i.e., there exists
υ ∈ Left(Snp, 0) with υ ̸= 0 such that Bℓυ ∈ Left∗(Snp, s) for
every natural ℓ > 0, where s > 0 is some integer constant
depending on G (the proof is symmetric if one supposes that
the second condition holds). Since Q is the matrix associated
with a surjective LCA over (Z/pZ)n condition C3 of Lemma 3
is satisfied as far as Q is concerned. Hence, setting ω = Qυ,
for some natural constant c > 0 depending on Q and some
integer h with −c ≤ h ≤ c, it holds that Aℓω = QBℓυ ∈

Left∗(Snp, h) for every natural ℓ > 0. Clearly, ω ̸= 0 since
det(Q) ̸= 0. In addition, it holds that ω ∈ Left(Snp, h′) for
some integer h′. Thus, it follows that F is not positively
expansive.

We now prove that if G is positively expansive then F
is too. Assume that F is not positively expansive and the
first condition from Lemma 2 holds, i.e., there exists υ ∈

Left(Snp, 0) with υ ̸= 0 such that Aℓυ ∈ Left∗(Snp, s) for
every natural ℓ > 0, where s > 0 is some integer constant
depending on G (again, the proof is symmetric if one sup-
poses that the second condition holds). Since Q is the matrix
associated with a surjective LCA over (Z/pZ)n, condition
C1 of Lemma 3 is satisfied as far as Q is concerned. Thus,
for some natural constant c > 0 depending on Q and some
integer h with −c ≤ h ≤ c, there exists ω ∈ Left(Snp, h) such
that Qω = υ. Clearly, ω ̸= 0 since υ ̸= 0. Furthermore,
QBℓω = AℓQω = Aℓυ ∈ Left∗(Snp, s) for every natural
ℓ > 0. Therefore, there exists an integer constant s′ > s >
0 such that Bℓω ∈ Left∗(Snp, s′) for every natural ℓ > 0. So,
by Lemma 2,G is not positively expansive and this concludes
the proof. □
In the sequel, with an abuse of notation, deg+(ϕ) stands

for deg+(α) − deg+(β) for any fraction ϕ = α/β ∈ Fp with
α, β ∈ Lp and α, β ̸= 0, where Fp is the field of fractions of
Lp.
Lemma 8: Let υ1, . . . , υn be arbitrary elements of Lp,

where p and n are any two naturals such that p is
prime and n > 1, and let ϕ1, . . . , ϕn be arbitrary ele-
ments of Fp such that max{deg+(ϕ1), . . . , deg+(ϕn)} ≥ 0.
Let min be the minimum index such that deg+(ϕmin) =

max{deg+(ϕ1), . . . , deg+(ϕn)}. Regarding the sequence

{υ1, . . . , υn, . . . , υj, . . .} ⊂ Fp,

where, for each j > n,

υj = ϕnυj−1 + . . .+ ϕ1υj−n.

call pick any natural J > 0 such that deg+(υj) ≤ deg+(υJ )
for every natural j with 0 < j < J . It holds that for any
pick J there exists a pick J ′

∈ {J + 1, . . . , J + n − min +

1}. In particular, for any pick the number of positions within
which there is a further pick does not depend on the values of
the initial elements υ1, . . . , υn of the sequence.

Proof: Clearly, the set of picks is non empty since
1, . . . , n are picks. Let J be any pick. If there exists j ∈

{J + 1, . . . , J + n − min} such that deg+(υj) ≥ deg+(υJ ),
necessarily there must be a further pick inside the integer
interval {J + 1, . . . , J + n − min}. Otherwise, it holds that
deg+(υj) < deg+(υJ ) for every j ∈ {J + 1, . . . , J + n−min}
and, since

deg+(υJ+n−min+1) = deg+(υJϕmin)

= deg+(υJ ) + deg+(ϕmin)

≥ deg+(υJ ),

it follows that the natural J + n − min + 1 turns out to be a
pick. □
The following result is the heart of our work. It provides a

decidable characterization of positively expansive LCA over
(Z/pZ)n with associated matrix such that its transpose is in a
rational canonical form consisting of only one block.
Lemma 9: Let A ∈ Ln×n

p be the matrix such that its trans-
pose AT is the companion matrix of any monic polynomial
−α0 + . . .− αn−1tn−1

+ tn from Lp[t], i.e.,

A =



0 1 0 · · · 0

0 0 1
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · 0 1
α0 α1 · · · αn−2 αn−1

 , (2)

where p and n are any two naturals such that p is prime and
n > 1, and let F be the LCA over (Z/pZ)n having A as
associated matrix. The LCA F is positively expansive if and
only if A is expansive if and only if AT is expansive if and only
if α0 + . . .+ αn−1tn−1

+ tn is expansive.
Proof: It is clear that the matrix A is expansive if and

only if its transpose AT is expansive if and only if χA(t) =

−α0 + . . . − αn−1tn−1
+ tn is expansive if and only if α0 +

. . .+αn−1tn−1
+ tn is expansive. Since F is surjective if and

only if −α0 ̸= 0, the thesis turns out to be trivially true if
α0 = 0. Hence, in the sequel of the proof we can assume that
α0 ̸= 0.
We start to prove that if A is expansive then F is posi-

tively expansive. For a sake of argument, suppose that A is
expansive butF is not positively expansive and, in particular,
the first condition from Lemma 2 holds, i.e., there exists
υ = (υ1, . . . , υn) ∈ Left(Snp, 0) with υ ̸= 0 such that Aℓυ ∈

Left∗(Snp, s) for every natural ℓ > 0, where s > 0 is some
integer constant depending on F (the proof is symmetric if
one supposes that the second condition holds). Consider the
infinite sequence

{υ1, . . . , υn, υ1+n, . . . , υℓ+n, . . .},

where υℓ+n = α0υℓ + . . . + αn−1υℓ+n−1 for each natural
ℓ > 0. Clearly, it holds that Aℓυ = (υℓ+1, . . . , υℓ+n) for each
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ℓ > 0. The first condition from Lemma 2 ensures that there
exists an integer s′ ≤ s such that deg+(υj) ≤ s′ for every
natural j > 0 and deg+(υj) = s′ for at least one j > 0. Let
min > 0 be the minimum index such that deg+(υmin) = s′.
Since

υmin+n = α0υmin + . . .+ αn−1υmin+n−1,

A is expansive, and p is prime, we get deg+(υmin+n) =

deg+(α0υmin) > s′, which contradicts that deg+(υj) ≤ s′ for
every natural j > 0.

We now prove that if F is positively expansive then A is
expansive. Set

ϕn = −
α1

α0
, ϕn−1 = −

α2

α0
, . . . , ϕ2 = −

αn−1

α0
, ϕ1 =

1
α0
.

Assume that A is not expansive, i.e., equivalently, α0 + . . .+

αn−1tn−1
+ tn is not expansive, and condition (i) from Defini-

tion 2 does not hold, i.e., either deg+(α0) ≤ 0 or deg+(α0) ≤

max{deg+(α1), . . . , deg+(αn−1)} (the proof is symmetric if
one supposes that condition (ii) does not hold). In both cases
we get that max{deg+(ϕ1), . . . , deg+(ϕn)} ≥ 0. Let Fp be the
field of fraction of Lp. For any υ = (υ1, . . . , υn) ∈ Fnp define
the sequence

{υ1, . . . , υn, . . . , υj, . . .},

where, for each j > n,

υj = ϕnυj−1 + ϕn−1υj−2 + · · · + ϕ2υj−n+1 + ϕ1υj−n ∈ Fp.

We emphasize that A (υj, . . . , υj−n+1) = (υj−1, . . . , υj−n).
The hypothesis of Lemma 8 are satisfied and, hence, for every
natural j the integer interval {js+ 1, . . . , (j+ 1)s} contains a
pick, where s = n − min + 1 (with min as in Lemma 8).
We stress that s does not depend on (υ1, . . . , υn). For every
natural ℓ > 0, we are now going to exhibit an integer d (ℓ)

and an element υ(ℓ) ∈ Left(Ln
p, d

(ℓ)) such that Aℓ
′

υ(ℓ) ∈

Left∗(Ln
p, d

(ℓ)) for each natural ℓ′ ≤ ℓ. By Lemma 2, this
is enough to state that F is not positively expansive and this
concludes the proof.

So, to proceed, choose an arbitrary natural ℓ > 0 and
let h be such that hs + 1 > ℓ + n. We know that {hs +

1, . . . , (h + 1)s} contains at least one pick whatever the first
n values υ1, . . . , υn of the above sequence are (while the
specific value of a pick inside that interval depends on the
values of υ1, . . . , υn). Consider now

(υ1, . . . , υn) =

(
(α0)

h′

, . . . , (α0)
h′
)
,

where h′
= (h+ 1)s. Regarding the above sequence when its

first n elements are just the components of such (υ1, . . . , υn),
let J be the value of a pick inside {hs + 1, . . . , (h + 1)s}.
Set υ(ℓ) = (υJ , . . . , υJ−n+1) and let d (ℓ) = deg+(υ(ℓ)) =

deg+(υJ ). At this point, we are able to state that all the
following facts hold:

- υj ∈ Lp for each natural j with 0 < j ≤ h′ and, hence,
Aj(υh′ , . . . , υh′−n+1) ∈ Ln

p for each natural j with 0 ≤

j ≤ h′
− n;

- in particular, υJ ∈ Lp and Aℓ
′

υ(ℓ) ∈ Ln
p for each natural

ℓ′ ≤ ℓ (since ℓ+ n < hs+ 1 ≤ J ≤ h′);
- moreover, υ(ℓ) ∈ Left(Ln

p, d
(ℓ));

- finally,Aℓ
′

υ(ℓ) ∈ Left∗(Ln
p, d

(ℓ)) for each natural ℓ′ ≤ ℓ

(since J is a pick);

In this way an integer d (ℓ) and an element υ(ℓ) with the desired
property have been exhibited.

□
Lemma 10: Let A ∈ Ln×n

p be the matrix such that its trans-
pose AT is the companion matrix of any monic polynomial
−α0 + . . .−αn−1tn−1

+ tn from Lp[t], where p and n are any
two naturals such that p is prime and n > 1, and let F be the
LCA over (Z/pZ)n having A as associated matrix. The LCAF
is positively expansive if and only if the LCA G over (Z/pZ)n
having AT as associated matrix is positively expansive.

Proof:
Clearly, A is as in (2). It holds that ATQ = QA, where

Q =



−α1 −α2 · · · −αn−1 1

−α2 −α3 .
. . 1 0

... . .
.
. .
.

. .
. ...

−αn−1 1 . .
.

0 0
1 0 · · · 0 0


∈ Ln×n

p .

Since det(Q) ̸= 0, the thesis directly follows from Lemma 7.
□

We now prove that the decidable characterization of pos-
itive expansivity provided by Lemma 9 also holds also in a
more general situation, namely, for LCA over (Z/pZ)n with
associated matrix that is in a rational canonical form possibly
consisting of more than one block.
Lemma 11: Let C ∈ Ln×n

p be any matrix in rational
canonical form, where p and n are any two naturals such that
p is prime and n > 1, and let G be the LCA over (Z/pZ)n
having C as associated matrix. The LCA G is positively
expansive if and only if C is expansive.

Proof: Let Cπ1 ∈ Ln1×n1
p , . . . ,Cπs ∈ Lns×ns

p with
n1 + . . . + ns = n be the diagonal blocks inside C , where
each πi is the monic polynomial defining Cπi , i.e., Cπi is the
companion matrix of πi. Since χC (t) = 5s

i=1πi(t) and G is
just the product G1 × . . . × Gs, where each Gi is the LCA
over (Z/pZ)ni having Cπi ∈ Lni×ni

p as associated matrix,
it follows that G is positively expansive if and only if every
Gi is positively expansive if and only if, by Lemma 9 and 10,
every Cπi is expansive, i.e., by Definition 2, if and only if
every πi is expansive, i.e., by Lemma 1, if and only if χC is
expansive, i.e., if and only if C is expansive. □
We are now able to prove Theorem 1.
Proof of Theorem 1: Let A ∈ Ln×n

p be the matrix
associated with F . By Lemma 6, there exist two matrices
Q,C ∈ Ln×n

p such that det(Q) ̸= 0, C is in rational canonical
form, QA = CQ, and χA = χC . Let G be the LCA over
(Z/pZ)n having C as associated matrix. By Lemma 7, F is
positively expansive if and only if G is positively expansive,
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i.e., by Lemma 11, if and only if C is expansive, i.e., since
χA = χC , if and only if A is expansive. □

V. CONCLUSION
We provided an easy to check algebraic characterization of
positive expansivity for Additive CA over a finite abelian
group. Besides having a theoretical value, this characteriza-
tion turns out to be useful for designing proper applications
based on these CA and where a condition of strong chaos
is required. Providing (efficient) algorithms that, as far as
such CA are concerned, decide other meaningful dynamical
properties such as strong transitivity or compute some useful
quantities as topological entropy is an important step for
further research in this domain. This would also allow one
to build even more robust methods based on such CA in
applications. Another important research direction consists
in considering the multidimensional setting. Besides having a
theoretical value, providing algorithms that decide dynamical
properties formultidimensional Additive CAwill be certainly
useful in many applications involving multidimensional data.
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