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SOIL & CROP SCIENCES | RESEARCH ARTICLE

Use of a biochar-based formulation for coating 
corn seeds
Cesare Accinelli1*, Hamed K. Abbas2, Chiara Morena1, Veronica Bruno1, Vivek H. Khambhati2, 
Ryan T. Paulk3, Nathan S. Little3, Nacer Bellaloui4, Walker Forbes5 and W. Thomas Shier6

Abstract:  The series of experiments summarized here were conducted with the 
objective to evaluate the benefits of using biochar for coating corn seeds. Seeds coated 
with a slurry containing bio-based ingredients and biochar were tested for germination 
and vigor, and for their potential to being infected by the fungus Aspergillus flavus, 
using a novel single seed incubator specifically designed for these purposes. Biochar- 
treated seeds were also planted for two years in experimental fields in the Mississippi 
Delta to evaluate their effect on corn yield and aflatoxin contamination of kernels. 
Experiments were conducted with two types of commercial biochar; one was obtained 
from hardwood residues and the other from coconut shells. Application of both types of 
biochar for coating the seeds did not affect seed germination and vigor. However, 
treated seeds showed increased wettability and a more rapid water uptake. This 
resulted in a 8.5% shortening of germination time. Microbiological analysis using plate 
culturing and qPCR methods showed that biochar was not conducive to the growth of 
A. flavus. This was also confirmed by analyzing soil samples that were collected from 
experimental fields located in the Mississippi Delta. Most importantly, although afla-
toxin contamination was different in the two experimental years, aflatoxin contam-
ination of corn kernels was not affected by biochar-based formulations.

Subjects: Crop Science; Agriculture and Food 

Keywords: biochar; seed treatment; seed germination; Aspergillus flavus; aflatoxins

1. Introduction
Rapid, uniform, and successful seed germination and seedling stand establishment are basic require-
ments for satisfactory crop production. After planting, seeds and seedlings are exposed to a variable and 
unpredictable number of biotic and abiotic stress factors that can reduce, delay, or even compromise 
their germination and seedling stand establishment. Seeds of many agricultural crops are thus routinely 
treated with pest control agents and other substances to reduce these risks and improve plantability 
(e.g., better flowability, seed singulation, reduced seed skip) (Hitaj et al., 2020; McGee, 1988). Among the 
different treatment approaches, seeds with regular shape and adequate size (e.g., corn, soybean, cotton, 
sunflower, etc.) are film-coated by covering the seeds with a liquid slurry containing plastic-forming 
polymers, pesticides, and pigments, using rotating drum or pan coating machines. For rapid drying of the 
treated seeds, fillers are routinely added to the slurry. Common fillers that are used in the seed 
treatment include clay minerals such as talc and bentonite, calcium carbonate, gypsum, zeolite, peat, 
etc (Accinelli et al., 2021; Taylor et al., 1991).
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Since the introduction of industrial seed film-coating in the 1980s, agrochemical companies 
have developed their own proprietary formulations with a variety of synthetic polymers to 
uniformly cover seed surfaces with adherent plastic-like coats. However, significant but incon-
sistent amounts of coating fragments can become detached by mechanical abrasion during 
seed handling and planting operations, even when effective coating formulations are used. 
These coating fragments then become dispersed in the environment (Accinelli et al., 2018,  
2020; Nuyttens et al., 2013). These detached seed coat fragments can retain pesticide resi-
dues, and studies have indicated that these fragments can have a detrimental effect on bees, 
terrestrial birds, and other organisms and can contaminate the soil with persistent microplas-
tic-like particles (Krupke et al., 2012). For this reason, there is increasing interest in developing 
biodegradable and bio-based film coat formulations, especially when they are to be combined 
with biopesticides. As with all film coat formulations, the germination and vigor of treated 
seeds should not be adversely affected by the surface-applied substances. In addition, the risk 
of promoting the growth of fungi capable of infecting the root after seed germination, other 
plant pathogens, and other harmful microorganisms should be also accurately evaluated. The 
soil-borne filamentous and aflatoxin-producing fungus Aspergillus flavus is included among 
these microorganisms.

Aflatoxins are carcinogenic secondary metabolites produced by A. flavus and related species, 
including A. parasiticus and A. nominus. These fungi can infect many crops, such as corn, 
peanuts, cotton, and others, resulting in direct and indirect losses in many agricultural areas 
worldwide (Abbas et al., 2006). A. flavus is a ubiquitous fungus, which is readily isolated from 
soil and crop residues remaining in the upper soil. In the soil, the fungus plays an important role 
in the decomposition of organic matter and humus formation. Spores that are produced during 
the saprophytic life phase of this fungus are transported by air, raindrops, insects, and other 
vectors and can thus infect susceptible crops (Scheidegger & Payne, 2003). A. flavus is ubiqui-
tous in the soil microbial community, and its relative level of soil inoculum is correlated with the 
risk of aflatoxin contamination of susceptible crops in combination with other factors (e.g., air 
temperature and relative humidity, etc.) (Abbas et al., 2009; Fouché et al., 2020; Juraschek et al.,  
2022).

In recent years, an increasing number of seed and agrochemical companies have proposed 
coating solutions containing natural ingredients mixed with biodegradable and renewable poly-
mers instead of conventional oil-based and persistent polymers. Although these solutions are 
environmentally preferable, in that no release of persistent microplastic fragments into the soil 
environment occurs, their effects on the soil microbial community have not been clearly eluci-
dated, particularly effects on proliferation of plant pathogenic and/or mycotoxin-producing fungi 
(i.e., A. flavus).

Biochar, a soil amendment that is obtained from thermal decomposition of organic materials 
under limited oxygen conditions (Das et al., 2021; Lehmann, 2007), is a potential candidate to be 
used as a filler for bio-based coating solutions. Due to its high water retention capability, biochar is 
expected to facilitate water imbibition by seeds, resulting in improved seedling establishment. 
However, very little information is available on the use of biochar as a material for the treatment of 
seeds (Głodowska et al., 2016; Zhang et al., 2022).

The main objective of the present study was to evaluate the benefits of a formulation containing 
biodegradable polymers and biochar powder for coating corn (Zea mays) seeds. Since no specific 
tests for evaluation of seed germinability of coated seeds are currently available, another objective 
of the present study was to design a novel tool for assessing this important parameter. Finally, the 
study also investigated the effects of this bio-based formulation on corn yield and kernel size, 
population and composition of soil A. flavus, and aflatoxin contamination of corn kernels.
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2. Methods and materials

2.1. Seed coating
Seeds of the corn hybrid VT Double Pro (Bayer CropScience, St. Louis, MO, USA) were coated with 
a two-step procedure using a Hege 11 liquid seed treater (Wintersteiger Inc., Salt Lake City, UT, 
USA). First, approximately 0.9 kg of seeds were placed in the liquid seed treater spinning plate. 
While spinning the seeds, 40 mL of 7.5% pre-gelatinized starch solution was slowly added using 
a 50-mL syringe to coat the seeds. Next, 40 g of biochar powder was added to the sticky seeds and 
mixed until the seeds were completely covered. The coated seeds were air dried for 24 h at room 
temperature using a box fan. Two types of biochar were selected for this study, a hardwood 
biochar (HB; Rockwood Sustainable Solutions, Lebanon, Tennessee, USA) and a coconut hull- 
based biochar (CN; Cool Planet, Greenwood Village, Colorado, USA). For both biochar types, the 
application rate was 45 g·kg−1 seeds. The chemical composition and additional properties of the 
two biochar types are summarized in Table 1.

3. Seed wettability, water uptake, and seed germination
Wettability of treated seeds was evaluated by the sessile drop method using a Theta Lite optical 
tensiometer (Biolin Scientific AB, Västra Frölunda, Sweden). The apparent contact angle was 
measured during a 10 s interval after dropping a 10 µL drop of double distilled water on the 
seed surface. For each treatment, a total of 10 seeds were examined. Measurements also included 
seed samples that were coated with the commercial polymer formulation Sepiret (BASF, 
Ludwigshafen, Germany) and dewaxed seeds. The latter seeds were obtained by the removal of 
the external waxy layer as described in Accinelli et al. (2021).

Water uptake and germination ability were evaluated using a novel seed germination tube 
specifically designed for testing treated seeds (Figure 1). As shown in Figure 1, a single seed was 
placed in the center of a 2-cm diameter cylinder provided with two lateral cotton filters (diameter 
of 10 mm; length of 18 mm). The disc was then secured at the connection plane between two 
conical tubes, which were then connected using a screw cylinder. With the exception of the two 50  
mL centrifuge tubes, all remaining parts of the test were designed and manufactured using a Form 
3 L SLA 3D Printer equipped with a 100 µm resolution clear resin. Printer and resin were purchased 
from Formlabs Inc. (Boston, MA, USA). The two filters were moistened with ultrapure water to 
achieve a total volume of 3 mL. Tubes were then incubated in a germination chamber at 25 °C with 
12 h of light per day. For water uptake measurements, seeds were removed at selected intervals 
(5, 10, 20, 30 and 40 h) and weighed before and after drying at 105 °C for 48 h. Germination, 
expressed as percent of normal seedlings, was recorded daily with mean germination time (MGT) 
calculated as follows: MGT = Σ(ni hi)/Σni, in which ni is the number of seedlings present on interval i, 
and hi is the number of hours since the beginning of the test (Ellis & Roberts, 1980). Seeds were 

Table 1. Selected properties of the two biochar types used in the study
Properties Biochar

Coconut Hardwood
Organic carbon 
(% of total of dry mass)

78.0 86.6

Hydrogen/carbon ratio 0.50 0.30

Total nitrogen 
(% of total of dry mass)

0.54 0.91

Total ash 
(% of total of dry mass)

3.32 5.11

pH 6.49 8.86

Electrical conductivity (dSm−1) 0.35 0.37
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considered to have germinated after the radicle emerged. For each treatment, seed water uptake 
and germination data were obtained from 50 and 100 seeds, respectively.

4. Field experiments
Biochar-coated seeds were also evaluated in a field experiment conducted at the Mississippi State 
University Delta Research and Extension Center (Stoneville, MS, USA). Experiments were carried out 
in 2020 and 2021 in two 2-ha corn fields (33.4240° N, 90.9151° W) that were managed according 
to conventional no-till practices of the region. Each plot (15 m long and 10 m wide) was separated 
by a 1 m wide buffer area. Corn was planted on May 6th and April 6th in 2020 and 2021, 
respectively, using a MaxEmerge 5 Planter (John Deere Co, Moline, IL, USA) at the rate of 84,000 
seeds per ha. The soil had a textural composition of 331, 418, and 252 g·kg−1 of sand, silt and clay, 
respectively, a pH of 6.2 and total carbon and nitrogen of 13.1 and 1.4 g·kg−1, respectively. Corn 
was harvested on October 11th and September 1st in 2020 and 2021, respectively, using a Kincade 
8-XP plot combine (Kincaid Equipment Manufacturing, Haven, KS, USA) equipped with H2 grain 
gauge and Mirus software (Harvest Master, Logan, UT, USA). Corn samples were collected in 
unsealed bags and allowed to dry at 45 °C in a ventilated oven for two to three days to ensure 
the moisture content was below 14% to prevent clumping during grinding for analyses.

5. Aflatoxin analysis
Corn samples were prepared for extraction by grinding approximately 500 g to a cornmeal con-
sistency. Fifty grams of the ground sample was subsequently combined with 70% methanol at 
a 1:5 ratio (w/v). The resulting mixture was shaken for 30 minutes on a reciprocal shaker at the 
lowest setting. After resting, the solution was strained through Whatman #1 filter paper to remove 
large particulates. Twenty milliliters of the filtered solution were collected in scintillation vials, 
which were stored at − 20 °C until analyzed.

For aflatoxin analysis by high-performance liquid chromatography (HPLC), 500 µL of sample was 
diluted with 500 µL 100% acetonitrile in 2 mL microcentrifuge tubes. A volume of 800 µL of the 
mixture was further purified through solid phase extraction using a homemade clean-up column 
(3 ml syringe) packed with alumina basic powder (200 g) and a glass wool filter under high- 
pressure vacuum. Purified samples were transferred to 700 µL HPLC vials (Waters Corp., Milford, 
MA, USA). Five standards were created by serial dilution of a working stock solution and injection 
solution. The working stock solution was derived from Aflatoxin Mix 4 solution (Sigma-Aldrich, St 

Figure 1. Corn seed germination 
and seed water uptake studies 
were carried out using 
a specifically designed test 
tube system (left). Seeds (A: 
control; B: dewaxed; C: com-
mercially treated; D: biochar 
treated) were secured between 
two cotton plugs at the junc-
tion of two test tubes held 
together by a threaded sleeve 
created with a 3D printer.
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Louis, MO, USA). Blanks were loaded before and after the standards and after every 10 samples. 
Waters’ Empower software directed the Waters 717 Autosampler to extract 20 µL of sample and 
flow through a Waters Nova-Pak® C18 4 µm 3.9 × 150 mm column at 30 °C by a Waters HPLC 515 
pump at 0.9 mL⋅min−1 and approximately 3600 psi. Post-column derivatization was performed by 
a Photochemical Reactor for Enhanced Detection (Aura Inc., San Diego, CA, USA), and aflatoxin was 
detected with a Waters 2475 Fluorescence Detector set at 365 nm (excitation) and 440 nm 
(emission). Mobile phase was a solution of water, methanol, and 1-butanol (700:360:12.5) while 
blanks and injection solutions were composed of methanol, water, and glacial acetic acid 
(600:380:1). Data were expressed as the total of aflatoxins B1, B2, G1 and G2.

6. Fungal isolations
Samples from the seed germination study were also analyzed for A. flavus infection during the 
process. Microbial DNA that was trapped by the pair of cotton plugs was isolated using the DNeasy 
UltraClean Microbial Kit (Qiagen Corp, Hilden, Germany) following the manufacturer’s instructions. 
DNA was quantified using a BioDrop spectrophotometer (BioDrop Ltd, Cambridge, UK) and then 
amplified with an Open qPCR (ChaiBio, Santa Clara, CA, USA) using the following conditions: 2 min 
at 50 °C, 10 min at 95 °C, 40 cycles of 15 s at 95 °C and 1 min at 60 °C. Each 25 μL of reaction 
mixture contained 12.5 μL of 2× TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, 
CA, USA), 0.2 μM of each primer (Accinelli et al., 2022), and 40 ng of DNA. Samples were amplified 
on a standard curve (r2 = 0.92; efficiency = 94%; slope = − 0.21) generated by plotting cycle thresh-
old values (Ct) against known spore concentration values.

Aspergillus populations within individual plots were assessed during the season for changes over 
time by culturing soil samples. Soil samples were collected prior to planting and post-harvest. From 
the center of each plot, three subsamples were taken from the top 4–6 cm of soil with a sterile 
trowel at random intervals. The subsamples were combined in a 1-quart Ziploc® bag to achieve 
approximately 1 kg samples. Soil isolations were performed as described by Abbas et al. (2004). In 
brief, 10 g soil was added to a screw cap bottle containing 90 mL of potassium phosphate buffer 
and shaken on a reciprocal shaker for 30 minutes at high speed. Using a wide bore pipette tip, 200  
μL of the mixture was transferred onto modified Dichloran Rose Bengal (mDRB) agar and spread 
across the surface using a sterile cell spreader. Four replicates were made for each sample. Plates 
were then incubated upside down for five days at 37 °C. Propagule density of A. flavus was 
determined on selective media as described by Horn and Dorner (1998). Ten colonies from each 
plate were transferred to potato dextrose agar plates amended with β-cyclodextrin and evaluated 
for percent aflatoxigenicity according to Abbas et al. (2004).

7. Statistical analysis
Data from field experiments were subjected to the analysis of variance ANOVA. Experimental plots 
consisted of four 15-m rows, which were arranged in a randomized complete block design with six 
replicates. Mean values from field and laboratory studies were separated by Fisher’s least sig-
nificant difference (LSD), and P values < 0.05 were considered significant. All the data were pro-
cessed using the software SPSS ver. 27.0.1.0 (SPSS Ltd., Chicago, IL, USA).

8. Results and discussion

8.1. Effect of biochar on seed wettability, water uptake and germination
Seed surface wettability, as measured by the apparent contact angle between seed surface and 
sessile water drops, is shown in Figure 2. As indicated by these measurements, the surface of 
untreated seeds showed low affinity to water. More precisely, with an apparent contact angle 
higher than 90°, the external layer of seed corn pericarp can be categorized as hydrophobic. 
Removal of this waxy layer (e.g., dewaxed seeds) increased its wettability. Also, seeds coated 
with a commercial polymer mixture were more wettable than untreated seeds (Table 2). The main 
role of the outer surface of the seed pericarp, the cuticle, is to protect seeds from pathogens and 
desiccation (Jeffree, 2006). Maintaining an adequate level of moisture inside the seed is directly 
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connected to embryo longevity and vitality (Cordova-Tellez & Burris, 2002; Zhang et al., 2010). 
Application of the biochar-based formulation to the surface of corn seeds resulted in a significant 
increase in their wettability. With average wettability values of 24.3° to 25.5°, the external layer of 
these treated seeds turned hydrophilic, with no significant differences between the two biochar 
types. Increased surface area and occurrence of hydrophilic functional groups are some of the 
noted benefits from different agricultural applications of biochar (Hill et al., 2019). As a soil 
amendment, biochar has been used for reducing the phytotoxic effect of residual herbicides and 
other xenobiotics in soil (Marris, 2006; Rogovska et al., 2012; Wang et al., 2022). More recently, 
there has been increasing interest in achieving similar effects from the application of biochar by 
seed treatment (Ajeng et al., 2020). To date, most applications of biochar as a seed treatment have 

Figure 2. Examples of measure-
ment of the apparent contact 
angles of sessile water drops on 
the surface of untreated corn 
seeds (A) and seeds that were 
coated with the hardwood bio-
char (B). Measurements were 
also conducted on samples of 
corn seed that were coated 
with a commercial polymer (C) 
and seed which were subjected 
to the removal of the external 
waxy layer (D, dewaxed seeds).

Table 2. Wettability of corn seeds was measured as reduced apparent contact angle of sessile 
water drops on the surface of seeds that were either untreated (control) or subjected to 
treatments with two types of biochar (hardwood, HW, and coconut, CN, biochar). 
Measurements included samples of seeds that were coated with a commercial polymer and 
seeds that were subjected to the removal of the external waxy layer (dewaxed seeds). Data 
are presented as mean ± STD. Values followed by the same letter are not significantly differ-
ent (P < 0.05; LSD)
Seeds Apparent contact angle (°)

Untreated 90.67 ± 3.28 a

Dewaxed 64.45 ± 10.14 b

Commercially coated 74.02 ± 7.26 c

Coated with HW Biochar 25.51 ± 6.77 d

Coated with CN Biochar 24.33 ± 5.01 d
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used it for pelleting seeds of native species to facilitate planting in vegetation restoration opera-
tions. This application is especially important for plant species that have small and irregularly 
shaped seeds (Ma et al., 2022). In these cases, biochar is combined with other organic or mineral 
materials (i.e., peat and clay minerals) using pelleting or extruder machines, to obtain seeds with 
uniform, spherical shapes and increased mass. With regular shapes and increased size, the 
plantability of biochar-pelleted seeds is consequently improved (Law et al., 2023). In the present 
experiment, the effects of biochar-coated seed on water uptake and germination were evaluated 
using a single seed test tube specifically designed for assessing these properties. Consistent with 
observations in soil amendment studies, water uptake was found to be more rapid in biochar- 
coated than in untreated control seeds. As indicated in Figure 3, after 10 h from the beginning of 
the water uptake study, the water contents of biochar-coated seed and control seeds were 27% 
and 38%, respectively. At the end of the 40-h experiment, moisture of both seed types was 
approximately 45%, with no significant differences among treated and untreated seeds. 
However, this plateau was reached significantly earlier in the treated than in the untreated 
seeds. Imbibition capability of biochar-coated seeds was compared with that of commercially 
coated and dewaxed seeds. Seed moisture measurements showed that water uptake was more 
rapid in the biochar-treated seeds than in others tested (Figure 3). Application of the two different 
biochar powders did not affect seed germination (Table 3). As expected, the more rapid seed water 
uptake also resulted in a shortening of the mean germination time of biochar-treated seeds 
(Table 3). The wettability assay used in this study differed from other available approaches (i.e., 
rolled towel and sand germination test) in that samples remained undisturbed over the entire 
experimental period and physically separated from other seeds, thus avoiding potential interac-
tions. In addition, this study showed that seed water uptake was similar in seeds that were coated 
with two different types of biochar. This is consistent with the wettability of this material, as 
a results of its chemical nature and high specific surface.

9. Microbiological aspects and aflatoxin contamination of corn kernels
In addition to evaluating seed germination, the test tube-based system described in this study, 
was also designed to allow for the rapid and effective recovery of microbial DNA from germinating 
seeds. As shown in Figure 3, the test tube was provided with two cotton plugs, which were placed 
on the opposite sides of each germinating seed. Cotton swabs are routinely used for recovering 
microbial DNA from various sources (Gray et al., 2023). In this study they were also used as 

Figure 3. Water uptake by 
untreated corn seeds (control) 
and by seeds that were coated 
with hardwood (HW) or coconut 
(CN) biochar. Measurements are 
also included of samples of 
seed that were coated with 
a commercial polymer and 
seeds that were subjected to 
the removal of the external 
waxy layer (dewaxed seeds). 
Each point represents mean ±  
STD (n = 3).
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a germination substrate. Preliminary investigations confirmed that using cotton instead of 
a polyester plug did not affect the amount of A. flavus and other microbial DNA recovered. 
Cotton plugs were also more effective in providing water to germinating seeds than those man-
ufactured with polyester (data not shown). The cotton plugs were analyzed for DNA content using 
qPCR and summarized in Table 4.

In many corn growing areas, aflatoxin contamination of kernels is a serious threat. In addition to the 
application of specific crop management practices (i.e., avoiding crop water stress, effective insect 
control, etc.) and control strategies (i.e., field application of non-toxigenic A. flavus isolates), planting 
healthy seeds coated with materials not conducive to the growth of the fungus A. flavus is a basic 
prerequisite for reducing the risk of aflatoxin contamination of corn (Accinelli et al., 2019). Considering 
the increasing interest in using bio-based and biodegradable materials in seed coating, this aspect 
should be evaluated in the process of developing novel seed treatment formulations. As expected, the 
number of A. flavus propagules recovered from untreated seeds increased during the germination 
process. This was also observed with biochar-treated seeds and those coated with a commercial 
polymer or dewaxed. However, the initial level of A. flavus was slightly reduced by seed coating with 
biochar. Because A. flavus is a saprophyte and opportunistic plant pathogen, the highly oxidated and 
slowly degradable organic materials, such as biochar, do not likely promote fungal growth. Studies have 
shown that starchy and oil-rich substrates (i.e., corn endosperm, peanut cotyledons, etc.) are very 
conducive to the growth of A. flavus. When applied as a soil amendment, biochar is expected to improve 
soil aeration and water retention, creating more suitable conditions in the soil for the growth of soil 
microorganisms (Hammerschmiedt et al., 2021; Wei et al., 2021). However, data from this study 

Table 3. Germination and mean germination time of untreated seeds (control) compared with 
seeds that were coated with hardwood (HW), coconut (CN) biochar, a commercial polymer or 
seeds which were subjected to removal of the external waxy layer (dewaxed seeds). Data are 
presented as mean ± STD. Values followed by the same letter in the same column are not 
significantly different (P < 0.05; LSD)

Seeds Germination Mean germination time

(%) (h)
Untreated 99.2 ± 2.2 a 44.1 ± 0.9 a

Commercially coated 98.9 ± 1.2 a 43.0 ± 1.2 a

Dewaxed 99.0 ± 2.0 a 40.1 ± 0.8 b

Coated with HW biochar 99.2 ± 1.5 a 37.0 ± 0.7 c

Coated with CN biochar 99.5 ± 2.2 a 36.4 ± 0.5 c

Table 4. Aspergillus flavus propagules recovered during the germination process from 
untreated (control) seeds, and from seeds coated with hardwood (HW) biochar, coconut (CN) 
biochar, commercial polymer or subjected to the removal of the external waxy layer (dewaxed 
seeds). Data are presented as mean ± STD. Values followed by a letter are not significantly (P  
< 0.05) different from other values followed by the same letter (ANOVA)

A. flavus (number of propagules per seed)

2 d 4 d 7 d
Untreated 25.2 ± 2.9 a 32.3 ± 1.7 b 42.1 ± 3.2 c

Commercially coated 26.1 ± 3.1 a 39.4 ± 2.8 b 44.0 ± 2.8 c

Dewaxed 24.9 ± 2.9 a 29.1 ± 2.0 b 39.9 ± 1.8 c

Coated with HW biochar 23.5 ± 3.0 a 29.6 ± 2.6 b 40.5 ± 3.3 c

Coated with CN biochar 21.2 ± 2.9 a 31.1 ± 1.5 b 42.0 ± 3.0 c
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indicated that application of the two types of biochar to seeds did not increase the growth of the fungus 
A. flavus, thus confirming the high resistance to microbial degradation of this material.

The size of A. flavus populations in field soil planted corn seed coated with biochar followed 
similar trends during the two years studied in Mississippi (Table 5). In both years, the number of 
soil A. flavus propagules increased during the growing season, with a percentage of aflatoxin- 
producing isolates ranging from 36% to 44%. Comparable results were observed in soil planted 
with biochar treated seeds. These data are consistent with those from the in vitro experiment. This 
was further supported by chemical analysis of aflatoxin levels in harvested corn kernels (Table 5). 
Aflatoxin contamination of harvested corn kernels depends on a variety of factors, including day 
and night air temperatures, soil moisture, insect damage to ears, etc (Abbas et al., 2009; Fouché 
et al., 2020). Although aflatoxin contamination varied among experimental plots, the effect of the 
biochar seed treatment was not significant. Aflatoxin contamination was higher in 2021 than in 
2020. During the kernel filling period in these two years, average high temperatures were 36.70 °C 
in 2020 and 36.70 °C in 2021 and average low temperatures were 35.60 °C in 2020 and 36.70 °C in 
2021 (Figure S1). Total rainfall was similar in the two years, with values of 714 mm and 753 mm, in 
2020 and 2021, respectively (Figure S1). Similar environmental conditions resulted in similar grain 
yields, with average values of 117 q⋅ha−1 and no significant differences among treated and 
untreated seeds (Table 5). Several studies have shown that aflatoxin contamination of corn is 
highly variable between years and difficult to predict (Abbas et al., 2017; Accinelli et al., 2019). The 
present experiment reinforced this concept, but more importantly, it demonstrated that coating 
corn seeds with biochar did not affect aflatoxin contamination of harvested corn kernels.

10. Conclusions
The increasing interest in removing synthetic substances from seed treatment formulations has 
prompted research into novel bio-based and renewable materials to use in their place. Biochar 
possesses interesting properties that are useful for these purposes, including its high-water reten-
tion capability and low cost. However, the use of this material should not interfere with seed 
quality parameters, such as seed germination and vigor, or promotes the growth of the fungus 

Table 5. Size of the soil Aspergillus flavus population and percent aflatoxigenicity of isolates 
recovered from plots planted with untreated corn seeds and corn seeds coated with one of 
two types of biochar (hardwood, HW, and coconut, CN). In both years, samples were collected 
at the beginning (Apr.) and at the end (Sept.) at the end of the corn growing season. Aflatoxin 
contamination of harvested corn kernels and yield are reported. Data are presented as mean  
± STD. For each year, values followed by a letter are not significantly (P < 0.05) different from 
other values followed by the same letter (ANOVA)
Year/Seed 
treatment

Propagule density 
(log 10  g−1)

Aflatoxigenic isolates 
(%)

Aflatoxins 
(ng·g−1)

Yield 
(q·ha−1)

Apr. Sept. Apr. Sept.
2020

Untreated 3.9 ± 0.2 a 4.1 ± 0.8 b 36.3 ± 0.1 a 39.2 ± 0.4 b 0.8 ± 0.1 a 12.3 ± 1.4 a

Coated with 
HW biochar

3.4 ± 0.1 a 4.0 ± 0.4 b 30.2 ± 0.3 a 38.0 ± 0.2 b 0.6 ± 0.1 a 11.3 ± 0.9 a

Coated with 
CN biochar

3.5 ± 0.2 a 3.9 ± 0.3 b 32.2 ± 0.4 a 35.9 ± 0.5 b 0.4 ± 0.1 a 11.8 ± 0.8 a

2021

Untreated 3.7 ± 0.3 a 4.4 ± 0.5 b 35.3 ± 0.2 a 37.1 ± 0.1 a 3.3 ± 0.2 a 11.2 ± 0.8 a

Coated with 
HW biochar

3.6 ± 0.5 a 4.4 ± 0.8 b 38.8 ± 0.1 a 34.3 ± 0.2 a 3.6 ± 0.2 a 10.2 ± 2.4 a

Coated with 
CN biochar

3.2 ± 0.7 a 4.1 ± 0.4 b 37.9 ± 0.1 a 38.7 ± 0.3 a 3.0 ± 0.4 a 10.8 ± 0.7 a
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A. flavus, which would increase the risk of aflatoxin contamination of harvested corn kernels, 
a serious threat to corn production. Laboratory and field experiments conducted for two years in 
the Mississippi Delta confirmed that biochar-treated seeds did not affect the size of the soil 
A. flavus population and the level of aflatoxin contamination of corn kernels. These results indicate 
that this renewable material can be used for coating corn seeds without increased concern 
regarding aflatoxin contamination.
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