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A B S T R A C T   

Since oils containing a high content of polyunsaturated fatty acids are susceptible to oxidation, it is necessary to 
monitor the degree of deterioration during storage, e.g. by measuring the volatile compounds. This study aimed 
to assess volatile profiles of berry seed oils in terms of the authenticity and the deterioration assessment using 
flash gas chromatography (FGC E-Nose) combined with chemometrics. Berry seed oils (raspberry, blackcurrant, 
strawberry, chokeberry), obtained from three different suppliers and stored for a one year in brown bottles at 
room temperature, were analysed after 0, 3, 6, 9 and 12 months of storage. Principal component analysis enabled 
separation of oil samples by different berry types, suppliers and storage times. To predict the storage time, partial 
least square (PLS) models were built for each type of berry oil. Determination coefficients (R2) in cross-validation 
ranged from 0.842 (RMSECV = 1.69 months) to 0.969 (RMSECV = 0.75 months). Selecting the specific regions of 
chromatograms improved the residual prediction deviation (RPD) to values between 2.8 and 5.7, which indi-
cated the suitability of the PLS models to predict the storage time in the quality control of berry oils.   

1. Introduction 

World production of berries was increased during the past 10 years. 
The growth in production was observed in the increment of gross pro-
duction value that ranged up to 25% and 125%, respectively, for 
strawberry and raspberry commodities (FAO, 2021). Berries were often 
consumed directly or processed into other convenient products (juice, 
dried berries, confiture, and marmalade). Agro-industrial processing 
resulted to the accumulation of by-products such as pomace and other 
residues (seeds, leaves, stems) that account up to 35% of the raw mass 
(Majerska et al., 2019). Furthermore, up to 70 % of berry by-products 
consist of seeds containing a notable amount of oil (Mazurek et al., 
2022). Oils from berry seeds are characterized by a high percentage of 
polyunsaturated fatty acid (PUFA) and antioxidant components, which 
are linked to health-promoting properties, such as reducing the risk of 
cardiovascular disease (Martysiak-Żurowska and Orzołek, 2023). 

Berry seed oils are sold as food supplements, nutraceutical products, 
and cosmetics. Despite the growing demand, only a limited number of 
studies exist on berry seed oils’ authenticity (Przykaza et al., 2021; 
Rajagukguk et al., 2023). The quality of berry seed oil sold on the market 
remains unprotected due to the non-existing regulation of oils from 

by-products. The high profitability of berry seed oil production might 
attract fraudulent enterprises to tamper with the oils. In fact, fat and oil 
products remain the third-most reported commodities in terms of the 
suspicion of fraud in the latest report from the EU-Food Fraud Network, 
with “faulty storage conditions” and “unsuitable organoleptic charac-
teristics” included in the list of non-compliance categories (European 
Commission, 2021). From the industrial point of view, developing a 
reliable method for evaluating storage time is critical to ensure oil 
quality and to protect the business-to business marketplace against fraud 
cases. 

During storage, oils with higher PUFA are more susceptible to 
oxidation. The deterioration in quality is mainly indicated by the pres-
ence of rancid odours from lipid oxidation products such as aldehydes, 
ketones, and esters, as well as furan derivatives (Gaca et al., 2021). 
Quality and authenticity assessment of oils was reported in recent 
studies using various methods of gas chromatography techniques (Mota 
et al., 2021). Due to its simplicity, efficiency, and affordability, the flash 
gas chromatography (FGC) E-nose application has gained attention as a 
non-targeted instrument to assess the quality of high-lipid-containing 
products (Barbieri et al., 2020; Cevoli et al., 2022; Tata et al., 2022). 
FGC E-Nose is a versatile tool that enables rapid analysis of the samples 
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compared to conventional GC. The synergy between FGC and E-Nose 
instruments leads to better data acquisition, i.e. enabling researchers to 
obtain more specific and complex volatile signals from flavour attributes 
compared to sensor-based E-nose (Tian et al., 2023). Furthermore, FGC 
is easy to operate and suitable for profiling volatile compounds, which 
can be evaluated with chemometric analysis (Damiani et al., 2020). The 
implementation of FGC E-Nose is still a hot topic in edible oil studies. 

The technique capabilities were proven in determining olive oil 
authenticity (Palagano et al., 2021), the origin of flavoured rapeseed oil 
(Zhang et al., 2020), and has even been encouraged for use as a 
replacement for conventional sensory evaluations (Modesti et al., 2021). 
Further investigation of the implementation of FGC E-Nose to assess 
edible oil quality will benefit the oil industry. 

The objectives of this study were: a) to predict the storage time of 
berry seed oils using FGC E-nose combined with multivariate data 
analysis and, b) to discriminate four types of berry seed oils obtained 
from different suppliers based on the oils’ authentic volatile profiles. The 
samples used in this study consist of cold-pressed oil from raspberry 
(RB), strawberry (ST), blackcurrant (BC), and chokeberry (CHB). 
Chromatogram data will be subjected to multivariate data analysis to 
predict the storage time (PLS model) and to assemble the samples ac-
cording to berry type and supplier origin (PCA). This work presented the 
first application of FGC E-Nose to evaluate berry seed oil quality in a 
storage study. 

2. Material and methods 

2.1. Materials 

Four types of cold-pressed berry seed oils were analysed: raspberry 
(Rubus idaeus) [RB], strawberry (Fragaria ananassa) [ST], blackcurrant 
(Ribes nigrum) [BC], and chokeberry (Aronia melanocarpa) [CHB]. For 
each oil type, three different batches of production (GR1, GR2, and GR3) 
coming from two supplier (GreenField Sp z.o.o., Warsaw, Poland; Olvita 
Gołuch Sp. k., Marcinowice, Poland), were investigate, except that for 
the chokeberry seed oil. In this last case two batches were considered. 
Freshly produced oils were stored for a one-year observation in brown- 
glass bottles (100 ml) without any headspace at ±20 ◦C. The samples 
were collected from different bottles every 3 months. In total, 110 
samples were collected (two replicas for storage time) and analysed after 
0, 3, 6, 9, and 12 months of storage. 

2.2. Flash gas chromatography (FGC) analysis 

Non-targeted volatile compounds analysis was conducted using a 
flash gas chromatography technique and the Heracles II E-Nose instru-
ment (Alpha MOS, Toulouse, France). FGC is equipped with two capil-
lary columns (10 m length, 180 μm diameter) containing different 
stationary phase polarities. Non-polar (MXT5: 5% diphenyl, 95% 
methylpolysiloxane) and polar (MXT-1701 14% cyanopropylphenyl/ 
86% dimethyl polysiloxane) columns were parallelly separated into 
compounds with a distinctive capability. The separated volatile com-
pounds were detected by flame ionisation detector (FID). 

Berry seed oils (±2 g) were weighed inside a 20 mL clear-glass vial 
and sealed with a magnetic cap. Each sample was analysed in two rep-
lications. The vials were placed inside a shaker oven for 20 min (40 ◦C, 
500 rpm). Volatile compounds (5 mL) were collected from the vial’s 
headspace using syringe (70 ◦C) equipped with a splitless injector 
(200 ◦C, injection speed 100 μL/s, carrier gas flow at 30 mL/min) and a 
Tenax TA® trap (40 ◦C, 60 s) as the adsorbent. Afterwards, volatile 
compounds were desorbed from the trap (240 ◦C, 93 s), injected (column 
head pressure was set at 40 kPa), and split into two columns (flow 5 mL/ 
min). The analysis was conducted using the following thermal program: 
1) start at 40 ◦C and hold for 2 s, 2) increase the temperature to 80 ◦C at 
1 K/s, 3) increase the temperature to 250 ◦C at 3 K/s. The carrier gas 
used was hydrogen (40 kPa–64 kPa, with increasing rate of 0.2 kPa/s). 
The compounds were detected by a flame ionisation detector (FID) at 
260 ◦C. Alphasoft software version 14.5 was used to record the signals 
and control the whole process of data acquisition (signal digitalized 
every 0.01 s). 

Fig. 1. Chromatogram of a) raspberry, b) blackcurrant, c) strawberry, d) 
chokeberry seed oils from different suppliers. 
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2.3. Data analysis 

By using a non-targeted approach, full chromatograms or some 
sections of them were used to predict the storage time and to discrimi-
nate the sample according to berry types and batch origin. The choice of 
using full chromatograms has some advantages related to possible errors 
generated during the integration in peak-area calculation; furthermore, 
when no pre-selection is done, the risk of discarding useful information 
is avoided (Melucci et al., 2016). Before the chemometric analysis, the 
chromatograms belonging to the same berry types were aligned by the 
COW (Correlation Optimized Warping) algorithm (Tomasi et al., 2004) 
and pretreated using two methods: Pareto-scaling or simply centering 
(mean-centering). Pareto-scaling was selected instead of standard 
auto-scaling because it gives equal importance to all variables, but to a 
lesser extent than standard autoscaling, which may induce a loss of 
significant information, since it increases the weights of minor noisy 
variables (Aliakbarzadeh et al., 2016). Furthermore, by using this 
pre-processing, the shapes of the chromatograms were not modified 
(van den Berg et al., 2006). Particularly, in Pareto-scaling the square 
root of the standard deviation is used as scaling factor: 

x̃ij =
xij − xi

̅̅̅̅̅̅̅̅
SDi

√ (1)  

where xij and x̃ij represent the raw and scaled data, respectively. The 
mean (xi) and standard deviation (SDi) are calculated as: 

xi =
1
J

∑J

j=1
xij (2)  

SDi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑J

j=1

(
xij − xi

)2

J − 1

√
√
√
√
√

(3) 

Explorative PCA models were built to visualize samples according to 
berry type and batch origin, while PLS models were developed to esti-
mate the storage time within the same berry type, considering all sup-
pliers together. In view of the small number of samples, the PLS model 
validation were performed by Venetian blinds cross-validation (10 
segments). To avoid the model over-fitting, the optimal number of latent 
variables (LV) were chosen by detecting the global minimum of root 

Fig. 2. PCA score plots for a) raspberry, b) blackcurrant, c) strawberry, d) chokeberry seed oils during 0, 3, 6, 9, 12 months of storage.  
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mean square error in cross validation (RMSECV). 
Furthermore, the model robustness and significance was verified 

through a permutation test. This procedure allows overfitting to be 
identified and provides the probability that the given model is signifi-
cantly different from one built under the same conditions but using 
random data. 

It is often the case that most of the variables involved in the PLS 
model development could be of slight relevance (e.g. redundant or un-
necessary chromatogram regions) to the investigated problem, as they 
represent variation not related to the response to be modelled. 

Therefore, their number can be drastically reduced without loss of in-
formation, or even increasing the model power. Variable selection can 
improve the estimation accuracy by effectively identifying the subset of 
important predictors and can enhance the model’s interpretability with 
parsimonious representation (Farrés et al., 2015). There are several 
methods to select variables, and one of those most used in combination 
with PLS regression is the Variable importance in projection (VIP) se-
lection method. VIP scores summarize the influence of individual 
X-variables on the PLS model. They are calculated as the weighted sum 
of squares of the PLS weights, which take into account the amount of 
explained Y-variance in each extracted latent variable (component). 

The VIP score for each j variable is calculated as: 

VIPj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑F
f=1w2

jf • SSYf • J
SSYtot • F

√

(4)  

where wjf is the weight value for j variable and f component, SSYf is the 
sum of squares of explained variance for the fth component and J 
number of X variables. SSYtot is the total sum of squares of explained 
variance of the dependent variable, and F is the total number of 
components. 

X variables characterized by VIP scores higher than 1 are considered 
important in a given model; this criterion is conventionally used to select 
the variable. Accordingly, new PLS models involving only the X vari-
ables with VIP scores greater than one were developed. 

The results were evaluated in terms of determination coefficient (R2), 
root mean square error in (RMSE), and residual prediction deviation 
(RPD) in calibration (C) and validation (CV) 

R2 =

∑N
i=1(ŷi − y)2

∑N
i=1(yi − y)2 (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − y)2

N

√

(6)  

RPD=
SD

RMSE
(7)  

where yi is the actual storage time (days), ŷi is the predicted storage time 
(days), y is the mean of the actual values, N is the number of samples, 
and SD is the standard deviation of reference values. All data analyses 
were conducted using PLS Toolbox for Matlab2018a®. 

3. Results and discussion 

All chromatograms, grouped based on the berry type, are shown in 
Fig. 1. The main peaks are concentrated in the initial part of the chro-
matogram (retention time between 18 and 80 s). As could be expected, 
the volatile profiles of the four types of oils (RB, BC, ST and CHB) are 
quite different, in terms of shape and peak numbers. Clear differences 
between supplier origin can be observed for all berry types, especially in 

Fig. 3. X-loadings score plots obtained by the PCA of the a) raspberry, b) 
blackcurrant, c) strawberry, d) chokeberry data. 

Table 1 
Results of the PLS models developed using a full chromatogram (1800–8000).  

Berry Pre- 
processing 

Calibration Cross-validation LV 

R2 RMSEC 
(months) 

R2 RMSECV 
(months) 

RPD 

RB PA + MC 0.969 0.75 0.842 1.69 2.5 8 
BC PA + MC 0.984 0.54 0.846 1.63 2.5 11 
ST MC 0.985 0.5 0.932 1.14 3.8 11 
CHB PA + MC 0.995 0.26 0.963 0.82 5.2 8 

RB: raspberry; BC: blackcurrant; ST: strawberry; CHB: chokeberry; PA: Pareto 
Scaling, MC: mean-centering; R2: determination coefficient; RMSE: Root Mean 
Square Error; C: calibration; CV: cross-validation; RPD: residual prediction de-
viation; LV: latent variables. 
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terms of intensities, confirming the discriminating power of the volatile 
profile with respect to the supplier. This draws attention to the fact that 
sample oils obtained from two different batches of production from the 
same supplier (group 1 and 2) are characterized by different volatile 
profiles, even immediately after production. 

Explorative PCAs were conducted to evaluate a possible correlation 
between chromatograms according to berry type and supplier origin. 

Score plots obtained for the chromatogram range from 1800 to 8000 
points (retention time from 18 to 80 s) are shown in Fig. 2. Better results 
were achieved for pre-processing RB and BC data by Pareto-scaling, and 
for ST and CHB data by mean-centering. For all berry types, a good 
separation was observed for the supplier origin PC1 vs PC2 (RB and BC) 
or PC1 vs PC3 (ST and CHB). For the BC samples, it is difficult to 
discriminate between group 1 and 2, while group 3 shows high differ-
ences with respect to the other two. This is probably due to the fact that 
samples belonging to group 3 are produced by a different company. 

Within the same supplier, it is also possible to observe quite good 
distribution of the samples as a function of storage time, from 0 to 12 
months, especially along the PC2 (RB and CB) or PC3 (ST and CHB). 

The contribution of X-variable to each of the PCs can be evaluated by 
the X-loading. High loading values (positive or negative) indicate that a 
variable has a strong effect on that principal component. Positive 
loadings indicate a positive correlation between variable and principal 
component: an increase in one results in an increase in the other. 
Negative loadings indicate a negative correlation. Therefore, by evalu-
ating the X-loadings (Fig. 3), it was possible to observe the chromato-
graphic zones characterized by the highest contribution to PC1 vs PC2 
(RB and CB) or PC1 vs PC3 (ST and CHB). The presence of greater noise 
in the loading scores of the RB and CB samples compared to the ST and 
CHV, is due to the data pre-treatment (Pareto-scaling vs mean centring). 

A brief attempt to identify the FGC E-Nose peaks from olive oils of 
different geographical origin was reported in the study conducted by 
Melucci et al. (2016). The authors compared the FGC E-Nose peaks with 
MS spectra in SPME/GC-MS analysis and successfully identified a posi-
tive correlation between retention times and particular molecules. Ac-
cording to Melucci et al. (2016), a rough identification of the responsible 
molecules for some prominent peaks from FGC E-Nose in Fig. 1 can be 
established. The identified peaks were listed as follows: a) ethyl acetate 
at 2100, b) ethanol 2200, c) 1-penten-3-ol at 2400, d) hexanal at 3200, 
e) hexanol at 3600, and f) 2-hexenal at 4100. 

Considering the discrimination according to the storage time 
(observed along PC2 or PC3), the highest contribute is mainly due to the 
peaks at around 2200, 3200 and 7100; 2400 and 7100; 2400, 3200 and 
3600; as well as 2100, 2400, 3200 and 5600, for RB, BC, ST and CHB, 
respectively. In this regards, several prominent volatile compounds that 
responsible for storage time differentiation as detected by FGC E-Nose 
are 1-penten-3-ol, hexanal, and 2-hexenal. Hexanal and 2-hexenal were 
generated from the oxidation of linoleic and linolenic acid respectively 
(Xu et al., 2018), which responsible for up to 75% of the fatty acid 
composition in berry seed oils (Mildner-Szkudlarz et al., 2019). While 
the increment of 1-penten-3-ol over time indicates the decomposition of 
hydroperoxides from omega-3 fatty acid in berry seed oils (Liang et al., 
2020). Beside quality deterioration and off-flavours, the detected vola-
tiles were also responsible for the key-aromas that set apart one type of 
berry seed oil among the other oils. For example 1-hexanol (fruit, ba-
nana, soft, tomato, cut grass), 2-hexenal (green, apple-like, bitter 
almond like), and hexanal (apple, cut grass, green) (Marx et al., 2021; 
Teixeira et al., 2021). Regardless the detected peaks in the presented 
chromatogram, it should be noted that FGC E-Nose is a completely 
non-targeted method. Hence, a non-targeted approaches was used to 
elaborate the data, consequently the precise identification of the volatile 
compounds related to the peaks is outside the scope of the work. How-
ever, this study does not exclude the fact that further studies could be 
done on the analytical determination of these volatile compounds from a 
purely chemical point of view. 

PLS models were developed to estimate the storage time (months) 
within the same berry type, regardless of the supplier origin, by using 
full chromatograms (from 1800 to 8000 ponits). Model results, in terms 
of determination coefficient (R2), RMSE, RPD and (LV) in calibration 
and cross-validation (10 segments) are shown in Table 1. Good results 
were obtained for all berry oils with R2 in cross-validation ranging from 
0.842 (RMSECV = 1.69 months, RB) to 0.963 (RMSECV = 0.82 months, 
CHB), while RPD values are equal to or higher than 2.5 (up to 5.2 for 

Fig. 4. VIP scores from the selected regions in chromatogram for a) raspberry, 
b) blackcurrant, c) strawberry, d) chokeberry seed oils. 
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Table 2 
Results of the new PLS model developed using a selected region in the chromatogram by the VIP method.  

Berry Pre-processing Numbers of variable Calibration Cross-validation LV 

R2 RMSEC (months) R2 RMSECV (months) RPD 

RB PA + MC 1535 0.980 0.60 0.973 1.01 4.0 5 
BC PA + MC 1165 0.970 0.73 0.932 1.14 3.8 7 
ST MC 905 0.973 0.68 0.895 1.42 3.1 4 
CHB PA + MC 1137 0.989 0.44 0.969 0.75 5.7 5 

RB: raspberry; BC: blackcurrant; ST: strawberry; CHB: chokeberry; PA: Pareto Scaling, MC: mean-centering; R2: determination coefficient; RMSE: Root Mean Square 
Error; C: calibration; CV: cross-validation; RPD: residual prediction deviation; LV: latent variables. 

Fig. 5. PLS results in terms of measured versus predicted storage (time months) values for a) raspberry, b) blackcurrant, c) strawberry, d) chokeberry data.  

Table 3 
The probabilities of the calibration and cross-validation models.   

Berry Calibration Cross-validation LV 

Wilcoxon Sign Test Rand t-test Wilcoxon Sign Test Rand t-test 

Full chromatograms RB 0.000 0.008 0.005 0.000 0.003 0.005 8 
BC 0.000 0.011 0.005 0.000 0.016 0.005 11 
ST 0.001 0.006 0.005 0.000 0.002 0.005 11 
CHB 0.000 0.003 0.005 0.000 0.002 0.005 8 

After VIP variable selection RB 0.000 0.007 0.005 0.000 0.001 0.005 5 
BC 0.000 0.007 0.005 0.000 0.004 0.005 7 
ST 0.001 0.008 0.005 0.000 0.003 0.005 4 
CHB 0.000 0.002 0.005 0.000 0.002 0.005 5 

Note: RB: raspberry; CB: chokeberry; ST: strawberry; BC: blackcurrant; LV: latent variables. 
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CHB samples). 
With the aim of reducing the original data set, removing redundant 

or unnecessary chromatogram regions, and thus increasing the PLS 
model predictive power, variables characterized by VIP>1 were selected 
and new PLS models were developed. Chromatograms for selected re-
gions are shown in Fig. 4. The number of variables was reduced by more 
than 75% (1535 variables) and up of 85% (905 variables) with respect to 
the original data set (6200 variables). The number of LV is also 
considerably reduced (from 9.5 ± 1.5 to 5.2 ± 1.1) making the models 
more stable. The results of the new PLS models are shown in Table 2. For 
all the samples, except ST, results in cross-validation were improved 
(mean RMSECV reduction of 26.3 ± 13.2%) compared to those obtained 
for full chromatograms. R2 ranges from 0.895 (RMSECV = 1.42 months, 
ST) to 0.969 (RMSECV = 0.75 months, CHB), while RPD values vary 
between 3.1 and 5.7. The results in terms of measured versus predicted 
storage time (months) of the cross validated models are reported in 
Fig. 5. Furthermore, determination coefficients (R2) RMSE and BIAS in 
calibration and cross-validation are shown. 

Although there is no statistical basis as to how the threshold equal to 

two was determined, usually models characterized by RPD values higher 
than two are considered as excellent. Furthermore, for the quality con-
trol field, the following RPD categories have been identified: i) 2.4–3.0 
rough screening quality; ii) 3.1–4.9 screening quality; iii) 5.0–6.4 
quality control; iv) 6.5–8.0 process control; v) > 8.1 any application 
(Williams and Norris, 2001). Considering the RPD values achieved in 
this study, the PLS models could be suitable for predicting the storage 
time in quality control. 

Due to the restricted number of the samples, it was important to 
evaluate the robustness and significance of the model as a function of the 
latent variable, and also to avoid overfitting. In particular, the model 
robustness and significance was verified through a permutation test that 
shows the probability of the original model (unpermuted) being signif-
icantly different from the one built under the same conditions but using 
random data (permuted model). The probability that the unpermuted 
model is not significantly different from the one created from randomly 
shuffling the y-block was evaluated by using three different tests: Pair-
wise Wilcoxon signed rank test (Wilcoxon), Pairwise signed rank test 
(Sign Test) and Randomization t-test (Rand t-test). Table 3 shows the 

Fig. 6. Fractional y-variance from calibration and cross-validation versus correlation of the permuted y-block to original y-block in a) raspberry, b) blackcurrant, c) 
strawberry, d) chokeberry seed oils. 
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probabilities in calibration and cross-validation, with values less than 
0.05 indicating that the model is significant at the 95% confidence level 
for the specific number of latent variables. It is possible to confirm that 
all the developed models are significant with values higher than 98%, 
both in calibration and validation. 

Furthermore, fractional y-variance captured for calibration and 
cross-validation versus the correlation of the permuted y-block to the 
original y-block was evaluated as an index of model robustness (Fig. 6, 
PLS models developed after variable selection). For each permuted y- 
block, RMSEC and RMSECV were used to calculate fractional sum 
squared Y captured (SSQ Y) for the calibration (C) and cross-validation 
(CV). In general, the cross-validated and calibration SSQ Y values should 
be relatively close to each other but should be less than the results for the 
unpermuted y-block (right side of the plot), independent of their cor-
relation with the real class values. Consequently, all the models can be 
considered significant, though the PLS model related to BC shows less 
robust results in terms of dispersion of SSQ Y values (both C and CV) and 
the distance between unpermuted and permuted SSQ Y. This agrees with 
the probability’s values reported in Table 3, especially for the Sign Test. 

4. Conclusions 

The changes in the volatile profile of berry seed oils during one year 
of storage were correctly evaluated by FGC E-nose combined with che-
mometric techniques. A clear separation between samples obtained from 
different suppliers was demonstrated in PCA. Additionally, samples 
from 0 to 12 months were well distributed, according to the function of 
storage time. PLS models were built to predict the storage times for each 
berry type, and the predictive power was improved after pre-processing 
and selecting the specific region in a chromatogram. The PLS models 
built in this study possessed excellent predictive power, as characterised 
by the RPD values that were greater than 2. It indicates the suitability of 
the PLS models to predict the storage time during quality control. As a 
rapid and non-targeted instrument, FGC E-nose proved its robust 
application to analyse the quality differences of berry seed oils during 
storage. Data processing with chemometrics was able to extract a wider 
scope of information from the resulting chromatogram, such as visual-
isation of oil characteristics according to the berry type, supplier origin, 
and storage prediction. Even though this study using FGC E-nose is 
limited to qualitative determination, such an approach is valued by the 
oil industry, which requires analysis of a great number of oils daily, with 
respect to their quality and authenticity. FGC E-nose is a versatile tool 
compared to conventional GC, only 100 s of acquisition time are 
required and no need for solvents. 
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Toschi, T., 2020. Flash gas chromatography in Tandem with chemometrics: a rapid 
screening tool for quality grades of virgin olive oils. Foods 9, 862. https://doi.org/ 
10.3390/foods9070862. 

Cevoli, C., Casadei, E., Valli, E., Fabbri, A., Gallina Toschi, T., Bendini, A., 2022. Storage 
time of nut spreads using flash gas chromatography E-nose combined with 
multivariate data analysis. Lwt 159. https://doi.org/10.1016/j.lwt.2022.113217. 

Damiani, T., Cavanna, D., Serani, A., Dall’Asta, C., Suman, M., 2020. GC-IMS and FGC- 
Enose fingerprint as screening tools for revealing extra virgin olive oil blending with 
soft-refined olive oils: a feasibility study. Microchem. J. 159, 105374 https://doi. 
org/10.1016/j.microc.2020.105374. 

European Commission, 2021. ACN Annual Report. Alert and Cooperation Network. 
FAO, 2021. Crops: Raspberries and Strawberries. https://www.fao. 

org/faostat/en/#data/QV. 
Farrés, M., Platikanov, S., Tsakovski, S., Tauler, R., 2015. Comparison of the variable 

importance in projection (VIP) and of the selectivity ratio (SR) methods for variable 
selection and interpretation. J. Chemom. 29, 528–536. https://doi.org/10.1002/ 
cem.2736. 
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