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Abstract: In this paper, we propose a new deep learning approach based on unfolded neural networks
for the reconstruction of X-ray computed tomography images from few views. We start from a model-
based approach in a compressed sensing framework, described by the minimization of a least
squares function plus an edge-preserving prior on the solution. In particular, the proposed network
automatically estimates the internal parameters of a proximal interior point method for the solution
of the optimization problem. The numerical tests performed on both a synthetic and a real dataset
show the effectiveness of the framework in terms of accuracy and robustness with respect to noise on
the input sinogram when compared to other different data-driven approaches.

Keywords: few-view computed tomography; unfolded neural networks; proximal interior point

1. Introduction

It is very important to have reliable and trustworthy methods to obtain good X-ray
computed tomography (CT) scans with the lowest level of radiation to achieve medical
diagnoses. A common strategy, known as sparse-view CT, reduces the radiation dose
by capturing a limited number of data. The CT imaging process can mathematically be
expressed as the following model:

y = D(Hx̄), (1)

where x̄ ∈ Rn is the image we want to reconstruct, y ∈ Rm is the acquired data (also called
a sinogram), D is the noise perturbation, and H ∈ Rm×n is the linear tomographic operator.
Due to the limited number of data, the sparse-view CT problem can be cast into the
compressed sensing framework [1,2], which includes a large variety of imaging problems,
e.g., diffuse optic tomography [3], magnetic resonance imaging [4], image deblurring [5],
optical coherence tomography [6], and synthetic-aperture radar imaging [7].

In addition to being indeterminate, the inverse problem (1) is typically also ill-conditioned,
and the more traditional analytical methods such as filtered back projection (FBP) produce
images dominated by noise and artifacts. An efficient alternative to invert (1) is the
model-based approach, where an iterative algorithm solves a minimization problem by
incorporating prior information on the reconstruction as either regularization functions or
constraint. Among the several proposals in literature, the total variation (TV) function is
certainly the most widely used in medical CT (see, e.g., [8]). The advantages of model-based
methods are their explainability and the data consistency imposed by the physical model.
However, they require hard parameter tuning and a long execution time.

Algorithms 2023, 16, 270. https://doi.org/10.3390/a16060270 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060270
https://doi.org/10.3390/a16060270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9951-3564
https://orcid.org/0000-0002-7327-3347
https://orcid.org/0000-0002-4892-2325
https://orcid.org/0000-0001-6084-5062
https://doi.org/10.3390/a16060270
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060270?type=check_update&version=1


Algorithms 2023, 16, 270 2 of 18

In the last decade, motivated by the availability of huge datasets and new efficient
computational devices, such as dedicated graphics processing units (GPUs), deep neural
networks (DNNs), in particular convolutional neural networks (CNNs), have been success-
fully employed for X-ray CT image reconstruction, producing very accurate reconstructions
at the expense of explainability and robustness to noise. Deep-learning-based methods
used for CT can be grouped into four classes. The first class is called data-to-image, and here,
the neural network directly maps the acquired sinogram to the reconstructed image (see,
for example, [9]). This approach is not widely used since it is well known that it is not stable
with respect to noise in the data [10]. The second class is composed of networks directly
mapping coarse reconstructed images to accurate reconstructions, and for this reason, it
is named image-to-image. Most of the proposed methods use CNNs, taking as input FBP
reconstructions (see, e.g., [11–13]). The third class is the plug-and-play-type approaches,
where a network is trained outside of the iterative process and then included within it,
thus allowing the iteration to be run indefinitely [14–16]. The last approach is known as
iterative mapping, and it is realized through the so-called unrolled (or unfolded) neural
networks [17]. The aim of these methods is to mimic the action of a minimization problem
by simultaneously learning the hyper-parameters of the model, such as the regularization
hyper-parameters, the iterative solution algorithms, and/or the model operators.

The first deep unfolding networks were applied to specific inverse problems [18], and
they demonstrated improved performance compared to the more traditional optimization
algorithms. Since then, deep unfolding has been extended to compressive sensing [19,20],
image deblurring [21], and tomographic image reconstruction. To cite some examples,
the first proposals were from J. Adler and O. Öktem in [22,23], where they unrolled a
proximal primal–dual method. More recent works are: (a) [24], which concerns the fast
iterative shrinkage/thresholding algorithm (FISTA), which can be applied to solve CT and
electromagnetic tomography reconstruction problems; (b) [25], in which a few iterations of
a gradient descent method were applied to a field-of-experts regularized least squares func-
tional; and (c) [26], where the authors unfolded the dual block forward–backward (DBFB)
algorithm embedded in an iterative re-weighted scheme for region-of-interest CT image
reconstruction. A different scheme is investigated in [27], where the pseudodifferential
operator is learned for limited-angle CT.

The unfolding-deep-learning-based approach is of great interest to the mathematical
community and for scientific research since, by exploiting the physical model of the CT in-
version and the regularization properties imposed on the solution by the prior, it maintains
coherence between the reconstruction and the sinogram; therefore, it is more explainable
and exhibits higher stability properties than other deep learning methods.

Contributions. The aim of this work is to propose an accurate and robust unfolded
approach, named CTprintNet in the following, for the reconstruction of CT images from
sparse views. The main ingredients of the CTprintNet architecture are those of the iRestNet
approach, proposed in [21] for image deblurring, which unrolls the proximal interior point
algorithm for the solution of a regularized minimization problem and learns the regularization
parameter of the model, as well as two more proper parameters of the algorithm. We consider
as prior a smooth generalization of the TV regularizer, which is very effective in medical
imaging, in particular in CT, at both reducing the noise and preserving the edges of objects,
such as masses or fibers, which is useful for diagnosis [28–30].

We conducted tests of CTprintNet in the presence of different noise intensities with
respect to the noise used for training to check the stability property of the framework. Our
network proves to be very stable with respect to the noise on the input sinogram; when
compared to an image-to-image method, it shows greater robustness with respect to noise.

Organization of the paper. This paper is organized as follows. In Section 2, we briefly
recall the CT imaging problem and reformulate it as an inverse problem. The optimization
method exploited to address its solution is detailed in Section 3, while the CTprintNet
architecture built by unfolding the iterations of this method is illustrated in Section 4,
together with some implementation choices made for the numerical tests. The experimental
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results are presented in Section 5. Finally, some concluding remarks and considerations are
given in Section 6.

2. The Numerical Model

In this section, we briefly introduce a description of the 2D X-ray CT acquisition
process, including some mathematical notations.

The main focus of CT studies is to develop safer protocols to reduce the radiation dose
for the patient since limiting the negative effects produced by the radiation allows the use
of the CT technique in a wider class of medical examinations. This goal can be pursued
by either decreasing the X-ray tube current at each scan (low-dose CT) or reducing the
number of X-ray projections (few-view CT). In the first case, the measured data present
high levels of noise; however, in the second case, the incompleteness of the projection data
leads to create images with pronounced artifacts. In particular, in this paper, we focus on
the few-view CT case, where image reconstruction is particularly difficult.

Over the years, different tomographic devices have been designed to fit different
medical needs, and this has led to the creation of various protocols and geometries. In
particular, in this study, we focus on fan-beam geometry, schematized in Figure 1, since
it is among the most widespread geometries nowadays. It is characterized by a source
that emits fan-beam X-rays whose intensity is recorded, after passing through a body, by a
decoder with Np elements.

x4

x3

x2

x1

x8

x7

x6

x5

x12

x11

x10

x9

x16

x15

x14

x13

I1 I2 I3 I4 I5 I6 I7

S

Figure 1. Diagram of a fan-beam projection. During the scanner process, the source S rotates along a
circular trajectory around the discretized object, denoted by {x0, . . . , x16}, and the decoder measures
the intensities {I1, . . . , I7} of X-rays.

The aim of CT imaging is to reconstruct the attenuation coefficient function µ(x, y)
of the object when passing through a body from the Nθ projections acquired at equally
spaced θk angles, with k = 1, . . . , Nθ , and performed in the angular range [−Θ, Θ] (in our
case, Θ = π

2 ). Each individual projection is modelled by the Radon transform, which is the
integral along the line L describing the path of an X-ray beam at a fixed angle. According
to Beer–Lambert’s law, given I0 as the intensity emitted by the X-ray source and I as the
intensity measured by the detector, we have

− ln

(
I
I0

)
=
∫

L
µ(x, y) d(x, y). (2)

In the real (discrete) case, the function µ(x, y), which describes the object, is discretized
in N = Nx × Ny pixels, with values that can be lexicographically re-ordered in a vector
x ∈ RN .
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Analysing a single projection acquired at a fixed angle θk from Np cells of the decoder,
Equation (2) can be discretized into a sum over all the pixels as

yθk
i =

N

∑
j=1

Hθk
i,j xj i = 1, . . . , Np (3)

where yθk
i = − ln

( Ii
I0

)
and Ii is the intensity measured by the i-th cell. Repeating for all the

angles θk, with k = 1, . . . , Nθ , and using a compact notation, we obtain the linear system

y = Hx, (4)

where x ∈ RN denotes the CT image to be reconstructed, y ∈ RNd is the synogram obtained
with the projection measurements (with Nd = Nθ × Np), and H ∈ RNd×N is a sparse matrix
representing the discrete line integrals in (2). Hence, tomographic image reconstruction
is mathematically modeled as an ill-conditioned inverse problem, whose solutions can
be dominated by noise. In particular, in the few-view CT case, the linear system is also
under-determined due to the lack of projections, and, therefore, it might have infinite
solutions.

The model-based approach is introduced to address these numerical controversies,
with the aim to model the CT imaging process as a minimization problem of a suitable cost
function. The main idea is to combine a fidelity measure on the data with some a priori
information on the solution, thus leading to the following problem:

argmin
x∈RN

f (Hx, y) + λR(x) (5)

where f : RN → R is the data-fidelity term,R : RN → R is a regularization function, and
λ ∈ (0,+∞) is the regularization parameter.

The data-fitting function is related to the statistics of the noise on the data, and we
consider the least squares function

f (Hx, y) = ‖Hx− y‖2
2, (6)

which provides a good maximum a posteriori estimate for the log-Poisson noise affecting
the measured sinograms [31]. Different functions have been proposed in the CT literature
as regularization terms. In particular, the TV function is suitable for use with tomographic
images that are rather uniform inside the organs while having fast variations on the borders.
Since, in our scheme, we need the objective function in (5) to be differentiable, we consider
a smoothed version of the TV function, defined as

TVδ(x) =
N

∑
j=1

√
(Dhx)2

j + (Dvx)2
j + δ2 (7)

where Dh, Dv ∈ RN×N are the horizontal and vertical gradient operators, respectively, and
δ is a small positive parameter. Finally, hard constraints on the values of the image’s pixels
are typically added to preserve the physical properties of the attenuation coefficients. A
standard assumption is to force the solution to belong to the N-dimensional hypercube
C = [0, 1]N , thus leading to the constrained optimization problem

argmin
x∈[0,1]N

‖Hx− y‖2
2 + λTVδ(x). (8)

3. Proximal Interior Point Method for CT Reconstruction

Problem (8) involves the constrained minimization of a smooth and convex objective
function, which can be performed by means of a large variety of optimization methods.
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In our paper, we consider the proximal interior point approach [32], in which the original
constrained minimization problem (8) is replaced by a sequence of unconstrained problems

argmin
x∈RN

‖Hx− y‖2
2 + λTVδ(x) + µB(x), (9)

where B : RN → R∪ {+∞} is the logarithmic barrier function, defined as

B(x) =

{
−∑N

j=1(ln(xj) + ln(1− xj)) x ∈ (0, 1)N

+∞ otherwise,
(10)

and µ ∈ (0,+∞) is the barrier parameter, which goes to zero along the minimization.
Following [21], we address the minimization of (9) by means of the forward–backward

proximal interior point (FBPIP) method, whose iterations are defined in Algorithm 1, where

proxµB(x) = argmin
u∈Rn

1
2
‖x− u‖2 + µB(u) (11)

is the proximity operator of µB at x [33].
The following proposition directly derives from ([21], Proposition 2); we report its

statement and proof adapted to problem (9) and (10) to show the closed-form expression of
the proximal point defining xk+1 in Algorithm 1, together with its derivatives with respect
to x, µ, and γ.

Algorithm 1 Proximal interior point algorithm.

Let x0 ∈ intC, γ > 0 and (γk)k∈N be a sequence such that (∀ k ∈ N) γ ≤ γk;
for k = 0, 1, . . . do

xk+1 = proxγkµkB
(
xk − γk

(
H>(Hxk − y) + λ∇TVδ(xk)

))
end for

Proposition 1. Let γ, µ > 0 and let Bi(u) be the barrier function associated with the set [0, 1],
defined as

Bi(u) =

{
− ln(1− ui)− ln(ui) if 0 < ui < 1
+∞ otherwise

. (12)

Then, for every x ∈ RN , the proximity operator associated with γµBi is given by

ϕi(x, µ, γ) := proxγµBi
(x) = x + (κ(x, µ, γ)− ui)ei, (13)

where κ(x, µ, γ) is the unique solution in (0, 1) of the cubic equation

z3 − (1 + ui)z2 + (ui − 2γµ)z + γµ = 0 (14)

and ei is the i-th vector of the canonical basis of RN . The Jacobian matrix of ϕ with respect to x and
the gradients of ϕ with respect to µ and γ are given by

J(x)ϕi(x, µ, γ) = In +

(
κ(x, µ, γ)(κ(x, µ, γ)− 1)

η(x, µ, γ)
− 1
)

eieT
i (15)

∇(µ)ϕi(x, µ, γ) =
−γ(1− 2κ(x, µ, γ))

η(x, µ, γ)
ei (16)

∇(γ)ϕi(x, µ, γ) =
−µ(1− 2κ(x, µ, γ))

η(x, µ, γ)
ei (17)



Algorithms 2023, 16, 270 6 of 18

where

η(x, µ, γ) = κ(x, µ, γ)(κ(x, µ, γ)− 1)− (1− 2κ(x, µ, γ))(κ(x, µ, γ)− xi)− 2γµ. (18)

Proof. The formal derivation of the proximity operator (13) can be found in [34]. Let
x ∈ RN , γ, µ ∈ (0,+∞), and F be defined as

F(x, µ, γ, z) = z(z− 1)(z− xi) + γµ(1− 2z) (19)

= z3 − (xi + 1)z2 + (xi − 2γµ)z + γµ (20)

for all z ∈ (0, 1). By definition of κ(x, µ, γ), F(x, µ, γ, κ(x, µ, γ)) = 0. The derivative of F
with respect to the last variable is equal to

∇(z)F(x, µ, γ, z) = z(z− 1)− (1− 2z)(z− xi)− 2γµ. (21)

We observe that both κ(x, µ, γ)(κ(x, µ, γ) − 1) and −2γµ are negative quantities.
Moreover, since F(x, µ, γ, κ(x, µ, γ)) = 0, it follows from (19) that κ(x, µ, γ) − xi and
1− 2κ(x, µ, γ) share the same sign. Hence,

η(x, µ, γ) = ∇F(z)(x, µ, γ, κ(x, µ, γ) 6= 0. (22)

The gradient of κ with respect to x and the partial derivatives of κ with respect to µ
and γ for the implicit function theorem exist and are equal to

∇(x)κ(x, µ, γ) =
κ(x, µ, γ)(κ(x, µ, γ)− 1)

η(x, µ, γ)
ei (23)

∇(µ)κ(x, µ, γ) =
−γ(1− 2κ(x, µ, γ))

η(x, µ, γ)
(24)

∇(γ)κ(x, µ, γ) =
−µ(1− 2κ(x, µ, γ))

η(x, µ, γ)
(25)

Using these equations to differentiate (13) leads to the results of the proposition.

We end this section by remarking that, since the barrier function B in (10) is the sum
of the functions Bi in (12) and each of these acts only on the i-th component of the vector u,
then the proximity operator associated to γµB is the vector ϕ(x, µ, γ) ∈ RN , defined as

(ϕ(x, µ, γ))i := ϕi(x, µ, γ) ∀i ∈ {1, . . . , N}. (26)

4. CTprintNet

We now describe the proposed CTprintNet, which unfolds in its layers the FBPIP
iterations. As mentioned in the Introduction, its architecture reflects that of iRestNet, which
is used for the deblurring of natural images and was described in Section 4.1, with the obvi-
ous modification of starting from the sinograms instead of the blurred images. The main
differences between the two approaches can be seen in the implementation of the forward
operator and its adjoint, as well as the consequent setting of all the hyperparameters, which
will be discussed in Section 4.2. The whole architecture was implemented in Python using
the PyTorch library.

4.1. CTprintNet Architecture

Figure 2 shows the flowchart describing the architecture. It is composed of K iterative
layers (L0, . . . ,LK−1) and a final block of post-processing layers (L f ). In each layer, the
network learns three parameters, which are supposed to change at each algorithm iteration:
the regularization parameter λ (which was supposed constant in the model description in
Section 3), the stepsize γ, and the barrier parameter µ. Since the simultaneous optimization
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of the parameters of all the K layers is infeasible due to memory issues, for the first n
layers (Li)0≤i≤n−1, a greedy approach is adopted throughout the training by sequentially
optimizing the output of each iteration and providing it as the starting image for the
following iteration. The remaining K − n layers and the final layer, the light blue block
in Figure 2, are trained in a standard end-to-end way and will later be referred to as
Ln ◦ · · · ◦ LK−1 ◦ L f .

In all our tests, we kept the original choice of iRestNet by setting K = 40 and n = 30.

HTy

y
x0

L0 Ln−1 Ln LK−1 L f

x̃

Figure 2. Diagram of the CTprintNet architecture.

Regarding the details of the construction of one iterative layer (Li)0≤i≤K−1, as can be

seen from Figure 3, it is composed of three substructures, denoted by (S (γ)i ,S (µ)i ,S (λ)i ),
inferring the step size γi, the barrier parameter µi, and the regularization parameter λi,
respectively. They are constructed by analyzing the mathematical constraint imposed on
the three parameters.

S (γ)i

S (µ)i

S (λ)i

x i
+

1
=

pr
ox

γ
iµ

iB
(x

i
−

γ
i∇

1h
(x

i,
y,

λ
i)
)

µi

γi

λi

xi xi+1

Li

Figure 3. Diagram of the layer Li.

In particular, for all i = 0, . . . , K− 1:

• Since the step size γi must be positive, this constraint is imposed by estimating the
step size as

γi = S
(γ)
i = Softplus(ai), (27)

where ai is a scalar parameter of the architecture learned during the training and the
Softplus function is defined as

Softplus(z) = ln(1 + exp(z)) ∀z ∈ R; (28)

• The barrier parameter µi is computed by twice alternating a convolutional layer and
an average pooling layer, followed by a fully connected layer and a final Softplus
activation function;
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• The regularization parameter λi is estimated as follows:

λi = S
(λ)
i (xi) =

Softplus(bi)σ̂(y)
η(xi) + Softplus(ci)

, σ̂(y) = median(|WHy|)/0.6745, (29)

where η(xi) is the standard deviation of the concatenated spatial gradients of xi, (bi, ci)
are scalars learned by the architecture, and |WHy| is the absolute value of the diagonal
coefficients of the first-level Haar wavelet decomposition of y. The rationale behind
this choice is to provide an initial guess from the ratio between the estimated data
fidelity magnitude and the regularizer magnitude (represented by the noise level and
the gradient variations, respectively), suitably adjusted by two learned constants.

The outputs of the three substructures are then used to compute xk+1 by applying an
iteration of the iterative method, Algorithm 1, as shown in Figure 3.

Since some initial convergence issues were encountered in a (very) limited number of
tests, in CTprintNet, we introduced a quality check on the output image of the very first
layer L0, requiring it to exceed a minimum value of mean square error. If this test fails, L0
is re-trained with different random initializations.

The network is completed by the final block, as displayed in Figure 4, which acts as
a form of post-processing to enhance the quality of the image obtained from the iterative
layers. It is built with nine convolutional layers with filters of size 3× 3 with a different
dilation factor between one and the other; each layer is followed by a ReLU activation
function and batch normalization. At the end of these layers, there is a skip connection
between the input and output of the block and a final sigmoid activation function.

Figure 4. Diagram of the final layer L f .

4.2. Forward/Backward Operators and Hyper-Parameter Setting

The iterative methods for the reconstruction of tomographic images require two
linear operators, usually referred to as the forward and the backward (or back-projection)
projectors, which describe the geometry and the physics of the problem. In order to make
the best use of the hardware and the memory hierarchy, it is common to use different
discretization techniques for the two operators. This choice implies that the standard
routines implementing discretized versions of the Radon transform and its adjoint (such as,
e.g., the radon and iradon functions in Matlab’s Image Processing Toolbox and Python’s
scikit-image one) lead to an unmatched projector/back-projector pair, in which the matrix
representing the back-projection is not exactly equal to the transposed matrix of the projector
operator. Although this mismatch contributes to speeding every iteration up and to
reducing the global computational cost, it can lead to a less accurate reconstruction since
the convergence properties of the iterative method are lost [35,36]. In order to overcome
this issue, we discretized the projection operator with a ray tracing algorithm and stored
it in memory as a sparse row matrix, H. We then used its exact transpose, HT , as a back-
projection. Since we could not make use of the built-in implementation of the PyTorch
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functions acting on tensors, we implemented the functions necessary to compute the partial
derivatives, which are essential during the back-propagation algorithm.

This choice represents the crucial difference with respect to iRestNet, in which this
matter was not an issue since the convolution operator and its adjoint can be easily and
exactly executed through fast Fourier transforms and the conjugate operator. Moreover, it
strongly affects the choice of some hyper-parameters, such as the number of epochs and
the batch size, which had to be set to lower values with respect to the iRestNet values due
to the lower amount of available memory, especially in the end-to-end training of the final
Ln ◦ · · · ◦ LK−1 ◦ L f block. Their final values, together with the learning rate values, were
set following several experimental tests and are reported in Table 1.

All the training and tests of the network were performed on an Nvidia RTX A4000
GPU. We have chosen the mean square error (MSE) as a loss function in the learning process
and stochastic gradient descent as an optimizer, which performed better with respect to the
structural similarity index measure (SSIM) and the Adam optimizer exploited in iRestNet.

Table 1. Training hyper-parameters.

Parameters L0 (Li)1≤i≤29 L30 ◦ · · · ◦ L39 ◦ L f

epochs 5 10 50

batchsize 8 8 5

learning rate 10−1 10−2 10−1

5. Results and Discussion

In this section, we show and analyze the performance of the proposed CTprintNet
architecture for two different datasets composed of synthetic images with geometric el-
ements and real medical images. Let us first describe the training procedure and the
experimental setting.

In all the implemented experiments, we used the same protocol to simulate the few-
view geometry, i.e., a reduced scanning trajectory limited to 180 degrees with Nθ = 60
scanning views that were equally distributed, with np = 512 and np = 1024 for the
synthetic and realistic datasets, respectively. We constructed the test problem as

ỹ = Hx +N (0, σ) · Nθ , (30)

whereN (0, σ) is a realization of a normally distributed random variable with a mean equal
to zero and a standard deviation equal to σ. As we will see in the results, different values
of σ were considered in the training and testing phases. The sinogram was then used to
compute the first iteration x0 = HTy.

The results obtained with the proposed architecture were compared with both an
iterative solver and a deep learning approach. For the first class of methods, we chose the
scaled gradient projection method (SGP) [37], which has already been used several times
to reconstruct CT images [38–40]. Regarding the choice of a competitor among the deep
learning methods, it has been very hard for us to exploit existing unfolding architectures
specifically designed for tomographic image reconstruction problems. Although algorithms
of this type can be found in the literature (see, e.g., the references cited in the Introduction),
the codes required to produce the results either are not available or require a notable amount
of modifications to be usable. As a result of this, we decided to compare CTprintNet with
an image-to-image approach constituted of a UNet residual network applied to a coarse
FBP reconstruction. We will denote this framework as LPP in the following. In particular,
the different LPP trainings were carried out on the same datasets used for CTprintNet by
performing 100 epochs for the synthetic dataset and 50 for the realistic one.

We evaluated the performances through qualitative visual comparisons and by quan-
titatively computing the peak signal-to-noise ratio (PSNR) and the SSIM [41].
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5.1. Results on a Synthetic Dataset

We first tested the algorithms on the synthetic dataset “Contrasted Overlapping Uni-
form Lines and Ellipses” (COULE) (https://www.kaggle.com/datasets/loiboresearchgroup/
coule-dataset, accessed on 13 November 2021), which contains 430 sparse-gradient grayscale
images of size 256× 256. Among the 430 images, we used 400 for training and the remaining
30 for the test phase.

Experiment A. In this experiment, we trained and tested CTprintNet and LPP consid-
ering data without noise. From Figure 5, showing the boxplots relative to PSNR, SSIM (in
blue for LPP and in orange for CTprintNet), we can see that LPP defines better reconstruc-
tions, on average. In fact, it is well known that the post-processing architectures perform
particularly well in standard conditions where the training and testing data are obtained
from similar conditions.

Experiment B. Under real conditions, however, the projection data are naturally
compromised by noise. To test the stability of the proposed framework with respect to
noise in the sinogram, we first analyzed the behavior of the architecture when varying the
values of the noise’s standard deviation σ introduced in the training and test phases. In
Experiment B, we trained the two architectures by adding Gaussian noise as in (30) with
σ = 0.05 both to the training set and test set. The results obtained, shown in Figure 6,
demonstrate that noise influences the performance of the two architectures, which now
are more competitive with each other. In particular, the SSIM index, indicating the visual
quality of the image, is far better for CTprintNet.

Experiment C. Since it is well known that a drawback of neural networks, particularly
post-processing ones, is that their performance on data never seen or far from the training
data is not always satisfying, in Experiment C, we trained the two architectures without
noise on the data (σ = 0), and we tested them with variable standard deviations in the
interval [0, 0.06]. In Figure 7, we plot the average values of the two metrics as the standard
deviation of the noise added on the test set changes (the blue and red lines correspond to
LPP and CTprintNet, respectively). The results clearly show that the proposed architecture
is stable with respect to noise, whereas the LPP initially provides better performance; how-
ever, as the noise increases, its behavior worsens considerably (see also the reconstructions
of a representative test image in Figure 8). Conversely, CTprintNet is able to guarantee
good results by limiting the damage caused by increased noise despite being trained with
noise-free images.

PSNR SSIM

Figure 5. Boxplots of the PSNR (left) and SSIM (right) concerning LPP (blu line) and CTprintNet
(orange line) for the COULE dataset without noise in the training and in the testing images. The red
line indicates the median, and the black line indicates the mean value.

https://www.kaggle.com/datasets/loiboresearchgroup/coule-dataset
https://www.kaggle.com/datasets/loiboresearchgroup/coule-dataset
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PSNR SSIM

Figure 6. Boxplots of the PSNR (left) and SSIM (right) concerning LPP (blue line) and CTprintNet
(orange line) for the COULE dataset with noise given by σ = 0.05 in the training and in the testing.
The red line indicates the median, and the black line indicates the mean value.

PSNR SSIM

Figure 7. Trends of average values of PSNR (left) and SSIM (right) as functions of the standard
deviation of the noise added to the test set, in blue for LPP and in red for CTprintNet, considering
the COULE dataset and trained without noise. Bars and shades indicate standard deviation values
over the test set images.
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Figure 6. Boxplots of the PSNR (left) and SSIM (right), concerning LPP (blu line) and CTprintNet
(orange line), considering COULE dataset with noise given by σ = 0.05 in the training and in the
testing. The red line indicates the median and the black line the mean value, respectively.
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Figure 7. Trend of average values of PSNR (left) and SSIM (right) as function of the standard deviation
of the noise added to the test set, in blue for LPP and in red for CTprintNet, considering the COULE
dataset and trained without noise. Bars and shades indicate standard deviation values over the test
set images.

Ground truth

PSNR: 30.93
SSIM: 0.882

PSNR: 30.93
SSIM: 0.882

σ = 0

PSNR: 31.33
SSIM: 0.969

PSNR: 38.84
SSIM: 0.989

σ = 0.02

PSNR: 29.82
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SSIM: 0.906
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Figure 8. Experiment C: from left to right, the ground truth of one test image and the reconstructions
obtained with CTprintNet (top row) and LPP (bottom row) with increasing noise levels on the
sinogram.

Figure 8. Experiment C: from left to right, the ground truth of one test image and the reconstruc-
tions obtained with CTprintNet (top row) and LPP (bottom row) with increasing noise levels on
the sinogram.
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5.2. Discussion of the Learned Parameters

In this section, we study how the choice of λ affects the performance of the network by
examining a further learning technique and providing a brief excursus on the behavior of
the three learned parameters. To this aim, we initially fixed λ, as it happens in general in the
iterative method, while the remaining parameters (µ, γ) were learned from the architecture.
We performed Experiment C with different values of λ set by analyzing those learned from
the network in previous experiments, and we saved the best-performing values.

We then utilized a different technique, described in [42,43], for learning the regulariza-
tion parameter, leaving the techniques used to learn µ and γ untouched. The idea behind
this technique is to provide a local TV regularization by setting a specific parameter for
each pixel, thus obtaining a weighted TV (WTV), as follows:

WTV(x) =
N

∑
i=1

λi

√
(Dhx)2

i + (Dvx)2
i . (31)

This choice allows to diversify the level of the regularization within the single image,
e.g., by regularizing more on constant patches and less on patches with complex textures.
From the implementation point of view, the parameters λi (i = 1, . . . , N) in the k-th layer
for the i-th pixel are computed as

λ
(k)
i =

Softplus(di)

2N
||Hxk − y||22√

(Dhxk)
2
i + (Dvxk)

2
i

, (32)

where di is a scalar parameter of the architecture learned during the training. In this way,
the smaller the gradient magnitude is, the greater the regularization provided at pixel i is.

We modified the architecture using this procedure for the computation of λ in the
substructure S (λ) in Figure 3 and carried out several trainings. What is evident is that,
although the architecture with this modification is able to yield slightly better performances
than those obtained with the technique described in (32), it becomes worse in terms of
stability.

We plot in Figure 9 the results obtained from Experiment C with a fixed λ (black
line), with Equation (29) (red line) and with Equation (32) (green line). They show that the
proposed new learning rule weakens the network stability.

PSNR SSIM

Figure 9. Trend of average values of PSNR (left) and SSIM (right) obtained by CTprintNet considering
the COULE dataset and Experiment C with the regularization parameter manually fixed (black),
learned through the technique described in (29) (red), and learned through the technique described
in (32) (green). Bars and shades indicate standard deviation values over the test set images.

Next, we analyzed the behavior of the parameters learned from the architecture within
the different layers. We observed from all the performed experiments that these parameters
show very similar trends regardless of the image and the presence or absence of noise. In
Figure 10, we plot the values, obtained from Experiment B, of the three parameters as the
iterations increase. Concerning the step size, it initially increases, and then it decreases and
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stabilizes. The central panel of Figure 10 shows that the regularization parameter tends
to vanish as the layers advance since the presence of noise decreases; as a result of this,
the contribution of the regularization term becomes weaker. Finally, the barrier parameter
vanishes along the minimization process according to the theoretical issues presented in
Section 3.

Figure 10. Trends for step size γ (left), regularization parameter λ (middle), and step size barrier
parameter µ (right) learned from CTprintNet as the layers change.

5.3. Results on a Realistic Dataset

As our realistic dataset, we used a set of clinical images from the AAPM Low-Dose CT
Grand Challenge dataset by the Mayo Clinic (https://www.aapm.org/GrandChallenge/
LowDoseCT/, accessed on 22 May 2023). This datset contains images of the human abdomen
with a size of 512× 512 pixels obtained from full-dose acquisitions. From the entire dataset,
we selected about 1500 images for the training phase and 327 for the testing phase.

Experiment D. In this experiment, we trained the two architectures on data affected by
noise with a standard deviation σ = 0.05 and tested them on data with noise with σ chosen
randomly in the range [0.04, 0.08]. Figure 11 shows the boxplots relative to the considered
metrics in blue for LPP and in orange for CTprintNet. As can be seen from the boxplots,
CTprintNet obtains better performances on average; in addition, it is also more stable with
respect to different noise intensities. Moreover, we observe that CTprintNet boxplots are
smaller with closer means and medians with respect to the LPP boxplots, confirming its
superior stability.

In the following, we will show and comment on three reconstructions obtained from
test images with standard deviation values of 0.04, 0.065, and 0.075. We compared the
reconstructions obtained from the proposed method with those obtained from the SGP
algorithm where the regularization parameter was selected according to the high PSNR
among 20 different tested values. The reconstructions from CTprintNet and LPP were
obtained by considering the same training as before.

Reconstruction D.1. This example is obtained from a test image corrupted by noise
with variance σ = 0.04. Figure 12 depicts the reconstructed images and reports, for each
one, the values of PSNR and SSIM. We observe that both CTprintNet and LPP effectively
remove the typical artifacts of the few-view geometry and, in particular, they suppress the
noise. However, in the LPP image, a white ghost detail appears. The SGP reconstruction
looks blocky, and many details in the dark background are lost.

Reconstruction D.2. The second example is obtained from a test image corrupted by
noise with variance σ = 0.065. Figure 13 depicts the reconstructed images and reports,
for each one, the values of PSNR and SSIM. The image obtained from the LPP framework
presents over-smoothing and some incorrect pixels, as can be highlighted by the zoomed-in
image. Hence, we can infer that CTprintNet reconstruction is advantageous over the other
methods in terms of both metrics and noise reduction.

https://www.aapm.org/GrandChallenge/LowDoseCT/
https://www.aapm.org/GrandChallenge/LowDoseCT/
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PSNR SSIM

Figure 11. Boxplots of the PSNR (left) and SSIM (right) concerning LPP (blu line) and CTprintNet
(orange line) and trained and tested on Mayo dataset. The noise variance is σ = 0.05 in the training
images, and σ is chosen randomly in the range [0.04, 0.08] in the testing images. The red line indicates
the median, and the black line indicates the mean value.

Reconstruction D.3. The last example is obtained from a test image corrupted by the
highest amount of noise with a variance of σ = 0.075. Figure 14 shows that, despite the
excessive noise compared to that used in the training, the proposed network is able to
provide the best-quality reconstruction. In particular, the SGP image is extremely blocky, as
in the previous case, and the LPP image presents again an excessive amount of smoothing
and number of corrupted pixels.

The results obtained from the various experiments on the realistic dataset confirmed
that our architecture is stable, as already observed in Section 5.1.
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Figure 12. Reconstruction D.1: (a) ground truth, (b) CTprintNet, (c) LPP, and (d) SGP. The arrow
highlight a white ghost detail appearing in the LPP image.
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Figure 13. Reconstruction D.3: (a) Ground truth, (b) CTprintNet, (c) LPP, and (d) SGP.

6. Conclusions

In this paper we have proposed CTprintNet, a neural network for the reconstruction
of CT images from few views. CTprintNet fixes the low-sampled problem in a compressed
sensing setting by means of the Total Variation prior, by unrolling the Proximal Interior
Point method. A final post-processing phase is used to enhance the reconstructed image
quality. The network has been tested on both simulated and real test sets, with a particular
attention to its robustness with respect to unseen noise in the input data. Compared with a
more traditional image-to-image deep learning based approach, it shows greater stability
without requiring an higher computational effort. The very promising results open to
possible future improvements, such as the introduction of a different regularizer than TV
or the extension to the 3D case using a lighter network architecture.
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6. Conclusions

In this paper, we have proposed CTprintNet, a neural network for the reconstruction
of CT images from few views. CTprintNet fixes the low-sample problem in a compressed
sensing setting by means of the total variation prior, which is achieved by unrolling the
proximal interior point method. A final post-processing phase is used to enhance the
reconstructed image’s quality. The network has been tested on both simulated and real test
sets, with particular attention paid to its robustness with respect to unseen noise in the input
data. Compared with a more traditional image-to-image deep-learning-based approach, it
shows greater stability without requiring a higher amount of computational effort. The
very promising results open this neural network to possible future improvements, such
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as the introduction of a different regularizer than TV or extension to the 3D case using a
lighter network architecture.
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Abbreviations
The following abbreviations are used in this manuscript:

CNNs Convolutional neural networks
COULE Contrasted overlapping uniform lines and ellipses
CT Computed tomography
DNNs Deep neural networks
FBP Filtered back-projection
FBPIP Forward–backward proximal interior point
GPUs Graphics processing units
MSE Mean square error
PSNR Peak signal-to-noise ratio
SGP Scaled gradient projection method
SSIM Structural similarity index measure
TV Total variation
WTV Weighted total variation
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