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Abstract: The correct and efficient measurement of security properties is key to the deployment of
effective cyberspace protection strategies. In this work, we propose GRAPH4, which is a system
that combines different security metrics to design an attack detection approach that leverages the
advantages of modern network architectures. GRAPH4 makes use of attack graphs that are generated
by the control plane to extract a view of the network components requiring monitoring, which is
based on the specific attack that must be detected and on the knowledge of the complete network
layout. It enables an efficient distribution of security metrics tasks between the control plane and
the data plane. The attack graph is translated into network rules that are subsequently installed in
programmable nodes in order to enable alerting and detecting network anomalies at a line rate. By
leveraging data plane programmability and security metric scores, GRAPH4 enables timely responses
to unforeseen conditions while optimizing resource allocation and enhancing proactive defense. This
paper details the architecture of GRAPH4, and it provides an evaluation of the performance gains it
can achieve.

Keywords: P4; attack graphs; anomaly detection; security metrics; entropy

1. Introduction

Today’s technological world of ubiquitous connectivity as well as the related intrinsic
dependence on digital infrastructure has drastically increased the attention toward cyberse-
curity. Cyberattacks have evolved in sophistication and scale, thereby posing significant
threats to individuals, organizations, and entire counties. Furthermore, ransomware attacks,
data breaches, and Distributed Denial of Service (DDoS) attacks have become common-
place with far-reaching consequences. Amidst this escalating threat landscape, anomaly
detection has become a crucial tool in cybersecurity arsenals. At its core, anomaly detection
empowers organizations to identify deviations from normal system behavior which often
imply intrusions or malicious activities. Hence, unlike signature-based approaches that
rely on known attack patterns, anomaly detection strategies should perform well when
unexpected threats happen [1].

Anomalies, however, are not always attacks. When this is the case, it is nontrivial to
decide what is happening. As sustainability is becoming an essential objective to reach in
any kind of system, especially energy-intensive ones, automation in the detection of and
reaction to attacks is key to designing secure and optimized systems.

Thus, the accurate security evaluation of monitored data is pivotal to pinpoint which
portions of our system are vulnerable and need to be fixed. We argue that measuring
security can help us assess the actual level of system trustworthiness, which is otherwise
hidden inside the architecture.
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In our approach, security metrics are the core of measurable security. In fact, they are
designed to help assess the overall security posture, identify vulnerabilities, track security
incidents, and make informed security decisions [2]. Additionally, we foster a culture
of continuous improvement, thus facilitating data-driven decision making to optimize
security measures and fortify the organization’s defense against evolving cyber threats.

Designing metrics is nontrivial and requires an in-depth knowledge of the domain we
are analyzing, as we argued for Cyber–Physical Systems (CPSs) [3]. Moreover, metrics can
be based on simple operations on low-level data, can be derived from models, or can be
more complex when involving inferences.

Software-Defined Networks (SDN) is a paradigm that perfectly suits the purpose of
security metrics. SDNs centralize the management of network resources in the network
control plane, thereby allowing for the dynamic and automated control of network traffic,
routing, and configuration. This allows for deep traffic inspection and simple data collection
in real time and thus eases the definition and collection of metrics [4]. Unfortunately,
metric calculation could demand high power consumption [5], and—especially in complex
networks and critical infrastructure—this would aggravate the computational load on
the network controllers implementing the control plane, thus leading to inadequate and
unacceptable overhead [6].

Countermeasures are achievable by offloading monitoring tasks to the nodes in the
data plane, which is possible if Data Plane Programmability (DPP) is available. DPP is
the enabler of the solution we propose, i.e., the data plane can be programmed to gather
information about the traffic or to process it. An example of offloading computation to the
data plane to detect DDoS attacks is proposed by Ding et al. [7].

A metrics-oriented architecture to detect network anomalies using DPP is proposed by
Vissicchio et al. [8]. In this work, the switches autonomously push alerts to the controller
if an anomaly is detected. Then, the collected data are elaborated on the control plane.
However, these solutions entail a sensible computational load on switches, thereby resulting
in added forwarding delay that can lead to network saturation.

The solution presented in this work, GRAPH4, aims at overcoming this problem by
requiring in-network computation only for the nodes that really may be at risk of a given
attack. Attack graphs (AG) are generated by the control plane according to the active
topology, and they are used to identify the vulnerable nodes. From the AGs, it is possible to
know in advance what portion of the network needs to be monitored. This information is
offloaded in the form of network rules to the programmable data plane components, which
will then alert the control plane if an anomaly is spotted.

GRAPH4 can ensure a robust and resilient security posture, thereby allowing for the
prompt mitigation of security incidents, thus optimizing and distributing the computation
of the metrics. Leveraging switch programmability based on security scores allows for
timely reactions to unexpected conditions: this dynamic approach optimizes resource
allocation, minimizes response times, and fosters proactive defense. We demonstrate how
GRAPH4 can save a big part of the network computation using simple AGs, especially for
computationally expensive metrics.

The main contributions of this paper are as follows:

• We present a security monitoring architecture that integrates attack graphs generated
on the control plane with anomaly detection metrics calculated on the data plane.

• We demonstrate how the control plane can exploit its knowledge of the network
configuration in order to optimize the allocation of low-level metrics collectors, thus
placing them only on specific data plane devices.

• We evaluate the effectiveness of GRAPH4 presenting a PoC related to Distributed
Denial of Service detection.

The paper is organized as follows: in Section 2, we expose the concepts that we used
in our work, in particular security metrics and DPP with a focus on the P4 programming
language. In Section 3, we proceed to review the related literature. In Section 4, we propose
the GRAPH4 architecture explaining its main components and features. In Section 5, we
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provide a proof of concept on a real use-case scenario with DDoS attacks as an example,
thereby showing the improvements that we can obtain with respect to existing solutions. In
Section 6, we discuss the limitations of the study. Lastly, Section 7 includes our conclusion
and proposals for future works.

2. Background

In this section, we describe the concepts and tools that are used to implement the
GRAPH4 system. We start with security metrics, followed by a brief description of the pro-
grammable switches exploiting the P4 programming language, and conclude by recalling
the definition of network traffic entropy, which is used to detect anomalies.

2.1. Security Metrics

Security metrics are indicators capable of presenting a level of security about aspects of
the systems in terms of qualitative or quantitative assessment. The metrics that are suitable
for specific environments can vary a lot [3]; therefore, in order to adopt the appropriate ones,
it is crucial to make a selection of them based on a clear and unified view of the complete
set. To assist in the process of justified decisions, we need a taxonomy of security metrics.

The literature classifies security metrics according to given categories. NIST suggests
a taxonomy based on three main groups [9]: (i) management, which provides a high-level
view of a security program’s effectiveness and alignment with business objectives, (ii) op-
erational, which focuses on the processes, procedures, and activities related to managing
and maintaining security, and (iii) technical, which is usually measured and analyzed by IT
and security teams. In this work, we will focus only on technical metrics, as we focus on
network attacks.

Within the technical domains, metrics can be grouped according to different criteria.
A very common approach in the literature is the one cited also in [5] that classifies technical
metrics into four types:

• Vulnerability metrics, which consist of measures of system vulnerabilities that depend
on the user, the interface, the hardware, or software in general. Examples are pass-
word [10], attack surface [11] and software vulnerabilities (https://nvd.nist.gov/vuln-
metrics/cvss, accessed on 1 October 2023).

• Defense metrics, which measure the strength and the effort needed for placing defense
mechanisms in a system. They consist of the evaluation of preventive, reactive, and
proactive defenses, such as in [12].

• Situation metrics, which focus on the security state of a system and depend on the
moment of analysis; these metrics dynamically evolve from time to time following the
outcome of attack–defense interactions. Examples are metrics based on the frequency
of security incidents or related to the investment for the security improvement [13].
Those are mainly subdivided into data-driven metrics, such as the network mali-
ciousness metric [14], or model-driven metrics, such as the fraction of compromised
computers.

• Attack metrics, which measure the strength of sustained attacks. The categories previ-
ously proposed focus on the assessment of the level of security of the system via the
analysis of configurations and devices; conversely, attack metrics focus on quantifying
and analyzing cyberattacks and threats faced and are essential for assessing risk,
measuring the success of security measures, and guiding the allocation of resources.
Examples are the network bandwidth that a botnet can use to launch DOS attacks or
the occurrence of obfuscation in malware samples [15].

More ways to classify metrics exist, which are based on their scope (e.g., network, de-
vice, system, architecture, etc.) or the result types (e.g., quantitative or qualitative). Metrics
evaluation can also be automated or manually configured: they can change dynamically at
runtime or whenever a system reconfiguration occurs. Moreover, metrics can be simple
measurements or be modeled as a complex system.

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
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Without an assessment of its correctness, any kind of metric can lead to information
that does not provide accurate and meaningful insights. Assessing the correctness and
soundness of security metrics is crucial because it enables informed decision making,
effective risk management, and sensible resource allocation. Accurate metrics help in
evaluating the effectiveness of security measures, benchmarking against industry standards,
and identifying improvement areas. They enhance transparency, build trust, and ensure
the organization adapts to emerging threats appropriately. Thus, avoiding incorrect metrics
is essential to prevent misinterpretations and misguided security actions. To ensure that a
security metric is correct and sound, it is recommended to verify the reliability and relevance
of the data sources used to calculate the metric, to evaluate the integrity and quality of the
data to avoid potential biases or inconsistencies, to ensure that the metric is measurable and
quantifiable allowing for easy comparison and analysis, to check the metric consistency and
stability over time and under similar conditions, to analyze the metric within the context of
the organization’s overall security program for better understanding, to avoid metrics that
incentivize undesirable behavior or manipulation, and to continuously review and update
metrics to reflect changes in the threat landscape and security strategies [16].

Modern security metrics must be able to provide a holistic view of security, consid-
ering the interaction between different components of the system and how an action or
event at one point may affect other parts of the infrastructure. Effectively addressing the
complexity of threats requires the use of integrated metrics that can cover multiple aspects
and provide a more comprehensive perspective of vulnerabilities and potential threats. The
composability of security metrics allows for more agile adaptation to new and emerging
threats and enables the optimization of their composition and sum [3].

2.2. P4 and Data Plane Programmability

P4 [17] is an open-source programming language that controls data plane packet
processing. As depicted in Figure 1, a P4-enabled switch differs from traditional ones in
two aspects: (i) the switch functions are not hardwired but specified by a P4 program,
and (ii) control and data plane communication take place through a fixed-function device
channel, but the data plane APIs are established by the P4 program. The Southbound
Interface APIs that expose the particular features and protocols supported by the data plane
are built using the specifications provided by P4Runtime [18] for abstracting the hardware
interfaces. P4’s primary goals are as follows:

• Reconfigurability: The packet parsing logic and processing rules can be dynamically
installed and updated by the controller.

• Protocol independence: By giving rule names, key types, and typed match+action
tables in the header fields, the controller can determine how to process header fields,
freeing the switch from fixed actions taken on standard packet formats.

• Target independence: The P4 code is completely portable for every target. The P4
compiler is tasked with translating program features that make use of target-specific
capabilities.

P4 is designed around an abstract model that explains the traffic forwarding of the
switch through match+action steps that are organized in series, parallel, or both. The parser,
which extracts header information and serves as a programmable interpreter of supported
protocols, first handles inbound packets. The match+action tables, which choose the egress
port and queue for the packet, obtain the extracted header data next. The packet may be
sent, replicated, dropped, or cause flow control depending on the ingress processing. A P4
program defines the following elements to express the behavior of the data plane:

1. Header types: packet header definitions, i.e., the set of fields and their sizes.
2. Parsers: finite-state machines that map packets into headers and metadata.
3. Tables: data structures defining matching fields and actions applied to them.
4. Actions: code fragments that describe packet manipulation and can consider external

data supplied by the control plane at runtime.
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5. Match–action units: elements that construct lookup keys from packet fields’ metadata
and use them to find the right action and execute it.

6. Control flows: imperative blocks that describe packet processing on a target using the
data-dependent sequence of match–action unit invocations.

Thus, P4 enhances traditional SDNs (heavily reliant on the OpenFlow protocol [19]) by
addressing two well-known shortcomings [20]: (i) a significant communication overhead
is generated between the data plane and the control plane and (ii) significant processing
capabilities are needed at the controller.

Control PlaneControl Plane

Data Plane Data Plane

control
packets

packets packets packetspackets

table
mangement

control
packets

P4 table
mangement

Application Application

P4 Program

setup info setup info

Traditional Switch P4 Programmable Switch

Figure 1. Comparison of the architecture of a traditional switch and a P4 programmable switch. The
forwarding behavior of the P4 programmable switch can be configured directly from the application,
setting the P4 program, while in a legacy switch, the application will determine the behavior of the
control plane that will then configure the data plane.

P4’s unrivaled expressiveness provided a revolutionary new perspective on network
programmability and monitoring: with P4-programmable switches, it is instead possible
for network operators to partially overcome such drawbacks. Programmable switches
can execute a portion of network monitoring and security operations directly in their data
plane pipeline and provide partially or fully processed information to the control plane. On
the other hand, data plane programming has some intrinsic entry barriers, such as the need
for enabled hardware and the effort needed for network architects to become proficient in
the art of creating efficient and portable code [21].

The expressiveness limitations of OpenFlow-based SDNs do not allow coding algo-
rithms on the data plane, such as network entropy calculation, which is presented in the
next section. In fact, OpenFlow only allows for a fixed set of configurations, while P4 can
be used to code custom packet processing algorithms.

2.3. Network Traffic Entropy

Entropy was introduced as a measure of uncertainty by Shannon in 1948 [22]. As-
suming that X is a dataset with a finite number n of independent symbols, represented
by x1, x2, . . . , xn, with corresponding probabilities p = p1, p2, . . . , pn, the entropy of X is
defined as follows:

H(X) = −
n

∑
i=1

pi log pi (1)

The entropy value ranges between 0 and log n, reaching the upper bound when X has
a uniform distribution. To make entropy values independent of the number of distinct
symbols, entropy can be normalized to vary from 0 to 1 as follows:

HN(X) =
H(X)

log n
(2)
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From the above definitions, it is possible to define network traffic entropy as an
indication of traffic distribution across the network [23]. Each network switch can evaluate
the traffic entropy related to the network flows that cross it in a given time interval Tint as:

H = −
n

∑
i=1

fi
|S|tot

logd
fi
|S|tot

(3)

where fi is the packet count of the incoming flow i, |S|tot is the total number of processed
packets by the switch during Tint, n is the overall number of distinct flows and d is the
base of the logarithm. Network traffic entropy reaches its minimum value H = 0 when in
the given time interval Tint, all packets |S|tot belong to the same flow i, while it reaches its
maximum value H = logd n when each of the n flows transports only one packet.

3. Related Works

In the literature, security metrics that are proposed and related to network analysis
focus especially on attack graphs: they are graphical representations of potential attack
paths and the various steps an attacker might take to compromise a target system or net-
work. They provide a visual depiction of the relationships between different vulnerabilities,
system components, and attack techniques that an adversary could use to achieve their
objectives. Over time, various research works exploited their potential. Wang et al. [24] pro-
posed a general framework for designing network security metrics based on AGs. In [25],
Lippmann et al. propose the Network Compromise Percentage Metric while evaluating the
so-called defense-in-depth strategy using AGs. In [26], Mehta et al. compute a ranking of
states in an AG based on the probability of attackers reaching each state during a random
simulation; the PageRank algorithm is adapted for such a ranking; a key assumption made
in this work is that attackers would progress along different paths in an AG in a random
fashion. In this work [27] from Pamula et al., attack trees are replaced by attack trees
with more advanced AGs and attack paths with attack scenarios. In [28], Leversage et
al. proposed a mean time-to-compromise metric based on the predator state-space model.
Homer et al. [29] address several important issues in calculating such metrics including
the dependencies between different attack sequences in an AG and cyclic structures in
such graphs. Poolsappasit et al. [30], instead, proposed Bayesian networks to quantify the
chances of attacks and to develop a security mitigation and management plan as a metric.

More recent works start to consider vulnerabilities inside the nodes of the graph to
make more accurate calculations: Wang et al. [31], instead of attempting to rank unknown
vulnerabilities, propose a metric that counts how many such vulnerabilities would be
required for compromising network assets: a larger count implies more security because the
likelihood of having more unknown vulnerabilities available, applicable, and exploitable
all at the same time will be significantly lower; Zhang et al. [32] presented a biodiversity-
inspired metric based on the effective number of distinct resources with the idea that the
larger the diversity in components, the more secure the system is because it is less probable
that the same vulnerability is shared between different manufacturers; Ramos et al. [33]
proposed metrics that consider the length and the number of attack paths resulting from
the graph. An implementation of AGs very common in the literature is MulVAL [34], which
is a project that since 2006 proposed an end-to-end framework and reasoning system that
produces AGs by conducting multihost, multistage vulnerability analysis on a network. A
recent work by Stan et al. [35] that uses this tool on modern network architectures leverages
MulVAL to model multiple attack techniques such as spoofing, man-in-the-middle, DDoS,
and other types of attacks.

Metrics that pertain to this category require a high-level view of the network in order
to produce and use an AG. Moreover, many of them are resource intensive and cannot be
computed on devices that must maintain a very low overhead, such as switches. A device
such as a switch could implement only metrics of measure type but can still exploit the
possibility of managing the data plane. The aforementioned studies all employ AGs as a
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means of obtaining a comprehensive overview of potential attack vectors within network
environments with the intent of deriving relevant metrics from such data. Distinguishing
our research from these prior works, we extend our analytical scope beyond the metrics
attainable through AGs alone. Instead, we integrate these metrics with lower-level data
extracted from different vantage points. Furthermore, our investigation stands apart from
previous efforts in its specific emphasis on networks featuring DPP and the exploitation of
its intrinsic functionalities.

In contrast, considering low-level metrics deployable on network devices, the first
contribution is the direct detection of DDoS attacks within the data plane of switches.
However, the widely adopted data plane programming language, P4, lacks support for
many arithmetic operations, limiting the straightforward implementation of advanced
network monitoring functionalities required for DDoS detection. To address this limitation,
Ding et al. [7] present two novel strategies for flow cardinality and normalized network
traffic entropy estimation, which rely solely on P4-supported operations and ensure low
relative error. Building upon these contributions, the authors propose a DDoS detection
strategy based on variations of normalized network traffic entropy. The results demonstrate
comparable or higher detection accuracy compared to state-of-the-art solutions while being
simpler and executed entirely in the data plane. Moreover, Gao et al. [8] propose an
alternative solution, as mentioned in the Introduction, allowing it to overcome the use of
sketches and enabling switches to alert the controller automatically upon the detection of
anomalies. They implement statistical checks in P4 by revisiting the definition and com-
putation of statistical measures and collecting the techniques in a P4 library. Considering
these works, the distinction inherent in our research lies in an opposite concept to what
was previously discussed. Here, we consolidate the calculations of low-level metrics with
those of high-level metrics, capitalizing on this integrated analysis within distinct layers of
security evaluation.

4. GRAPH4 Architecture

As highlighted in the Section 2, the scientific literature proposed valuable ideas per-
taining to security metrics calculation over a P4-based data plane to detect networking
attacks—e.g., traffic entropy. However, the metric computation can introduce forwarding
overhead that, in environments requiring strict latency or traffic shape requirements, is
non-negligible.

GRAPH4 encompasses the combination of low-level metrics on the data plane with
high-level ones on the control plane to optimize resource allocation while minimizing
network computation. We envision a network architecture that, leveraging AGs, is able to
pinpoint the vulnerable regions of the topology and protect them from possible attacks.

The control plane generates an AG, which detects all the possible paths that lead to
a vulnerable host. With this information, the control plane is able to install the entropy
calculation code only on the nodes that pertain to the vulnerable paths. Hence, we drasti-
cally reduce the number of network nodes that calculate the metric and thus the overall
network overhead.

The architecture of GRAPH4 is shown in Figure 2, spanning across the two levels of
the network: the control plane and the data plane.
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DATA PLANE

CONTROL PLANE Attack graph generated knowing
the underlying topology

H2

H4

H10

H5

H1

H8H7

H9

H6
H3

Collect security metrics
from selected data plane

devices

Install MATs to mitigate
ongoing attack

ARE VULNERABLE

Figure 2. How the interaction between the control plane and the data plane works in GRAPH4. The
hosts in red are the ones deemed vulnerable by the AG: the control plane instruments the switches to
gather metrics on the switches close to those hosts.

4.1. Control Plane

In the control plane, the controller is in charge of generating an AG for the nodes
in its network. To achieve this, it needs to provide two pieces of information to the AG
generator: the description of the network topology and its hosts, with any active online
services, and the target, which is the attack vector leading to the anomaly. With these
elements, the generator provides the graph as output. With the AG, the controller achieves
a twofold gain:

1. It can calculate metrics over the AG to show high-level information on the security
state of the network. Example metrics that are evaluated on AGs are the Standard
Deviation and Mode of Path Lengths, the Number of Attack Paths [33] or the Defense
Depth [36].

2. It knows the set of nodes that are vulnerable to certain types of attack and can use
this information to optimize the allocation of low-level metrics.

In this work, we will focus on the latter aspect.

4.2. Data Plane

In the data plane, on the other hand, the architecture follows a similar method to the
one proposed by Vissicchio et al. [8]: the analysis is performed on the entire network. In
our proposal, the analysis is carried out only over traffic concerning the vulnerable hosts
identified by the controller.

When abnormal entropy levels are detected, the switches directly alert the controller,
which is then able to take a decision and further actions, such as blocking the malicious
traffic.

4.3. Workflow

To have a more in-depth view of how GRAPH4 works, we can summarize the work-
flow in six main steps that are shown in Figure 3. The first four steps are executed at the
startup of a network:

1. The AG Generator is fed with information about the topology of the network (hosts,
active services, connections, etc.), which is used to generate the AG that identifies the
vulnerable paths of the network.
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2. The control plane, with that knowledge, can identify the vulnerable hosts that need to
be monitored.

3. The control plane identifies the switches that are involved in forwarding traffic to or
from said hosts and prepares the rules to be installed.

4. The Match Action Tables (MATs), which implement the low-level detection of attacks,
are installed in the relevant switches.

Then, two more steps are repeated in a loop at network runtime:

5. The data plane carries out network monitoring by inspecting the traffic and, if the
metrics indicate that an attack is detected, it notifies the control plane.

6. When the control plane is notified of an attack, it can deploy countermeasures, e.g.,
by installing additional MATs on the switches.

A priori 
assessment

1. Given the topology
description, the control

plane generates the
ATTACK GRAPH

2. A list of
vulnerable

hosts is
produced

3. The involved
nodes are
monitored

4. MATs are
installed to
monitor the

baseline

Online 
detection

5. IF anomaly
is detected,
notify CP

6. CP deploys
countermeasures

Figure 3. The six steps show the workflow of the GRAPH4 architecture between the control
plane, which is represented as the zone with a blue background, and the data plane, with a violet
background.

This process could be generalized to leverage the use of any metrics capable of pro-
viding indicators on attacks of different kinds. In fact, GRAPH4 is a control-data plane
collaboration scheme revolving around two core features: (i) vulnerability assessment via
AG and (ii) minimal but reliable distributed in-line attack detection. This idea shows an
example of how the integration of model-based and measure-based metrics allows for the
optimization and distribution of resource allocation—and ensuing energy usage—across
the network, which is pivotal for in-line detection of attacks.

5. Proof of Concept

In this section, we present a Proof of Concept (PoC) to demonstrate the feasibility
and effectiveness of GRAPH4 in detecting a Distributed Denial of Service attack. This
attack targets one or more network hosts by firing a distributed volumetric attack that
crosses multiple regions of the network with the goal of exhausting their band capacity
and ultimately isolating them from the network. To detect these attacks, we need to deploy
detection probes on the network; our goal is to make them as efficient as possible and to
place them only where strictly needed to minimize computational and communications
overhead.

The PoC illustrates how GRAPH4 can efficiently enhance network security by pro-
viding a holistic view of vulnerabilities and potential attack paths while monitoring and
reacting in case of a detected attack. In terms of specific implementation choices, it com-
bines high-level metrics on the controller by generating a MulVal AG to pinpoint the
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vulnerable hosts and P4NEntropy [7] on the data plane as a low-level metric to calculate
the normalized entropy and detect ongoing anomalies.

5.1. The Data Plane Low-Level Metric

The adopted low-level metric, P4NEntropy [7], estimates the normalized network
traffic entropy in a given time interval, as described by Equation (3) in Section 2. It is
implemented in P4, thus overcoming the lack of this language which does not natively sup-
port basic yet relevant arithmetic operations such as division, logarithm, and exponential
function calculation as well as any operation on floating numbers or for loops.

P4DDoS is an application developed by the authors of [7] to trigger an alarm when the
entropy metric P4NEntropy reaches a value crossing a given threshold. We modified the
P4DDoS application to be compatible with GRAPH4 so as to be able to install the detection
rules only for the vulnerable hosts that result from the AG.

The DDoS attack is detected when the P4NEntropy metric value drops below the
adaptive threshold: as network traffic varies over time, the adaptability of the threshold
is essential to avoid false positives. Figure 4 shows the detection of a DDoS attack in our
simulation: when the metric value decreases under the threshold, initially set to 0.5, the
controller installs MATs to block the malicious flow. As soon as the new rules are activated,
the malicious traffic is automatically dropped by the switches, as proven by the return of
the metric to its normal value. In our simulations, these actions take an average of 2.5 s
from the detection of the attack to the installation of the new rules.

Figure 4. The variation of the P4NEntropy metric value during time in our tests: as it drops below
the threshold of 0.5, the DDoS attack is detected and new rules are installed in the switch. Hence, the
malicious traffic is blocked and the metric returns to its typical value.

5.2. AG Cuts

We emulate the network topology shown in Figure 5 using Mininet (https://mininet.
org/, accessed on 1 October 2023) with a single P4 switch. The data plane is described by P4
code compiled using the bmv2 behavioral model (https://github.com/p4lang/behavioral-
model, accessed on 1 October 2023), while the control plane is implemented as a custom
controller we developed separately [21]. We abstract external hosts as a single traffic source
connected to the P4 switch, which is also connected to three different subnets, each one

https://mininet.org/
https://mininet.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
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composed of six hosts with the role of destinations. Virtual links bandwidth is bounded by
CPU capacity. We tested the topology on a Ubuntu 20.04 LTS Server with 14 GB of RAM
and 3 CPU cores KVM machine.

In our simulation, to produce the AG, we use the extended version [35] of the popular
MulVAL application to make it compatible with our use case. The knowledge that MulVAL
uses to produce the graph is based on the assertion of some predicates that are written in
the Datalog language [37].

alerts &
drill down

... ...

P4 switchsource/external device controller

...

�rewall

10.0.1.1

10.0.1.6

10.0.5.1

10.0.5.6

/24 /24

/24

10.0.10.1 10.0.10.6

ovsovs

ovs

incoming
packets

10.0.0.0/8

subnet 1 subnet 2

subnet 3

Figure 5. Our use-case test topology, based on the one used in [8], with another subnet (10.0.10.0/24)
protected by firewall.

We produced an input.P file that describes the topology of our network presented in
Figure 5. To express the various fundamental network components such as hosts, gateways,
active services, and known vulnerabilities, we employed the extended primitive rule set
presented in [35]. The Datalog content of the input.P file is shown in Figure 6: for the sake
of brevity, in the figure, we replaced long lists of similar lines with comments explaining
what has been omitted. With this input, MulVAL automatically generates the AG, trying
to reach the goal written in the input.P file by verifying the predicates of his knowledge.
Figure 7 shows the attack graph that is produced.
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Figure 6. The code of input.P, which is the input for MulVAL to generate the AG.

Figure 7. The AG generated from the topology shown in Figure 5 that refers to just one host of the
vulnerable subnets. The graph is repeated for every host that pertains to the vulnerable subnet. Based
on the Datalog code that defines the relationships between elements of the network and attacks, the
graph shows all the conditions that need to be verified to complete the hypothetical attack goal—in
this case, a DoS attack.
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As a result, the vulnerable hosts are identified: they are the hosts that appear along a
path in the AG; Figure 7 shows for the sake of clarity the AG for one host; the complete
output would contain the AGs involving all hosts specified in the input file. Consequently,
the Nh hosts in the network are split into two sets, the V vulnerable hosts and the S
non-vulnerable ones:

Nh = V + S (4)

The switch will compute security metrics just for the traffic flows that have a vulnerable
host as an endpoint. The metrics computation is performed over the switch and will increase
the overall Packet Processing Time (PPT). The absolute computation time will obviously
depend on the capacity of the available hardware so, to keep the discussion as general as
possible, here we assume it is a multiple of a constant time unit Uc.

The security metric is computed using Equation (3). Packet Processing Times (PPTs)
(The PPT is calculated as follows: we used Wireshark (https://www.wireshark.org/,
accessed on 1 October 2023) to capture a packet timestamp tin at the ingress interface of the
switch and the timestamp tout at the egress interface when the same packet is forwarded
to the destination host. The packet processing time is then calculated by tout − tin.) are
plotted in Figure 8. The blue color is used to plot the PPT of normal packets, i.e., not
requiring metric computation because they cannot be part of the attack; the orange color
is used to plot the PPT of packets used to calculate the security metric. The test is always
performed by forwarding a series of 10,000 packets through the switch between the source
and destination. The red lines correspond to the respective averages of the two sets of PPTs.

We plotted five sample cases, ranging from no packets undergoing security metric
calculation up to security metric calculation for all packets, with intermediate cases of 12.5%,
25%, and 50% of packets triggering the security metric calculation. We believe this figure
provides some important information and insight into the problem we are considering:

1. The PPT is indeed quite variable but shows statistical stability when comparing single
values with the average; therefore, we assume we are facing a stationary and ergodic
stochastic process;

2. The average PPT for the two cases is almost independent of the number of packets
involved in security metric calculation, and because of this, we assume that we can
make some general statement not depending on the actual shape of the AGs but just
on the number of hosts identified as vulnerable;

3. The overall processing burden in the switch is a linear function of the number of traffic
flows considered suspicious (i.e., the number of suspicious hosts), and therefore, we
are interested in the security metric calculation. On average, the overall processing
burden in the switch is a multiple of the number of flows according to the average
packet processing time.

Based on the aforementioned considerations, we are now interested in understanding
how much the data plane of the network is loaded by the additional task of security metric
calculation in the switches. Let us call the total computation time consumed in the switch,
Tc in the following, as an indication of such overall load. Based on the discussion above, we
assume Tc is the product of the number of flows to monitor, which is the same as the number
of vulnerable hosts Nh, for the average processing time of the involved packets that we
estimated in Figure 8. This estimation on a single switch is in line with the demonstration
of [8] Vissicchio et al., leaving the multi-switches case for future works.

As a result, we can extrapolate the following:

1. The overhead generated in a single switch by the process of metric elaboration will be
linearly influenced by the number V of hosts identified as possibly vulnerable;

2. The total overhead generated in the network by the entire metric calculation pro-
cesses will have a directly proportional relationship with the number of switches that
compute the metric.

https://www.wireshark.org/
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As a consequence, to minimize the number of traffic flows, the network has to focus
on calculating the flow entropy that is meaningful to minimize the load on the network
control plane.
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Figure 8. Packet Processing Time (PPT) in the switch plotted for 10,000 packets with varying
percentages of metrics calculation. The goal of the figure is to show that the single PPT of a packet is
independent and not influenced by the number of packets subject to metric calculation.

In practice, without GRAPH4, the Tc value will be always proportional to Nh. Instead,
with GRAPH4, this number is tied to V, which is by definition less than or equal to Nh.
Therefore, if the network contains fewer vulnerable hosts, i.e., some hosts are not affected
by DDoS attacks as proven by the AG, Tc will be lower. In Figure 9, we summarize this
concept: Tc will be linearly increasing with the number of hosts in the network Nh without
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GRAPH4 (V = Nh). On the other hand, with GRAPH4, it will be upper bounded by the
number of vulnerable hosts V, which is why the curves in Figure 9 become constant when
Nh = V.

Δi

Figure 9. The Computation Time (Tc), measured in time units, based on the formulas shown before.
The blue case is when V = Nh, and the function result is the same as without the use of AG. The other
cases are with different values of V < Nh, i.e., there is only a minor subset of vulnerable hosts in the
network: in those cases, we can see the improvement in the calculation time, which is the benefit that
the use of GRAPH4 provides, and this is labeled as ∆i.

To give further evidence of the linear relationship between Tc and Nh, we performed a
series of five tests, each of them with 50,000 packets forwarded, within the same experi-
mental environment as the test shown in Figure 8. We sent different amounts of packets
directed to vulnerable hosts that need to be monitored from the switch: in the first case,
0% of the packets were directed to the vulnerable hosts, then 12.5%, 25%, 50% and 100%,
mirroring the conditions of the previous experiment. During these tests, the mean value
and variance of PPT were measured. The obtained results are depicted in Figure 10. The
observed linear trend confirms our previous assumption on the independence between
PPTs of packets within flows that are monitored or not by the switch for metric computation,
thus confirming the linearity hypothesis.

Finally, we want to remark that the volume of additional data transferred between
the control and data plane can be deemed negligible, since GRAPH4 only sends a small
alert each time the entropy threshold is hit. In fact, an alert only contains the source and
destination IP addresses of the flow hitting the entropy threshold, resulting in a minimal
data payload of 64 bits per anomaly detection event.

Compared with traditional SDN-based mirroring approaches, where all the traffic is
sent to the control plane, GRAPH4 only sends an alert every time an anomaly is detected.
For example, high-speed networks often treat the Tbps of traffic: mirroring this volume of
traffic to the control plane can result in low detection responsiveness and high detection
overhead. On the contrary, GRAPH4 aggregates the attack in a 64-bit alert, which allows
prompt control plane decisions.
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Figure 10. The mean and the variance of single-switch PPTs in five test scenarios, each one of them
with 50,000 packets forwarded: from 0% of packets processed with metric computation to 100%.

6. Discussion and Limitations of the Study

The proposed approach shows promising features, yet it is important to acknowledge
its open issues. One of the foremost limitations of the architecture lies in the completeness
of vulnerability enumeration. In our approach, the AG generated on the controller relies on
the information that describes the topology of the network as well as active services and
their specific vulnerabilities. If any of that information is missed or not correctly identified,
the AG may be incomplete. This incompleteness can lead to a significant loss of information,
potentially resulting in a false sense of security. An attacker exploiting a vulnerability that
was not accounted for in the AG would go undetected, posing a substantial security risk.
For this reason, it is crucial to feed the AG generator with all the necessary information,
thus imposing an a priori analysis of the network to recognize them.

Moreover, the workflow assumes a relatively immutable network environment. How-
ever, in some cases, network topology, hosts, and vulnerabilities can change dynamically
and frequently. Handling these changes effectively and updating the graph in real time is a
challenging task and is one of the main criticisms of AGs in general beyond our proposed
use of them. Failure to adapt to dynamic changes could render the AG obsolete, leading to
inaccuracies in threat detection.

Addressing these challenges and potential pitfalls is crucial to the successful imple-
mentation of the architecture in real-world network environments. Further research and
development are needed to overcome these limitations and make the architecture more
robust and effective in enhancing network security.

7. Conclusions and Future Works

In conclusion, our research has demonstrated the enhanced capabilities of real-time
analysis with P4 through the integration of metric-based measurements. By employing a
multi-level approach, we have successfully developed an architecture that comprises (i)
AG generation on the control plane, to assess the vulnerable network end hosts, and (ii)
at the data plane level, providing an optimized implementation of detection metrics and
computation distribution.

Thus, this approach not only bolsters security but also contributes to the broader
objective of sustainability by minimizing resource usage. In our PoC, we showcased the
effectiveness of our methodology by utilizing MulVAL and entropy-based metrics such
as P4NEntropy. The results of our experiments underscore the practicality and efficiency
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of our approach in identifying and responding to security threats in real-time network
environments while simultaneously promoting sustainable resource management.

As the field of network security continues to evolve, our research contributes to
the ongoing efforts to guarantee network defenses and enhance the resilience of critical
infrastructures in an environmentally responsible manner. We anticipate that our approach
will find applications in a wide range of network security scenarios, offering a more
efficient and targeted means of safeguarding digital assets against emerging threats while
contributing to sustainability objectives.

Our study lays the foundation for future research directions in network security with
security metrics. Future works could try to quantify, for some real network examples,
the accurate enhancement of the total computation time for the metric thanks to the
exemption of some switches from the monitoring. In addition, opportunities for innovation
in this field will come from investigating alternative metrics within the architecture, other
than the ones that we proposed, and delving deeper into diverse high-level and low-
level metric integration. We are also aware of the need for further exploration of the
dynamic adaptability of threat models, of real-world deployment scenarios, and of the
interplay between security and sustainability goals. Lastly, integrating machine learning for
advanced threat detection represents a promising avenue for enhancing network security
and could be included in this architecture to increase accuracy in detection and adaptability
to new threats. These future works aim to further advance the state of the art and contribute
to more robust and resource-efficient security solutions.
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