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Abstract

In the current era, quantum resources are extremely limited, and this makes difficult the

usage of quantum machine learning (QML) models. Concerning the supervised tasks, a via-

ble approach is the introduction of a quantum locality technique, which allows the models to

focus only on the neighborhood of the considered element. A well-known locality technique

is the k-nearest neighbors (k-NN) algorithm, of which several quantum variants have been

proposed; nevertheless, they have not been employed yet as a preliminary step of other

QML models. Instead, for the classical counterpart, a performance enhancement with

respect to the base models has already been proven. In this paper, we propose and evalu-

ate the idea of exploiting a quantum locality technique to reduce the size and improve the

performance of QML models. In detail, we provide (i) an implementation in Python of a QML

pipeline for local classification and (ii) its extensive empirical evaluation. Regarding the

quantum pipeline, it has been developed using Qiskit, and it consists of a quantum k-NN

and a quantum binary classifier, both already available in the literature. The results have

shown the quantum pipeline’s equivalence (in terms of accuracy) to its classical counterpart

in the ideal case, the validity of locality’s application to the QML realm, but also the strong

sensitivity of the chosen quantum k-NN to probability fluctuations and the better perfor-

mance of classical baseline methods like the random forest.

1 Introduction

In the current era, known as noisy intermediate-scale quantum (NISQ) [1], the available quan-

tum devices are limited in the number of qubits and the fidelity of gates. The qubit is the quan-

tum analogue of a classical bit; in 2019, Google claimed to have reached quantum supremacy,

i.e., an advantage with respect to classical computers, using a processor with 54 qubits [2], a

very large number compared to the chips accessible for practical purposes nowadays. Never-

theless, the performance in the task considered by Google was still very low. Regarding the

fidelity of gates, it is always undermined by the presence of intrinsic fabrication issues since

these universal quantum architectures are based mainly on superconducting circuits.
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Specifically, the gate fidelity represents how much the operation performed by a gate is close to

the ideal one [3]. This measure also worsens by increasing the number of qubits due to the lack

of all-to-all connections between them.

In this scenario, the usage of quantum machine learning (QML) models turns out to be dif-

ficult: it is not possible to encode large quantities of data in the quantum devices due to the low

number of qubits (typically, also a data index must be encoded); in addition, the presence of

noise in the execution of quantum operations limits the quality of results, especially if a consis-

tent amount of samples is considered. Several quantum machine learning models have already

been proposed, either classical-quantum hybrid [4] or entirely quantum [5]. The latter type is,

of course, the most interesting one since the models can fully exploit the quantum potentiali-

ties without the need to interact with classical procedures; at the same time, these models suffer

more from the aforementioned issues. For instance, the quantum support-vector machine

(SVM) proposed by Rebentrost et al. [5] has been implemented and tested by Z. Li et al. [6],

but the task considered was very small.

In practice, the possibility of reducing the number of qubits required to solve a problem is

extremely relevant in the NISQ era. In this way, it becomes feasible to address bigger, and thus

more significant, problems and concretely exploit the potentialities of quantum machine

learning. Focusing on the supervised tasks, the introduction of a quantum locality technique

represents a valid direction in this sense. Indeed, by looking at only the neighbourhood of the

considered element, it is possible to reduce the number of samples that the quantum models

must process. An alternative approach could be reducing the number of qubits required to

encode each sample by using an autoencoder or a dimensionality reduction technique such as

the singular value decomposition (SVD). Actually, a classical-quantum hybrid version of these

two techniques has already been proposed by Romero et al. [7] and X. Wang et al. [8], respec-

tively. It is also worth highlighting that the locality addressed in this work is not the spatial

locality of data features exploited by quantum convolutional neural networks in processing

images [9, 10], but the locality of data samples in the features space. Indeed, (quantum) convo-

lutional neural networks exploit the structure of neighboring features in an image to classify it.

Instead, the approach described here consists in classifying the target instance based on the

training data samples that are closer to it according to a chosen metric, and no specific struc-

ture in neighboring features is needed.

While the reduction of the number of input samples to a quantum machine learning model

through a quantum locality technique has not been addressed yet in the literature, the classical

counterpart has already been investigated and has proven successful, with performance

improvements with respect to the base model. For instance, a local SVM trained on the sam-

ples selected by a k-nearest neighbors (k-NN) model has been proposed and empirically tested

by Blanzieri and Melgani [11], with good results. In addition, local SVMs and their properties

have been theoretically studied by, for example, Hable [12] and Meister and Steinwart [13].

Actually, the simplest and most effective locality technique is represented precisely by the k-

NN, which picks out the elements closest to the target one according to a given metric. Differ-

ent quantum variants of the k-NN algorithm have been proposed; moreover, an interesting

application of a quantum k-NN version in combination with the Grover search algorithm [14]

has also been presented by Sawerwain and Wróblewski [15], namely, a quantum recommenda-

tion system.

Eventually, the empirical evaluation has always been an essential part of the machine learn-

ing research paradigm, with the UCI Machine Learning Repository [16] playing a major role

in setting de facto standard benchmarks for the experimental assessment of machine learning

(ML) algorithms. Recently, massive benchmark datasets have been proposed and used for

studying and advancing the state of the art of deep learning neural networks [17]. Instead, the
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area of quantum machine learning has not yet matured enough to produce established bench-

marks; this is due to the mainly theoretical nature of the research in the current phase, as well

as the limited dimension and reliability of the available machines. Nevertheless, a fair and sys-

tematic comparison between quantum and classical machine learning is necessary in order to

progress. To this end, a platform that supports the execution of both kinds of algorithms, and

provides access to the existing quantum devices and/or their simulators, is highly desirable.

In this work, we propose and assess the application of a quantum locality technique as a

preliminary step of QML models, with the purpose of reducing their size and improving their

performance. In particular, we provide the implementation and the empirical evaluation of a

quantum pipeline consisting of a quantum k-nearest neighbors algorithm [18] and a quantum

cosine-based binary classifier [19]. The code, which is publicly accessible at https://github.

com/ZarHenry96/quantum-ml-pipeline, integrates access to available quantum computing

resources, namely, IBM quantum computers, provides for testing on several UCI datasets

whose dimension is compatible with the current quantum devices, and allows for comparisons

with classical competitors. However, the quantum pipeline has not been tested on real quan-

tum devices due to the retirement of the quantum computer of interest (the only one available

with a free account that had enough qubits). Eventually, it is worth highlighting that the

approach presented in this work is not limited to binary classification. In order to address a

multiclass scenario as done in [20], it is sufficient to replace the quantum binary classifier with

a quantum classification model able to manage multiple classes.

The remainder of the paper is structured as follows: Section 2 presents some background

information, Section 3 describes the quantum pipeline, its implementation and complexity,

Section 4 deals with the experimental evaluation and the results obtained, and Section 5 pro-

vides the conclusions.

2 Background

This section provides background information about quantum computing, quantum machine

learning, the classical and the quantum versions of the k-nearest neighbors algorithm, and the

quantum binary classifier proposed by Pastorello and Blanzieri [19].

2.1 Quantum machine learning

Quantum computing is a type of computation in which quantum phenomena, such as state

superposition and entanglement, are exploited to perform calculations. It is the most promi-

nent application of quantum information theory and delivers algorithms to solve efficiently

problems that are hard for classical computers [21].

Quantum machine learning is an emerging research area related to quantum computing.

Basically, in QML, quantum computing techniques are applied to machine learning tasks in

order to pursue computational advantages given the present context of ever-growing amounts

of data to manage. In detail, QML algorithms may present relevant benefits in time and space

complexity with respect to classical ML algorithms. Remarkable examples are the embedding

of quantum subroutines into ML schemes to efficiently calculate distances in the feature space

[22], with advantages in classification and clustering, or Grover-based subroutines to find an

item in an unsorted database [23], with a quadratic speedup with respect to an exhaustive

search. The latter are employed, for instance, in pattern recognition. The first proposals of

quantum versions of ML algorithms were presented about twenty years ago [24, 25], but the

real interest in QML has sparked only in the last decade thanks to the development of the first

available working prototypes of quantum machines like those manufactured by IBM [26],
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Rigetti [27], and D-Wave Systems [28], and the publication of many interesting results on

quantum machine learning algorithms [4, 5, 29, 30].

Within the quantum circuit model, one of the most popular, the basic concept of quantum

computation is represented by the qubit, whose state is described by a unit vector |ψi = α|0i +

β|1i in a two-dimensional complex Hilbert space, of which |0i and |1i form an orthonormal

basis. In particular, |i is a ket in the Dirac notation, which is used to denote quantum states,

and |0i and |1i identify the vectors of the standard basis of C2
. Instead, the absolute squares of

the amplitudes a;b 2 C correspond to the probabilities of measuring the qubit in states 0 and

1, respectively; hence, |α|2 + |β|2 = 1. After a measurement process, the state of a qubit collapses

to the post-measurement state, either |0i or |1i, according to the obtained outcome. In addi-

tion, the time evolution of isolated quantum systems (such as the qubits) is mathematically

described by unitary operators, which are called quantum gates in the language of quantum

computing. An example of a quantum gate acting on a single qubit is the Hadamard gate,

whose action on the basis states is given by H|0i = |+i and H|1i = |−i, where

j�i ¼ 1=
ffiffiffi
2
p
� ðj0i � j1iÞ. Basically, it creates a superposition state; the corresponding matrix

representation and the circuital symbol are

H =
1p
2

µ
1 1
1 ¡1

¶
and H .

Another important quantum gate is the controlled NOT gate (or CNOT), which operates over

two qubits and acts as follows with respect to the computational basis:

jxi ² jxi

jyi jx© yi ,

where x, y 2 {0, 1} and� is the sum modulo 2. In practice, it flips the state of the target qubit if

the control qubit is in the state |1i. In particular, by combining three CNOTs, it is possible to

build the SWAP gate, a 2-qubit gate that swaps the qubits provided as input; its circuital defini-

tion is

£

£
:=

²

² ² .

Instead, the controlled version of the SWAP gate (a 3-qubit gate) is called Fredkin gate as its

classical version, which is universal for classical reversible computation, and the corresponding

circuital symbol is

²
£
£ .

As an axiom of quantum mechanics, a system of n qubits is described in the space ðC2
Þ
�n

.

As a consequence, the dimension of the space where we can represent the data grows exponen-

tially in the number of qubits; this is one of the main advantages of quantum computations. In

practice, quantum algorithms are developed by composing the available quantum gates in
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order to produce a quantum state that encodes the solution of a given problem, and the read-

out is performed by measuring the quantum output state in the computational basis. Since the

result of a quantum computation is probabilistic in general, a quantum algorithm must be

repeated several times in order to provide a meaningful result. One of the main examples of

the efficiency of quantum computation is the celebrated Shor’s algorithm [31], which solves

the integer factoring problem (that is generally suspected to be not in P) in polynomial time.

In QML, quantum algorithms are developed to solve machine learning tasks like classifica-

tion, clustering, and pattern recognition [32]. To this end, a relevant question is the represen-

tation of classical data into quantum states. The standard encoding used in quantum

computing is the so-called basis encoding: binary strings (x1, . . ., xn), with xi 2 {0, 1} and i = 1,

. . ., n, are translated into states of n qubits |x1, . . ., xni belonging to the basis of the n-qubit Hil-

bert space. Alternatively, many QML algorithms exploit the amplitude encoding, in which a

classical data instance x 2 Rd is encoded into the quantum superposition state jxi ¼
kxk� 1Pd

i¼1
xijii of log2 d qubits. Eventually, it is also worth presenting a simple example of

quantum processing that is rather useful in QML (and is applied within the k-NN and the

binary classifier considered in this work), i.e., the SWAP test [33]. The corresponding circuit is

the following:

j0i H ² H

jÃi £
j'i £ ,

where |ψi and |φi are n-qubit states. In detail, the SWAP gate, which acts on |ψi and |φi, is

controlled by the qubit initially prepared in |0i; this can be implemented through n Fredkin

gates. A simple calculation shows that the probability of measuring the value 0 in the first

qubit is Pð0Þ ¼ 1=2 � ð1þ jcjφij2Þ, where ψ|φi is the inner product between |ψi and |φi in the

Dirac notation. In addition, the estimation of Pð0Þ up to an error � requires O(�−2) repetitions

as given by the binomial proportion confidence interval for a Bernoulli trial. In practice, the

SWAP test allows the efficient computation of the fidelity of the quantum states |ψi and |φi,
with the fidelity being defined for two pure quantum states as

Fðjci; jφiÞ ¼ jcjφij2 ¼ ðcosðc;φÞ � kck � kφkÞ2 ¼ cos2ðc;φÞ ; ð1Þ

where cos(ψ, φ) is the cosine similarity of |ψi and |φi, and the norms of |ψi and |φi are 1 by

definition. Therefore, by encoding data vectors into the amplitudes of |ψi and |φi, it is possible

to compute their dot product and, thus, their cosine similarity (and distance) through the

SWAP test.

2.2 K-NN and quantum k-NN(s)

The k-nearest neighbors algorithm [34] is a really simple classification algorithm, and consists

of three steps:

• the computation of the chosen distance metric between the test element and all training data

points;

• the extraction of the k elements closest to the test instance, namely, the k nearest neighbors;

• the assignment of the class label through a majority voting based on the labels of the k near-

est neighbors (in the case of a classification task).
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Instead, the quantum counterpart of the algorithm, of which several variants have been pro-

posed, includes an additional step at the beginning, i.e., the preparation of data in a superposi-

tion state. This stage allows performing parallel operations, such as computing the distance of

the test instance with respect to all training elements simultaneously (quantum parallelism).

Regarding the quantum k-NN variants, a conceptually simple one (but not so efficient) is

described in the work of Fastovets et al. [35] and consists of two steps: the SWAP test algo-

rithm is exploited to compute the distance (the Euclidean distance, in this case) between fea-

ture vectors, which are encoded in the amplitudes of a superposition state; a quantum

minimization algorithm based on the Grover search [36], also known as Dürr’s algorithm, is

used to find the k nearest neighbors. In particular, each of the two steps requires multiple itera-

tions with final measurements.

A more complex variant has been presented by both Dang et al. [37] and Y. Wang et al.

[38], and applied to the image classification task. The workflow is the following: the features

are encoded as amplitudes of a quantum superposition state; the distance between test and

training instances is computed through a SWAP test, but without measurements; the ampli-

tude estimation (AE) algorithm [39] is then used to transfer the distance values encoded in

amplitudes to qubit states (measurements are not strictly necessary in this step [23]); finally,

Dürr’s algorithm is exploited to find the indices of the k elements with minimum distance with

respect to the test instance. It is worth highlighting that both AE and Dürr’s algorithms are

quite complex and include an oracle, i.e., they are based on a black-box function. Moreover, a

very similar workflow is present in the work of Wiebe et al. [23], although it is used for finding

only the nearest neighbor.

Quantum k-NN versions employing a different metric, namely, the Hamming distance,

have been proposed by Ruan et al. [40] and J. Li et al. [41]. Due to the metric chosen, the fea-

tures must be expressed as bit strings; indeed, the Hamming distance represents the number of

positions at which two strings differ. The advantage is a straightforward mapping to quantum

states (basis encoding). In detail, the two considered k-NN variants share the initial steps: a

superposition of the features quantum states is prepared; the difference between correspond-

ing qubits, in training and test features, is computed through CNOT gates; the Hamming dis-

tance, which corresponds to the sum of the differences, is obtained by using the

incrementation circuit presented by Kaye [42]. Then, in the first variant [40], the training

instances with a distance lower than a given threshold value are selected by means of an OR

gate and a projection operation (actually, to do this, the qubits differences are reversed before

the summation). Thus, there is no k parameter and the number of nearest neighbors selected

depends on the threshold value. Instead, in the second variant [41], a novel quantum search

procedure inspired by a binary search is applied to the distances in order to find the minimum

value. By iterating it and removing each time the current minimum, the k nearest neighbors

are selected. The Hamming distance (computed with the procedure just described) is used also

in the work of Zhou et al. [43] for image classification, but the search for the k minimum dis-

tance values is performed through Dürr’s algorithm.

Another method for computing the Hamming distance is exploited in the quantum k-NN

variants presented by Schuld et al. [44] and Wiśniewska and Sawerwain [45]. In detail, instead

of summing up the qubits differences through the incrementation circuit, a unitary operation

is applied to them in order to encode the values of the sums as quantum state amplitudes. This

idea has been proposed first by Trugenberger [24]. After an ancillary qubit measurement,

which is required to select the good amplitudes distribution (higher probabilities for lower dis-

tances), the classification is performed directly in both works without explicitly selecting the k
nearest neighbors. However, it is possible to identify the neighbors by repeating the entire
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process multiple times and measuring the post-ancillary-measurement state (instead of execut-

ing the classification step).

The last interesting quantum k-NN variant has been presented by both Afham et al. [18]

and Ma et al. [46]. In particular, after the encoding of the data features as amplitudes of a

superposition state, a SWAP test is performed. Then, the state of an ancillary qubit and of a

qubit register (array), which indexes the training data, is measured. By iterating the procedure

just described, it is possible to estimate a quantity proportional to the fidelity [47] between the

training data and the test instance states and, therefore, find the k nearest neighbors. Indeed,

the fidelity corresponds to the squared scalar product for pure quantum states (see Eq 1). It is

worth highlighting that, as shown by Ma et al. [46], multiple test instances can be processed in

parallel by introducing an additional index register for the test data and putting the test

instances in superposition (as the training ones). Actually, Afham et al. have recently proposed

also another quantum k-NN variant [48]: it exploits a generalization of Dürr’s algorithm to

find the indices of the k nearest neighbors given a quite complex oracle as input. However, the

resulting workflow is not so different from that of other previously described works. Basically,

the oracle in question includes the SWAP test, a quantum analog-to-digital conversion algo-

rithm [49] based on the phase estimation algorithm [50], and some quantum arithmetic.

2.2.1 A quantum k-NN variant in detail. Let us describe more in detail the quantum k-

NN algorithm proposed by Afham et al. [18]. In order to do so, let us consider the dataset

{xi}i=0,. . .,N−1, with xi 2 R
d
, the test data instance x 2 Rd

, and the fidelity, i.e., the squared

cosine similarity (see Eq 1), as a distance measure. Within the amplitude encoding, the cosine

similarity between xi and x is nothing but the inner product hxi|xi between the corresponding

quantum states. In addition, let us assume that N and d are powers of 2 without loss of general-

ity. Then, let us consider an index register of log2 N qubits, where the indexes of the training

instances are stored within the basis encoding, two n-qubit registers (with n = log2 d), where

data are encoded into the amplitudes of the quantum states, and an ancillary qubit. The four

registers are initialized in the state

1
ffiffiffiffi
N
p

XN� 1

i¼0

jiijxii jxi j0i 2 Hindex � Hn � Hn � Ha: ð2Þ

In the state (2), the superposition of the training data and the test instance are stored in two

different registers. Now, let us perform the SWAP test on the two n-qubit registers controlled

by the ancillary qubit, obtaining the state

jci ¼
1

2
ffiffiffiffi
N
p

XN� 1

i¼0

jii½ðjxiijxi þ jxijxiiÞj0i þ ðjxiijxi � jxijxiiÞj1i�:

The probability of getting the outcome α 2 {0, 1} by a measurement process on the ancillary

qubit is given by

PðaÞ ¼
1

2
þ ð� 1Þ

a 1

2N

XN� 1

i¼0

jhxijxij
2
;

and the corresponding post-measurement state stored in the four registers is

jCai ¼

PN� 1

i¼0
jiiðjxiijxi þ ð� 1Þ

a
jxijxiiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðN þ ð� 1Þ
aPN� 1

i¼0
jhxijxij

2
Þ

q jai:

After measuring the state of the ancillary qubit (α), the probability of obtaining the outcome i

PLOS ONE Implementation and evaluation of a quantum machine learning pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0287869 November 13, 2023 7 / 28

https://doi.org/10.1371/journal.pone.0287869


by performing a subsequent measurement on the index register is given by

PðijaÞ ¼
1þ ð� 1Þ

a
jhxjxiij

2

N þ ð� 1Þ
aPN� 1

i¼0
jhxjxiij

2
:

As a consequence,

QðiÞ≔Pðij0Þ � Pðij1Þ ¼
2ðjhxjxiij

2
� CÞ

Nð1 � C2Þ
; ð3Þ

with C ¼ 1

N

P
ijhxjxiij

2
being a constant value. In practice, (3) is proportional to the squared

cosine similarity |hxi|xi|
2 between xi and x. Therefore, by sampling from the index register, it is

possible to identify the indexes with the highestQ values, i.e., those corresponding to the clos-

est vectors to x. Actually, sinceQ is proportional to the square of the cosine similarity, the val-

ues of each data feature must be concordant in sign in order to extract only the data instances

most similar to x (and not also the most dissimilar ones).

2.3 Quantum binary classifier

Pastorello and Blanzieri [19] have recently presented a quantum binary classifier based on the

cosine similarity metric. Its structure is simple: it iterates the preparation of a superposition

state with training and test features encoded as amplitudes, a SWAP test involving states of

one qubit, and a final measurement process. Specifically, the measurement outcomes allow

estimating a probability value that is directly related to a weighted label assignment with the

weights given by the cosine similarity.

More in detail, let X = {xi, yi}i=0,. . .,N−1, with xi 2 R
d

and yi 2 {−1, 1} 8i 2 {0, . . ., N − 1}, be a

training set of N data instances represented in a real feature space of dimension d and charac-

terised by two-valued labels, and let x 2 Rd
be a new (test) data instance to be classified as

either −1 or 1. Let us take into account the following (classical) classification model:

yðxÞ≔ sgn

 
XN� 1

i¼0

yi cosðxi; xÞ

!

; ð4Þ

where cosðxi; xÞ≔
xi �x
kxikkxk

is the cosine similarity between the training vector xi and x. In this

model (4), any training vector contributes to the prediction of the new label, and such a contri-

bution is weighted by the cosine similarity with respect to the new instance. Now, let us con-

sider a log2 N-qubit register to encode the indexes of the training data vectors, a n-qubit

register (with n = log2 d) to store the data instances within the amplitude encoding, and a sin-

gle qubit to encode the values of the labels according to bi ¼
1� yi

2
2 f0; 1g. Then, let us con-

struct the state

jxi ¼
1
ffiffiffiffi
N
p

XN� 1

i¼0

jiijxiijbii 2 Hindex � Hn � Hl; ð5Þ

with Hl being the Hilbert space of the label qubit. The state in question (5) encodes the training

set X as a quantum superposition of its elements and the respective labels; note that one qubit

is sufficient for the encoding of all the labels. In addition, in the same registers, let us construct

the state

jcxi ¼
1
ffiffiffiffi
N
p

XN� 1

i¼0

jiijxij� i 2 Hindex � Hn � Hl; ð6Þ
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where the label qubit is in the state j� i ¼ 1ffiffi
2
p ðj0i � j1iÞ; in this way, the test data vector x is

represented in a quantum superposition of the two possible classes. To allow the coexistence of

states (5) and (6) in the same registers, let us consider an ancillary qubit (a), and let us prepare

the superposition state

1
ffiffiffi
2
p jxij0i þ jcxij1ið Þ 2 Hindex � Hn � Hl � Ha: ð7Þ

The state (7) is entangled. Indeed, there is a quantum correlation between the state of the ancil-

lary qubit a and the content of the registers. After the preparation of the initial state, let us per-

form a SWAP test between a second ancillary qubit (b), initialized in jþi ¼ 1ffiffi
2
p ðj0i þ j1iÞ, and

the qubit a. Let c be the control qubit (initialized in |0i) in the SWAP test; a straightforward

calculation shows that the probability of obtaining the outcome 1 by measuring the qubit c is

Pð1Þ ¼
1

4
ð1 � hXjcxiÞ;

which is directly related to the considered classification model (4), since

hXjcxi ¼
1

N
ffiffiffi
2
p
XN� 1

i¼0

yi cosðxi; xÞ:

Therefore, given the probability Pð1Þ or an estimate thereof, it is possible to predict the label of

x (according to model 4) by means of

yðxÞ ¼ sgn½1 � 4Pð1Þ�: ð8Þ

3 Quantum pipeline

This section presents the quantum pipeline that has been implemented and tested, providing

information about the components, the implementation, and the complexity. The code is

available at https://github.com/ZarHenry96/quantum-ml-pipeline.

3.1 Components

The quantum pipeline evaluated in this work consists of a quantum k-NN followed by a quan-

tum binary classification model, with the quantum k-NN providing the nearest neighbors as

input to the subsequent model. The workflow is displayed in Fig 1.

Fig 1. Quantum pipeline workflow overview.

https://doi.org/10.1371/journal.pone.0287869.g001
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Concerning the quantum k-NN, several variants exist in the literature, as depicted in Sec-

tion 2.2. However, some aspects must be considered. First, the variants based on the Hamming

distance can not be applied directly to the most common problems, namely, the ones charac-

terised by real-valued features, since the considered metric represents a distance on binary

strings. Second, most variants include an oracle-based algorithm originating from Grover’s,

such as Dürr’s or the amplitude estimation. As a consequence, they require a problem-depen-

dent black-box function in order to be used; this negatively affects their ease of use and imple-

mentation. In addition, the usage of the amplitude estimation algorithm to transfer distance

information to qubits states has, in turn, representation issues in the case of real-valued fea-

tures: an approximation of the estimated distances is obliged. All these factors make the variant

proposed by Afham et al. [18], described in detail in Section 2.2.1, the best candidate for exper-

iments on real-valued datasets. Specifically, the parallel processing of multiple test instances

suggested by Ma et al. [46] has not been taken into account here.

The quantum binary classification model selected for being combined with the quantum k-

NN is the classifier described in Section 2.3 [19], whose structure is quite simple and very simi-

lar to that of the chosen quantum k-NN. Actually, the possibility of building a pipeline using

these two quantum models was briefly anticipated in the pre-print version of the same article

[51].

3.2 Implementation

The quantum pipeline has been implemented using Qiskit, i.e., the open-source SDK provided

by IBM [52]. Qiskit allows building quantum circuits using the Python programming lan-

guage, and the circuit execution can be performed either on simulators or real quantum

devices. Several simulation backends are provided by IBM, and it is possible not only to get

measurement counts as in real quantum devices but also to retrieve the state vector of the cir-

cuit at any point of the execution, namely, the amplitude of each state.

In practice, exploiting Qiskit, code has been developed that automatically initializes and

builds circuits for the quantum algorithms involved (quantum k-NN, quantum binary classi-

fier) based on the dataset provided as input (i.e., the number of samples, the number of fea-

tures, and features values). Moreover, the following execution modalities have been

implemented for both algorithms: classical, which does not build any quantum circuit but runs

the corresponding classical algorithm; statevector, which processes the final state vector of the

circuit to provide the output, thus representing an ideal execution with an infinite number of

runs; simulation (named local simulation in the code), which provides counts by sampling

from the final probability distribution; online simulation, which is the same as simulation but

on hardware provided by IBM; and quantum, which exploits real IBM quantum devices. Con-

cerning the classical modality, the distance metric used for the k-NN is the cosine distance; the

reason lies in the fact that the chosen quantum k-NN selects the k nearest neighbors based on

the fidelity, which corresponds to the squared cosine similarity in the case of pure quantum

states (see Eq 1). Instead, for the binary classifier, Eq (4) is used. It is also worth highlighting

that no noise has been taken into account in the execution of gates in any simulated modality

(including the statevector), and that the execution modality does not need to be the same for

the pipeline components. Eventually, the possibility of retrieving the results of online execu-

tions at a later moment has been implemented due to the presence of long waiting times for

the quantum devices.

The pseudocode of the quantum pipeline is shown in Algorithm 1. Actually, the pseudo-

code in question is valid for all execution modalities but the classical, which does not require

circuits. If the classical modality is selected for one component, the corresponding block is
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replaced with the execution of the classical version of the algorithm. In any case, the first step

is the unit-norm normalization of the training and test data (Line 1). This operation is essential

for the amplitude encoding of data and consists in dividing the features of each instance by the

instance norm. If a data instance has the norm equal to zero, all its attributes are replaced with

an epsilon value (0.000001) to allow the normalization. The procedure in question is executed

also in the case of a quantum pipeline with only classical components. Moreover, in the experi-

ments, an additional normalization procedure has been applied to the data before the unit-

norm one as part of the experimental setup common to all methods tested; the details are pro-

vided in Section 4.3. It is also worth mentioning that the values of each data feature must be

concordant in sign, for the quantum k-NN to work properly (in the experiments, this has been

ensured by the additional normalization procedure just mentioned); furthermore, the quan-

tum binary classifier requires the training data class labels to be in {−1, 1}.

Algorithm 1: Quantum pipeline.
Input: training data D, test instance x, number of nearest neighbors

k, execution modalities (not classical) for the two components
exec_mods
Result: class label label 2 {−1, 1}

1 D, x  normalization(D, x);
/* Quantum k-NN */

2 circqknn  buildQKNNCircuit(D, x, exec_mods[0]); // See Fig 2A
3 resqknn  execute(circqknn, exec_mods[0]);

Fig 2. Quantum pipeline circuits example. The first circuit (A) corresponds to the quantum k-NN, the second one

(B) to the quantum binary classifier. In the case of the statevector modality, the final measurements are not present.

https://doi.org/10.1371/journal.pone.0287869.g002
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4 k_nn  getKNearestNeighbors(D, k, resqknn, exec_mods[0]);
/* Quantum binary classifier */

5 circqbc  buildQBCCircuit(k_nn, x, exec_mods[1]); // See Fig 2B
6 resqbc  execute(circqbc, exec_mods[1]);
7 label  getLabel(resqbc, exec_mods[1]);
8 return label;

Focusing on the non-classical modalities, the step following the data normalization is the

construction of the quantum k-NN circuit based on the normalized data (Line 2). A sample

circuit is shown in Fig 2A; actually, the vertical barriers in the figure have been added for illus-

trative purposes, but, in the implementation, one barrier is placed between the ancillary qubit

measurement and the index register measurement to ensure sampling from the desired proba-

bility distributions. In detail, a quantum k-NN circuit consists of three main slices: registers

initialization, SWAP test without measurement, and final measurements. In the first slice, the

training data index is set up, simultaneously to the encoding of the training and the test fea-

tures. Specifically, the index (q1-q2) and the training features (q3-q4) registers are jointly initial-

ized for simplicity; indeed, they are entangled according to the quantum k-NN algorithm.

After that, the SWAP test without measurement is performed by means of two Hadamard

gates and the controlled SWAP gates, whose number increases linearly with the number of fea-

ture qubits. In particular, the SWAP gates act on the training (q3-q4) and the test features (q5-

q6) registers. Eventually, the state of the first ancillary qubit (the SWAP test measurement

qubit q0) and of the index register is measured; obviously, in the case of the statevector modal-

ity, the measurements are not present. Regarding the number of qubits required (qubitsqknn),

which is dataset dependent, it is given by

qubitsqknn ¼ 1þ qubitsqknn index þ 2 ∗ qubitsfeatures ; ð9Þ

where the value 1 corresponds to the SWAP test measurement qubit (q0), qubitsqknn_index rep-

resents the number of index qubits (q3-q4), and qubitsfeatures is the number of feature qubits

(either q3-q4 or q5-q6).

Once the quantum k-NN circuit has been built, it is executed according to the specified

modality (Line 3). Actually, if the circuit includes measurements, it is executed multiple times

to provide the desired number of counts (simulation_shots parameter described in Section

4.3). Finally, the execution output (resqknn), which corresponds to either a state vector or state

counts (the number of times each state has been observed), is processed in order to extract the

k nearest neighbors (Line 4). In detail, the amplitudes/counts are exploited to estimate the

quantity P(i|0) − P(i|1), with i being a training data index and the 0/1 value being the state of

q0 (see Eq 3). Then, the training data are sorted according to this quantity, which is propor-

tional to the similarity with respect to the test instance, allowing the identification of the near-

est neighbors.

The next step is the construction of the quantum binary classifier circuit based on the

selected k nearest neighbors and the normalized test instance (Line 5). An example circuit is

displayed in Fig 2B; here, the vertical barriers have been added only for illustrative purposes.

In particular, it is possible to distinguish five main slices in the circuit: registers initialization,

training data labels configuration, test label set up, SWAP test without measurement, and final

measurement. Concerning the initialization, the first qubit subjected to the swap (q1) is set to

the uniform superposition of 0 and 1 (|+i). Instead, the second one (q2) is entangled with the

register (q3-q4) representing the training data index and the register (q5-q6) in which both the

training and the test features are encoded in superposition. Hence, it is jointly initialized with

all them (from q3 to q6) for simplicity. Regarding the qubit representing the label (q7), it takes

only well defined values (0, 1, and the uniform superposition of them), thus it is configured

PLOS ONE Implementation and evaluation of a quantum machine learning pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0287869 November 13, 2023 12 / 28

https://doi.org/10.1371/journal.pone.0287869


separately (second and third slices of the circuit) to limit the complexity of the joint initializa-

tion operation. More in detail, the training data labels (second slice) are encoded in the last

qubit of the circuit by selecting the desired index register states through NOT gates (denoted

as Xs in the image) and setting the corresponding label states through multi-controlled NOT

gates (this procedure is required only for one label value, the one associated with the 1 state,

namely, −1). The NOT gate applied to the last SWAP qubit (q2) at the beginning and at the

end of this step is necessary in order to work on the states associated with the training data.

Instead, for the test instance (third slice of the circuit), the label qubit is set to the |−i state

according to the algorithm by means of a controlled NOT and a controlled Hadamard gates.

Then, the SWAP test without measurement is performed (fourth slice), and the state of the

first qubit (q0) is measured (last slice). Also in this case, there is no final measurement for the

statevector modality. The number of qubits required by the quantum binary classifier for a

generic dataset (qubitsqbc) is given by

qubitsqbc ¼ 3þ qubitsqbc index þ qubitsfeatures þ 1 : ð10Þ

In detail, the value 3 corresponds to the qubits needed by the SWAP test (q0-q1-q2), qubitsqbc_in-
dex represents the number of index qubits (q3-q4), qubitsfeatures is the number of feature qubits

(q5-q6), and the 1 represents the qubit used for the label encoding (q7).

After the construction of the quantum binary classifier circuit, there is the execution step

(Line 6); the considerations about the presence of measurements made for the quantum k-NN

also hold for the classifier. Eventually, the execution output is processed (Line 7) in order to

predict the test instance label. In particular, the amplitudes/counts are used to estimate the

probability P(1) of obtaining 1 by measuring the state of the qubit q0. The probability in ques-

tion allows predicting the class label (−1 if P(1)> 0.25, 1 otherwise, according to Eq 8), which

is then returned as the last operation of the pipeline (Line 8).

3.3 Complexity observations

Afham et al. [18] define the gate complexity of their quantum k-NN algorithm, which is equal

to O(log2 d), with d being the number of data features. However, the complexity in question is

expressed in terms of controlled SWAP (Fredkin) gates, which are not elementary gates. More-

over, the registers initialization is not included because they assume the presence of an initiali-

zation quantum oracle. Instead, for their quantum binary classifier, Pastorello and Blanzieri

[19] provide the overall time complexity, which is equal to O(�−2 log2(Nd)), with � being the

desired upper bound to the prediction error, and N being the training dataset size. Neverthe-

less, the authors assume the presence of a QRAM, i.e., a quantum random access memory

[53], from which to retrieve the state given as input to the SWAP test (fourth and fifth slices of

the circuit shown in Fig 2B).

Concerning the pipeline implementation presented in this work, some observations can be

made for execution modalities different from classical. First of all, the initial unit-norm nor-

malization step has O(Nd) complexity, since it is necessary to scan all the data features. The

construction of the quantum k-NN circuit has Oð2dlog2Neþdlog2deÞ þ dlog2deÞ complexity, with

the first term given by the joint index-training initialization and the second one given by the

SWAP test. Instead, the complexity of the circuit execution depends on the execution modality

and its implementation inside Qiskit; if it is not a statevector execution, the complexity is influ-

enced also by the number of measurements. Regarding the number of gates, it is worth

highlighting that the registers initialization is an expensive operation. Indeed, the generation

of an arbitrary target state requires to find the correct sequence of elementary gates. The con-

trolled SWAP gates also have a significant impact since, as mentioned previously, their
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number depends on the number of data features and they are not elementary operations. The

last quantum k-NN step is the extraction of the nearest neighbors, which includes the process-

ing of the execution output. In detail, for a statevector execution, it is necessary to process the

final state vector of the circuit, with a Oð21þdlog2Neþ2dlog2deÞ complexity. Instead, for all the other

execution modalities, the state counts must be processed, and the corresponding complexity is

Oð21þdlog2NeÞ. In any case, after the execution output processing, the k nearest neighbors are

extracted by sorting the index values with a O(Nlog2 N) complexity.

Looking at the second half of the pipeline, namely, the quantum binary classifier, its com-

plexity is related to the number of nearest neighbors k. In particular, the construction of the

classifier circuit has Oð21þdlog2keþdlog2de þ k2dlog2keÞ complexity, with the second term being a

worst case estimate for the training labels set up. Regarding the circuit execution and the num-

ber of gates, the observations made for the quantum k-NN hold also for the classifier. Actually,

there is only one controlled SWAP gate in this case. Nevertheless, there could be several (maxi-

mum k) multi-controlled CNOT gates, which in turn have a significant impact on the perfor-

mance. Eventually, there is the execution output processing, which has O(24+ dlog
2ke+ dlog2de)

complexity if the execution modality is statevector, O(1) complexity otherwise. The final label

prediction has constant complexity.

To give an idea of the runtimes, for N = 168, d = 12, and k = 9, the pipeline execution time

on the machine used in the experiments (whose specifications are provided at the beginning of

Section 4) is in the order of 2-3 seconds. This holds for both the statevector and the simulation
modalities, with both components having the same execution modality. Actually, among the

two, the simulation modality turns out to be a little more time consuming. In the situation just

described, the circuit size is 17 qubits for the quantum k-NN and 12 qubits for the quantum

binary classifier.

4 Empirical evaluation

This section deals with the quantum and classical algorithms taken into account, the datasets

selection and preparation, the setup of the experiments, and the results obtained. In particular,

the experiments have been executed on a shared machine with an Intel Xeon Gold 6238R pro-

cessor running at 2.20GHz and 125 GB of RAM.

4.1 Methods

The “quantum k-NN” [18]—“quantum binary classifier” [19] pipeline described in Section 3

has been tested under different execution modality combinations, which are reported in

Table 1A. In detail, these experiments aimed at understanding the performance of the classical

Table 1. Quantum pipeline modalities (A), quantum binary classifier modalities (B), and baseline methods (C)

considered.

(A) (B) (C)

Quantum pipeline Quantum classifier Baseline method

classical—classical statevector random forest

statevector—classical simulation SVM

classical—statevector k-NN

statevector—statevector k-NN + classifier

simulation—classical k-NN + SVM

classical—simulation

simulation—simulation

https://doi.org/10.1371/journal.pone.0287869.t001
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pipeline, verifying the equivalence between classical and statevector (the latter represents an

ideal execution), and analysing the impact of simulating the pipeline components. Initially,

pipelines including quantum executions were planned too. Nevertheless, the quantum device

of interest was dismissed before the experiments could have been executed and no equivalent

machine (in the number of qubits) has been made available yet (at time of writing, the maxi-

mum number of qubits for a free account is five). As a consequence, the reliability of the results

presented here is strictly related to that of the simulator provided by Qiskit, which is widely

used nowadays, given the size of the available universal quantum devices.

The quantum binary classifier alone has been evaluated using the modalities reported in

Table 1B. In particular, the classical modality has not been taken into account due to the effec-

tive equivalence with respect to statevector. The purpose of these experiments was to collect

data to confirm a potential improvement in the performance of the model with the introduc-

tion of locality in the form of the quantum k-NN.

Eventually, the pipeline performance have been compared with some classical baseline

methods, which are reported in Table 1C. Most of these algorithms have been taken directly

from scikit-learn [54], but others have been composed starting from scikit-learn procedures.

In detail, the default parameters provided by scikit-learn have been used for the random forest

(e.g., the number of trees has been set to 100), whereas, for the SVM, two different kernels

have been tested, i.e., Gaussian and linear. Two distance metrics have also been evaluated for

the k-NN: the cosine and the Euclidean distance. Finally, two model pipelines have been con-

sidered. The k-NN + classifier represents the classical analogue of the implemented quantum

pipeline. Indeed, the classifier in question is the binary classifier based on the cosine similarity

defined in Eq (4). Instead, the k-NN + SVM has been taken into account in order to evaluate

the benefits of replacing the binary classifier with a more complex model like the SVM. Actu-

ally, these baseline pipelines have been tested using both metrics (cosine and Euclidean) for

the k-NN and both kernels (Gaussian and linear) for the SVM. It is also worth mentioning that

the k-NN + classifier with cosine distance metric differs from the classical—classical execution

of the quantum pipeline for the absence of the input data unit-norm normalization.

4.2 Datasets

All the datasets used in the experiments are from the UCI Machine Learning Repository [16].

In detail, they have been selected according to the following criteria: the associated machine

learning task is classification (all the considered models are classifiers); the attributes are real-

valued, preferably, but some integer features are accepted (actually, the 02_transfusion dataset

has only integer attributes but is marked as real-valued on the UCI site); the number of fea-

tures is less than or equal to 16; the number of instances is reasonable, namely, less than one

thousand.

The reason for the filter on the type of attributes lies in the amplitude encoding exploited by

the considered quantum models. In particular, numerical data are required, and integer values

are acceptable because of the unit-norm normalization. Regarding the limit on the number of

features, it is related to the experiments originally planned on the real quantum device. The

number of qubits of that machine was 15. Hence, if the number of qubits required to encode

the features (qubitsfeatures) had exceeded four (more than 16 attributes), the number of

embeddable training instances in the quantum k-NN circuit would have been less than 17

(qubitsqknn_index� 4), a too-small quantity (see Eq 9). Eventually, the constraint on the number

of instances was aimed at allowing the encoding of the dataset in the circuit without the need

for a too drastic subsampling.
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The well-formed datasets matching the just presented criteria were 10; indeed, some have

been discarded due to missing fields or unclear structure. However, most of these datasets

were characterised by more than two classes, whereas Pastorello and Blanzieri’s classifier (and

also the classical SVM) works on binary labels. Therefore, only the two most represented clas-

ses have been retained, mapping them to {−1, 1} and discarding the other instances (in the

case of a tie, the first two classes have been chosen). Moreover, if the consequent dataset size

was still exceeding the number of instances encodable in the quantum k-NN circuit using 15

qubits, a random subsampling maintaining the ratio between classes has been applied. Con-

cerning this last step, the size reduction due to the split in training and test set, which is accu-

rately described in the next section, has also been taken into account. The resulting datasets

and their properties are reported in Table 2.

It is worth highlighting some aspects about the data shown in the table: the dataset name

includes a suffix representing the names of the selected classes if they originally were more than

two; the Iris dataset (01) represents an exception since all the possible combinations between

classes have been taken into account, leading the total number of datasets to 12; the suggested

three classes merging has been applied to 07_breast_tissue_adi_fadmasgla. Regarding the sizes

of the datasets used in the experiments, they are reported in the last two columns: the former

(Size, 15 qb.) contains the sizes resulting after performing the entire process described in the

previous paragraph, whereas the latter (Size, 32 qb.) shows the sizes without the final subsam-

pling step for the datasets for which was needed. In particular, the three datasets that required

the subsampling (i.e., 06_glasses_1_2, 08_breast_cancer, and 09_accent_recognition_uk_us)
have been used to analyse the effect of a larger training set, and the value 32 represents the limit

number of qubits for an online simulation (far fewer qubits are required in practice).

Another thing that is worth mentioning is the fact that, before reducing its number of clas-

ses, the Iris dataset (01) has been modified by correcting the two wrong instances as reported

in the Iris UCI page. All the datasets used in the experiments are available together with the

code at https://github.com/ZarHenry96/quantum-ml-pipeline.

4.3 Experimental setup

Each method presented in Section 4.1 has been applied to each dataset reported in Table 2

(both 15 and 32 qubits limit), with the exception of the “quantum binary classifier”—

“02_transfusion dataset” pair, since an additional qubit would have been necessary (see Eq 10).

Table 2. Datasets properties (the dataset names are links that lead to the corresponding UCI pages). Note: “qb.” stands for qubits.

Name Original size Original classes # Features # Size (15 qb.) Size (32 qb.)

01_iris_setosa_versicolor 150 3 4 100 -

01_iris_setosa_virginica 100 -

01_iris_versicolor_virginic 100 -

02_transfusion [55] 748 2 4 748 -

03_vertebral_column_2C 310 2 6 310 -

04_seeds_1_2 210 3 7 140 -

05_ecoli_cp_im 336 8 7 220 -

06_glasses_1_2 214 6 9 80 146

07_breast_tissue_adi_fadmasgla 106 6 9 71 -

08_breast_cancer [56] 116 2 9 80 116

09_accent_recognition_uk_us 329 6 12 80 210

10_leaf_11_9 [57] 340 30 14 30 -

https://doi.org/10.1371/journal.pone.0287869.t002

PLOS ONE Implementation and evaluation of a quantum machine learning pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0287869 November 13, 2023 16 / 28

https://github.com/ZarHenry96/quantum-ml-pipeline
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Vertebral+Column
https://archive.ics.uci.edu/ml/datasets/seeds
https://archive.ics.uci.edu/ml/datasets/Ecoli
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra
https://archive.ics.uci.edu/ml/datasets/Speaker+Accent+Recognition
https://archive.ics.uci.edu/ml/datasets/Leaf
https://doi.org/10.1371/journal.pone.0287869.t002
https://doi.org/10.1371/journal.pone.0287869


The model evaluation technique chosen is the k-fold cross-validation, which works as follows:

the dataset is split into k subsets, also called folds; then, k − 1 folds form the training set,

whereas the remainder becomes the test set; the last step is iterated k times so that each fold is

used once as the test set. In particular, the stratified k-fold cross-validation has been exploited.

This means that the folds have been generated in such a way that the ratio between classes in

the test set remained as close as possible to that of the original dataset. Eventually, it is worth

mentioning that, in all experiments, the same seed has been used for the generation of folds. In

this way, all methods have processed exactly the same folds.

The parameters of the experiments are reported in Table 3. In detail, k_folds represents the

number of folds, which has been set to 5, a value commonly used in ML. Instead, k corre-

sponds to the number of nearest neighbors selected, a fundamental parameter for both the

quantum pipelines, the classical k-NN, and the baseline pipelines (k-NN + classifier and k-NN
+ SVM). Therefore, several odd (small) values in arithmetic progression have been evaluated.

Concerning simulation_shots, it represents the number of measurements (hence, circuit execu-

tions) performed in the simulation modality, and its value is the same for both the quantum k-

NN and the quantum binary classifier; specifically, 1024 is the default value provided by Qiskit.

Finally, simulation_runs is the number of runs that have been executed for the experiments

including either a quantum model (k-NN/classifier) in the simulation modality or the random

forest. Indeed, the methods in question are stochastic, and no seed has been set for them. In

particular, the value that has been chosen (5) represents a trade-off between the possibility of

evaluating the statistical significance of the results and the amount of computational resources

required to obtain them.

In each cross-validation step of each experiment, a min-max data normalization procedure

has been applied before executing the model/pipeline. In particular, each attribute in the train-

ing set has been rescaled to the interval [0, 1] by subtracting the minimum value and dividing

by the range. In the case of a zero range (constant attribute), the attribute has been set to zero.

As usual, the test instances have been normalized using the training set parameters (minimum

and range values). If a test instance attribute exceeded the interval edges after the normaliza-

tion (since it was larger/smaller than the maximum/minimum in the training set), it has been

clipped to the exceeded edge value. In addition, after the feature normalization, the input data

to the quantum models (including the quantum classifier alone) have undergone a unit-norm

normalization procedure, as described in Section 3.2. Actually, the min-max normalization

has also avoided any sign-related issue for the quantum k-NN, which requires the values of

each attribute to be concordant in sign.

4.4 Results

The results are presented by means of accuracy-based scatter plots, with the accuracy being

defined for a fold as

accuracy ¼
number of correctly classified instances in the fold

total number of instances in the fold
:

Table 3. Parameters of the experiments.

Parameter Value(s)

k_folds 5

k 3, 5, 7, 9

simulation_shots 1024

simulation_runs 5

https://doi.org/10.1371/journal.pone.0287869.t003
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In the case of multiple runs, the fold average accuracy is reported. Moreover, the statistical sig-

nificance of the results is verified through the Wilcoxon signed-rank test [58], since the data

considered are paired.

In detail, the different execution modalities of both the quantum pipeline and the quantum

binary classifier are analysed first. Then, the two quantum models are compared with each

other, and the effect of the dataset size on their performance is shown. Finally, the baseline

methods are taken into account: an evaluation of the considered distance metrics (cosine/

Euclidean) is presented, followed by a comparison of the quantum pipeline and the baseline

methods.

4.4.1 Execution modalities comparison (quantum pipeline). Some comparisons

between execution modalities for the quantum pipeline on the 15 qubits datasets are shown in

Fig 3. In these plots, each point represents the accuracy obtained in a fold (or its average across

runs). In particular, the statevector—statevector modality turns out to be equivalent to the clas-
sical—classical (Fig 3A), as expected. Indeed, it is an ideal execution (with an infinite number

of runs and without noise) of the quantum circuits implementing the quantum k-NN and the

Fig 3. Execution modalities comparison on 15 qubits datasets for the quantum pipeline. Each point represents the

accuracy obtained in a fold (or its average across runs).

https://doi.org/10.1371/journal.pone.0287869.g003
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quantum binary classifier, thus, it should be equivalent in accuracy to its classical counterpart.

The few deviations (from the main diagonal) in Fig 3A are due to two aspects: the different

policies used by the two modalities to select the nearest neighbors in the case of a distance tie;

the presence of instances with identical features and different class labels in the 02_transfusion
dataset. Despite that, the Wilcoxon signed-rank test has confirmed that the difference between

the two modalities is not statistically significant (Table 4). It is also worth recalling that the

advantage of the considered quantum models/pipelines with respect to their classical counter-

parts lies in the execution time and not in the accuracy. The scatter plots comparing the classi-
cal—classical modality with the statevector—classical and the classical—statevector (not

reported) are identical or almost identical (absence of deviant points) to Fig 3A.

Although the quantum pipeline is equivalent (in accuracy) to the classical one in the ideal

case, this is not true when simulated (even more so when executed on a quantum device,

which is also noisy). By looking at Fig 3B and 3D, it turns out that simulating the quantum k-

NN with 1024 shots (i.e., measurements) adversely affects the performance of the pipeline,

independently from the k value. Indeed, almost all points lie below the main diagonal, and the

difference is statistically significant for all k values, as reported in Table 4. In practice, the

implemented quantum k-NN is really sensitive to fluctuations in the estimated probabilities,

and a higher number of shots is needed to obtain better results. Instead, it seems that simulat-

ing only the quantum classifier with 1024 shots (Fig 3C) does not have a significant impact on

the pipeline performance (the difference is not statistically significant). Nevertheless, the effec-

tive usage of the model following the classical (and, thus, the statevector) k-NN is very low in

the datasets used. Most times, all the elements selected by the classical k-NN belong to the

same class, and therefore it is not possible to draw definitive conclusions about the subsequent

classifier. The average usage on dataset of the second model for the cosine distance metric and

each k value is reported in Table 5A.

4.4.2 Execution modalities comparison (quantum binary classifier alone). The compar-

ison between statevector and simulation modalities for the quantum binary classifier alone on

the 15 qubits datasets is displayed in Fig 4. The classical modality has not been taken into

account due to the effective equivalence with respect to statevector; in addition, the 02_transfu-
sion dataset has not been included since an additional qubit would have been required. Also in

Table 4. Wilcoxon signed-rank test (α = 0.05) applied to the fold accuracy distributions shown in Fig 3. The values

reported in the table are the p-values obtained.

k = 3 k = 5 k = 7 k = 9

Fig 3A 1.000 0.276 1.000 0.655

Fig 3B 8.80E-08 1.18E-07 2.46E-06 4.01E-06

Fig 3C 0.414 0.052 0.486 0.092

Fig 3D 1.04E-07 2.03E-07 2.27E-07 4.60E-07

https://doi.org/10.1371/journal.pone.0287869.t004

Table 5. Average usage on dataset of the second model for the pipelines including the classical (or statevector) k-NN with cosine distance (A) and Euclidean distance

(B). The usage on dataset is 1 when the second model is always employed.

(A) Cosine. (B) Euclidean.

k 15 qubits 32 qubits k 15 qubits 32 qubits

3 0.245 ± 0.204 0.375 ± 0.128 3 0.218 ± 0.229 0.402 ± 0.133

5 0.357 ± 0.290 0.590 ± 0.160 5 0.298 ± 0.305 0.617 ± 0.187

7 0.406 ± 0.323 0.690 ± 0.158 7 0.346 ± 0.346 0.686 ± 0.188

9 0.461 ± 0.356 0.758 ± 0.137 9 0.381 ± 0.371 0.755 ± 0.166

https://doi.org/10.1371/journal.pone.0287869.t005
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this case, each dot represents the accuracy obtained in a fold (or its average across runs). Here,

it is possible to observe that the quantum binary classifier as well is affected by the probability

fluctuations and, more practically, by the number of shots. Indeed, the simulation performance

is worse than the statevector’s overall, and the difference is confirmed by the Wilcoxon signed-

rank test (p-value = 0.016).

4.4.3 Quantum pipeline—Quantum binary classifier comparison. The comparison

between the quantum pipeline and the quantum binary classifier on the 15 qubits datasets is

illustrated in Fig 5; the structure of the scatter plots is the same as that of the charts in Fig 3,

although here the 02_transfusion dataset is not present to allow the comparison and the k val-

ues in the legend refer only to the pipeline. As shown in Fig 5A, the statevector—statevector
pipeline performs better than the statevector classifier for all k values. In detail, it statistically

outperforms the classifier alone (Table 6). Actually, there are some folds in which the classifier

alone achieves a higher accuracy, but they represent a clear minority. This confirms the effec-

tiveness of applying a quantum locality technique such as the quantum k-NN as a preliminary

step of a quantum classifier, and more in general, the worth of locality. Instead, the pipeline

superiority is far less marked when the simulated versions of the pipeline and the quantum

binary classifier are considered (Fig 5B). Indeed, it turns out that the quantum pipeline, mainly

due to the implemented quantum k-NN, is far more negatively affected by probability fluctua-

tions than the classifier alone. Nevertheless, it still manages to perform better overall, indepen-

dently from the number of nearest neighbors selected (the difference is statistically significant

also in this case). Eventually, looking at the different k values in these two plots, there is no

dominant one; indeed, the best k value is typically dataset-dependent. To select the optimal

value for a given dataset, it would be necessary to evaluate the performance of several k values

Fig 4. Execution modalities comparison on 15 qubits datasets for the quantum binary classifier. The

02_transfusion dataset is not present, and each point represents the accuracy obtained in a fold (or its average across

runs). The p-value obtained by applying the Wilcoxon signed-rank test (α = 0.05) to the fold accuracy distributions is

0.016.

https://doi.org/10.1371/journal.pone.0287869.g004
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using part of the dataset as a validation set, since it is not possible to determine it a priori.

However, this is beyond the scope of this paper.

4.4.4 Dataset sizes comparison. The effect of the dataset size on the performance of the

quantum pipeline and the quantum binary classifier is analysed in Fig 6A. In detail, only the

three datasets in Table 2 having both 15 qubits and 32 qubits size have been considered for this

plot. Moreover, since a fold by fold comparison would not make sense in this case, each point

in the chart represents the mean fold accuracy on a dataset (or its average across runs). Finally,

the results for all k values have been included for the pipelines; as a consequence, the number

of pipeline points in the plot is four times higher with respect to the classifier alone. In practice,

a larger dataset tends to have a beneficial effect on the performance of the pipeline in the ideal

case (statevector—statevector) and an overall neutral effect on its simulation: the occurrences

of improvement and worsening are the same in the latter. Instead, overall, the performance of

the quantum classifier alone worsens in both cases. This represents another point in favor of

the quantum pipeline, which turns out to be able to take advantage of a larger number of sam-

ples. Actually, the difference is statistically significant in the case of the statevector—statevector
pipeline, whereas it is not in the others, as shown in Table 7A. However, in this case, the low

number of points must also be taken into account.

4.4.5 Distance metrics comparison. As mentioned in Section 4.1, two distance metrics,

namely, the cosine and the Euclidean distances, have been evaluated for the baseline methods

based on the k-NN algorithm, i.e., the k-NN, the k-NN + classifier, and the k-NN + SVM with

both Gaussian and linear kernels. The comparison between these two metrics on the 15 qubits
datasets is shown in Fig 6B, with each point representing the accuracy obtained in a fold by

one of the four just cited methods. Basically, the Euclidean distance statistically outperforms

Fig 5. Quantum pipeline—Quantum binary classifier comparison on common 15 qubits datasets. Each point

represents the accuracy obtained in a fold (or its average across runs); the k values refer only to the pipeline.

https://doi.org/10.1371/journal.pone.0287869.g005

Table 6. Wilcoxon signed-rank test (α = 0.05) applied to the fold accuracy distributions shown in Fig 5. The values

reported in the table are the p-values obtained.

k = 3 k = 5 k = 7 k = 9

Fig 5A 5.39E-07 7.88E-07 2.55E-06 2.98E-06

Fig 5B 0.042 0.001 3.35E-04 5.84E-04

https://doi.org/10.1371/journal.pone.0287869.t006
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(Table 7B) the cosine one on the datasets used for all k values. Therefore, it would be advanta-

geous to have a quantum k-NN version based on that metric.

4.4.6 Quantum pipeline—Baseline methods comparison. Some comparisons between

the statevector—statevector pipeline and baseline methods on the 15 qubits datasets are dis-

played in Figs 7 and 8. As usual, each point represents the accuracy obtained in a fold (or its

average across runs); moreover, the k values in the legends of Fig 7A and 7B refer only to the

pipeline. In practice, the random forest achieves better results than the quantum pipeline for

all k-values (Fig 7A), and the same applies to the best SVM, i.e., the SVM with the Gaussian

kernel (Fig 7B). The difference turns out to be statistically significant in both cases, as shown

in Table 8, with the exception of k = 5 for the SVM—pipeline comparison. Instead, the SVM

with the linear kernel (not shown here) performs just slightly better than the pipeline, and the

difference is not statistically significant.

Regarding the k-NN, the version with cosine distance metric turns out to be equivalent to

the statevector—statevector pipeline (Fig 8A, the few deviations are the same as the ones in Fig

3A); as shown in Table 9, the difference is not statistically significant. Therefore, it is also

equivalent to the classical—classical pipeline (see Section 4.4.1). This means that, on the con-

sidered datasets, a label assignment based on the k nearest neighbors extracted using the cosine

Fig 6. Dataset sizes (A) and distance metrics (B) comparisons. In the dataset sizes comparison (A), each point

represents the mean fold accuracy obtained on a dataset (or its average across runs); the pipeline comparisons include

all k values. In the distance metrics comparison (B), the results obtained by the k-NN-based baseline methods (k-NN,

k-NN + classifier, k-NN + SVM Gaussian, k-NN + SVM linear) on the 15 qubits datasets are taken into account; each

point represents the accuracy obtained in a fold.

https://doi.org/10.1371/journal.pone.0287869.g006

Table 7. Wilcoxon signed-rank test (α = 0.05) applied to the mean fold accuracy distributions shown in Fig 6A (A).

Same test applied to the fold accuracy distributions shown in Fig 6B (B).

(A) Dataset size. (B) Distance metric.

p-value p-value

statev.-statev. 0.016 k = 3 9.85E-10

sim.-sim. 0.910 k = 5 8.33E-08

statev. 0.750 k = 7 7.65E-15

sim. 0.250 k = 9 4.86E-08

https://doi.org/10.1371/journal.pone.0287869.t007
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distance produces the same outcome by applying either a majority voting or the binary classi-

fier based on the cosine similarity. Indeed, the lack of unit-norm normalization of the input

data in the baseline methods does not affect the cosine distance (or the cosine similarity),

which intrinsically normalizes them. However, it is also worth remarking on the low usage of

the models following the nearest neighbors extraction (Table 5A). Instead, the k-NN with

Euclidean distance statistically outperforms the quantum pipeline for all k values, and the

resulting scatter plot is identical to Fig 8B (see Table 9 for the statistical test results). In fact, the

observation made on the label assignment criteria for the cosine distance also holds for the

Euclidean distance. Basically, with the same distance metric, the k-NN and the k-NN + classifier
perform equally on the datasets taken into account. As a consequence, the statevector—state-
vector pipeline achieves the same results as the k-NN + classifier with cosine distance metric

(the corresponding scatter plot is identical to Fig 8A) and is outperformed by the same model

with Euclidean distance for all k values (Fig 8B). Actually, in the end, the k-NN + classifier with

cosine distance and the classical—classical pipeline represent exactly the same model due to

the observation on the unit-norm normalization just made. Finally, concerning the baseline

pipelines including the SVM, the best among them is the k-NN + SVM with Euclidean distance

and Gaussian kernel, which statistically outperforms the statevector—statevector pipeline inde-

pendently from the k value, as shown in Fig 8C (the statistical test results are reported in

Table 9). The other versions of this baseline pipeline still win the comparison, although by a

less margin. In particular, the k-NN + SVM with cosine distance and linear kernel is almost

equivalent to the quantum pipeline, whereas the others are clearly superior. Moreover, the k-
NN + SVM with Euclidean distance and linear kernel turns out to be equivalent to the k-NN
+ classifier with the same distance metric, which does not hold for the cosine distance (the

SVM performs slightly better than the binary classifier in that case).

Although it is not possible to draw definitive conclusions due to the low effective usage of

the model following the k nearest neighbors extraction, the SVM seems to perform better than

the cosine similarity classifier in the baseline pipelines (especially with Gaussian kernel); as

regards the Euclidean distance metric, the effective usage situation is slightly worse than that

of the cosine distance, as reported in Table 5B. Hence, it could be beneficial to try to combine

Fig 7. Quantum pipeline—Baseline methods comparison on 15 qubits datasets. The pipeline modality is statevector
—statevector, each point represents the accuracy obtained in a fold (or its average across runs), and the k-values refer

only to the pipeline.

https://doi.org/10.1371/journal.pone.0287869.g007
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Fig 8. Quantum pipeline—(k-NN-based) baseline methods comparison on 15 qubits datasets. Each point in these

plots represents the accuracy obtained in a fold.

https://doi.org/10.1371/journal.pone.0287869.g008

Table 8. Wilcoxon signed-rank test (α = 0.05) applied to the fold accuracy distributions shown in Fig 7. The values

reported in the table are the p-values obtained.

k = 3 k = 5 k = 7 k = 9

Fig 7A 1.54E-04 0.001 1.24E-04 1.88E-04

Fig 7B 0.020 0.106 0.003 0.004

https://doi.org/10.1371/journal.pone.0287869.t008

Table 9. Wilcoxon signed-rank test (α = 0.05) applied to the fold accuracy distributions shown in Fig 8. The values

reported in the table are the p-values obtained.

k = 3 k = 5 k = 7 k = 9

Fig 8A 1.000 0.276 1.000 0.655

Fig 8B 0.003 0.006 5.22E-05 0.001

Fig 8C 0.003 0.002 2.15E-05 4.36E-04

https://doi.org/10.1371/journal.pone.0287869.t009
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a quantum k-NN version with a quantum SVM. Eventually, it is worth making a last observa-

tion: the classical SVMs tend to outperform the corresponding pipelines (in terms of kernel)

with cosine distance and be outperformed by/be equivalent to the corresponding ones with

Euclidean distance (but, again, the low usage of the second model in the pipelines must be

taken into account).

5 Conclusion

In this paper, we have proposed and evaluated the usage of a quantum locality technique as a

preliminary step to enhance the performance and reduce the size of quantum machine learn-

ing models. Specifically, we have provided an implementation in Python of a quantum pipeline

consisting of a quantum k-NN [18] and a quantum binary classifier [19] and its extensive

empirical evaluation. Details about the implementation (based on Qiskit) and the complexity

(both theoretical and practical) of the pipeline have been supplied, as well as information on

the experiments performed, i.e., methods, datasets, and the setup used. First of all, the results

have demonstrated the quantum pipeline’s equivalence to its classical counterpart in terms of

accuracy and its capability of taking advantage of larger datasets (both of them in the ideal

case). Moreover, the validity of locality’s application to the quantum realm has been con-

firmed, with the quantum pipeline outperforming the quantum binary classifier in both the

ideal and simulated cases. However, the strong sensitivity of the implemented quantum k-NN

to probability fluctuations has also emerged; indeed, the quantum binary classifier is affected

by the same issue to a lesser extent. In addition, the quantum pipeline has been outperformed

by baseline methods like the random forest and the SVMs even in the ideal case. Nevertheless,

the potentialities of the implemented pipeline have not been fully exploited in these experi-

ments; in fact, for the considered datasets, the effective usage of the second model in the pipe-

line is very low (the application of a majority voting or a cosine-based classifier has the same

effect).

Regarding the possibility of reducing the number of qubits required to solve a problem by

introducing the quantum k-NN as a preliminary step, the following relationship holds for the

chosen quantum models (it is obtained from Eqs 9 and 10):

qubitsqknn � qubitsqbc , qubitsfeatures � 3 : ð11Þ

Basically, the application of the implemented quantum k-NN as a preliminary step of the quan-

tum binary classifier is advantageous (not disadvantageous) in the number of qubits if and

only if the number of data features is less than 5 (less than 9). However, it is worth remarking

that Eq (11) is related to the specific quantum k-NN variant and subsequent quantum model

that have been employed in this work. Furthermore, the introduction of the quantum k-NN

has turned out to be advantageous in terms of performance, as shown in Section 4.4.3.

Another thing worth mentioning regards the unit-norm normalization and, hence, all

quantum models exploiting the amplitude encoding of data. In detail, two instances character-

ized by the same ratio between feature values but different norms (e.g., all features have the

same value, but this value is different for the two instances) are normalized to the same data

vector. Obviously, this is a significant information loss issue. A possible workaround (not

applied in this work) consists in the introduction, before the normalization, of an additional

feature related to the norm.

Given the results obtained, the next step will be the development of a version of the quan-

tum k-nearest neighbors algorithm more robust to probability fluctuations. Ideally, the quan-

tum k-NN in question should produce the nearest neighbors quantum states as output without

repeated executions of the same circuit due to the need of estimating some probability value
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through measurement operations. In this way, it would be possible to realize unified pipelines

with other QML models without the need to break the pipeline circuit into distinct segments

(the quantum k-NN output would be directly provided as input to the subsequent model).

Other features of interest are the exploitation of the Euclidean distance as distance metric (it

performs better than the cosine distance, as shown in Section 4.4.5), the amplitude encoding

of the distance values, the absence of oracles, and a low qubit usage. The new quantum k-NN

variant will also be integrated with more complex QML models, such as the quantum SVM

[5], since its classical counterpart has seemed to perform better than the binary classifier as sec-

ond model in the pipeline. Eventually, more complex datasets will be taken into account, as,

most times, extracting the nearest neighbors already identifies the class labels in the datasets

used here.
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25. Schützhold R. Pattern recognition on a quantum computer. Phys Rev A. 2003; 67:062311. https://doi.

org/10.1103/PhysRevA.67.062311

26. IBM. International Business Machines Corporation; 2022. Available from: https://www.ibm.com/

quantum-computing.

27. Rigetti. Rigetti Computing; 2022. Available from: https://www.rigetti.com/what-we-build.

28. D-Wave. D-Wave Systems; 2022. Available from: https://www.dwavesys.com.

29. Dunjko V, Taylor JM, Briegel HJ. Quantum-Enhanced Machine Learning. Phys Rev Lett. 2016;

117:130501. https://doi.org/10.1103/PhysRevLett.117.130501 PMID: 27715099

30. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature.

2017; 549:195–202. https://doi.org/10.1038/nature23474 PMID: 28905917

31. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th

Annual Symposium on Foundations of Computer Science; 1994. p. 124–134.

32. Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary

Physics. 2015; 56(2):172–185. https://doi.org/10.1080/00107514.2014.964942

33. Buhrman H, Cleve R, Watrous J, de Wolf R. Quantum Fingerprinting. Phys Rev Lett. 2001; 87:167902.

https://doi.org/10.1103/PhysRevLett.87.167902 PMID: 11690244

34. Fix E, Hodges JL. Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties.

USAF School of Aviation Medicine, Randolph Field; 1951. 4.

35. Fastovets DV, Bogdanov YI, Bantysh BI, Lukichev VF. Machine learning methods in quantum comput-

ing theory. In: International Conference on Micro- and Nano-Electronics 2018. vol. 11022. International

PLOS ONE Implementation and evaluation of a quantum machine learning pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0287869 November 13, 2023 27 / 28

https://doi.org/10.3389/fphy.2022.1069985
https://doi.org/10.1145/237814.237866
https://doi.org/10.2478/amcs-2019-0011
http://archive.ics.uci.edu/ml
https://doi.org/10.3390/electronics8030292
https://doi.org/10.3390/electronics8030292
https://arxiv.org/abs/2003.09187v1
https://doi.org/10.1007/s11128-021-03029-9
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1023/A:1024022632303
http://www.ncbi.nlm.nih.gov/pubmed/12513243
https://doi.org/10.1103/PhysRevA.67.062311
https://doi.org/10.1103/PhysRevA.67.062311
https://www.ibm.com/quantum-computing
https://www.ibm.com/quantum-computing
https://www.rigetti.com/what-we-build
https://www.dwavesys.com
https://doi.org/10.1103/PhysRevLett.117.130501
http://www.ncbi.nlm.nih.gov/pubmed/27715099
https://doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevLett.87.167902
http://www.ncbi.nlm.nih.gov/pubmed/11690244
https://doi.org/10.1371/journal.pone.0287869


Society for Optics and Photonics. Zvenigorod, Russia: SPIE; 2019. p. 752–761. Available from: https://

doi.org/10.1117/12.2522427.
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