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Simple Summary: Boron neutron capture therapy (BNCT) is an emerging anticancer treatment. The
success of BNCT relies on the delivery of adequate quantities of 10B to tumor cells. Carboranes,
polyhedral clusters containing boron, carbon and hydrogen atoms, are promising candidates as boron
agents in BNCT. In this review, we provide an overview and state-of-the-art description of applications
of carboranes for in vivo BNCT studies. We comprehensively report: (i) the different molecules
used, (ii) their formulation and administration strategies, (iii) the tumor models investigated and
(iv) qualitative and quantitative methodologies for carborane detection in in vivo experiments.

Abstract: Carboranes have emerged as one of the most promising boron agents in boron neutron
capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they pro-
vide qualitative and quantitative information about the biodistribution of these molecules, which
is of the utmost importance to determine the efficacy of BNCT, defining their localization and
(bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered
a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane
derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the
formulation employed and the cancer model used in each of these studies were identified. Finally, we
examined the analytical aspects concerning carborane detection, identifying the main methodologies
applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the
current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and
the best strategies for future applications.

Keywords: carboranes; metallacarboranes; COSAN; boron neutron capture therapy (BNCT); boron
agents; chemical conjugates; delivery systems; in vivo; cancer; anticancer treatments

1. Introduction

Boron neutron capture therapy (BNCT), first proposed by Gordon Locher in 1936,
is a binary radiotherapeutic methodology for cancer treatment. The technique relies
on the nuclear fission reaction triggered by low-energy thermal neutrons that hit boron
atoms previously accumulated in cancerous cells. 10B stable isotopes irradiated with
thermal (0.025 eV) or epithermal (0.5 eV to 40 keV) neutrons beam results in 10B(n, α)7Li
nuclear reactions, generating α-particles (4He, of ~1.47 MeV) and recoiling 7Li nuclei
(~0.84 MeV) (Figure 1). These particles possess high linear energy transfer (LET), in the
order of ~175 keV µm−1, and the excited recoiling 7Li nuclei generally emit a low LET
γ-ray during deexcitation. The generated Li- and α-particles are characterized by high
energy and short travel distances of <5 µm and <10 µm, respectively. Hence, in biological
systems, the process can result in extremely localized lethal effects in areas in the range of a
human cell (~10 µm diameter).
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Figure 1. Schematic representation of (A) nuclear fission reaction on 10B atom and (B) BNCT mode of
action. Images created with BioRender.com.

Consequently, BNCT is a highly (cell) selective approach in cancer therapy, able to
destroy only those cells that have accumulated enough 10B, sparing the surrounding healthy
tissues. Such an enhanced selectivity can result in less severe side-effects compared to other
anticancer therapies, promoting BNCT as a precision medical approach for the treatment
of several types of tumors [1–3]. BNCT is indicated for head and neck tumors and brain
tumors that are difficult to remove surgically and cutaneous melanomas [4–10]. To date,
BNCT has been tested in phase I/II trials in several countries, such as the USA, Finland, the
Czech Republic, Sweden, Japan, Taiwan, Argentina, Germany, Italy, Poland and China [11].
In May 2020, BNCT was authorized by the Japanese National Health Insurance system for
the treatment of recurrent head and neck cancers [12].

The development of accelerator-based neutron sources with effective beam intensity
for BNCT allows the installation of BNCT facilities in situ, overcoming one of the major
obstacles for the bench-to-bedside transition of the BNCT, i.e., access to a nuclear reactor
in the hospital where patients would undergo the treatment [13–15]. Alternative radia-
tion sources, such as X-rays, have also been employed in attempts of generating novel
therapeutic strategies for boron-based radiation therapy [16].

A remaining issue is the selective delivery of boron to cancer cells. In particular, boron
agents should meet the following requirements: (i) approximately 109 10B atoms should
be delivered per cancer cell (~20–40 µg [B]/g[tumor]) [17], (ii) this concentration should
be retained for several hours and stay constant during the thermal neutron irradiation,
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(iii) high tumor/blood (T/B > 3.5) and tumor/normal tissue (T/N≥ 3) boron concentration
ratios should be obtained [17] and (iv) there should be a low toxicity and fast clearance
from healthy tissues and blood after the treatment. In addition, the accumulation of boron
inside the tumor is not enough. To achieve effectiveness of BNCT, boron must be delivered
inside the cells, only with intracellular localization; the DNA of the cell and organelles are
damaged upon irradiation.

In current BNCT clinical trials, boron is generally delivered to the tumors using
boronphenylalanine (BPA or Borofalan or Steborinine®) and sodium borocaptate (BSH) [18].

The maximum value of boron concentration in tumors obtained in clinical studies was
36.9 µg/g for BPA [19] and 19.9 µg/g for BSH [20].

BPA is extremely effective because its structure mimics the characteristics of endoge-
nous phenylalanine and it is selectively uptaken by cancer cells because it is specifically
recognized by L-type amino acid receptors (i.e., LAT1) that are generally overexpressed
in cancer cells [21,22]. The synthesis of enantiomerically pure BPA can be obtained in
excellent yield, under mild conditions [23–26]. However, some drawbacks exist, such as:
(i) the presence of free hydroxyl groups can lead to the formation of reversible covalent
bonds with endogenous carbohydrate molecules through boronate ester formation, (ii) low
solubility (1.6 g L−1), (iii) metabolic instability of the boronic acid when exposed to reac-
tive oxygen species (ROS) naturally present in the cells and especially in cancer cells and
(iv) accumulation in healthy cells because BPA is a derivative of a natural amino acid and
can take part in protein synthesis [18].

BSH increases the number of boron atoms in a single compound, and it is characterized
by a high chemical and catabolic stability [18]. On the other side, (i) BSH can undergo
dimerization, producing BSSB, (ii) it lacks receptor-mediated selective transportation for
cancer treatments, (iii) the pharmacokinetics and bioavailability of BSH is poor and (iv) its
synthesis is not cost-effective.

A great effort has been dedicated to the development and in vivo testing of BPA
derivatives, such as BPA-F, a conjugate of BPA with fructose [27–34] and closo-dodecaborate
derivatives [35–50] readily available via alkylation of BSH or via the nucleophilic opening
of the cyclic oxonium derivatives to bypass their inherent limitations [18].

Carboranes are a family of boron-rich chemicals, which makes them promising can-
didates for the role of boron agents in BNCT [51–55]. They consist of polyhedral clusters
containing boron, carbon and hydrogen atoms arranged in a variety of scaffolds differing
in structure and composition. If the polyhedra is complete, the term closo- is used; if one,
two or three vertexes are missing, nido-, arachno- and hypho- terms are used [56].

Dicarba-closo-dodecaboranes (C2B10H12), simply referred to as closo-carboranes, are
the most stable and applied members of the family. Similar to benzene nomenclature,
three isomers are identified depending on the relative position of the two carbon atoms:
ortho-(1,2-C2B10H12), meta-(1,7-C2B10H12) and para- (1,12-C2B10H12) carborane. The meta-
and para-carboranes can be obtained by thermal degradation of the ortho- isomer [56]. The
3D-aromaticiy of the resulting cages confers a high stability to these chemicals [57,58].

The open-cage nido-carborane [7,8-C2B9H12]− is typically obtained by deboronation
of ortho-carborane, e.g., after reaction with a strong Lewis base such as alkoxides, amines,
fluorides and recently N-heterocyclic carbene [59]. As shown in Figure 2, the further
deprotonation to nido-carborane [7,8-C2B9H11]2− and treatment with CoCl2 leads to the
synthesis of cobalt (III) bis(dicarbollide) anion [56]. This sandwich-like metallacarborane,
referred to as COSAN, possesses a C2h symmetry. Varying the metal center, other metalla-
carborane can be also synthesized [56].

In addition to the high number of boron atoms, all these carborane structures pos-
sess interesting pharmacophoric features, i.e., they are hydrophobic, aromatic, hydrogen
bond acceptors/donors and due to their abiotic nature (i.e., synthetic chemicals) they are
extremely stable in living organisms, which makes them interesting for medical applica-
tions [60–62] and in particular for BNCT [59,63–66].
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Figure 2. Structures of borophenylalanine (BPA), BPA−fructose complex, mercaptoundecahydrodo-
decaborate (BSH), closo-carborane (ortho-, meta-, and para-C2B10H12), closo-dodecaborate anion
(1-CB11H12

−), nido-carbonane anion (nido-C2B9H12
−), COSAN ([3-3′]-Co(1,2-C2B9H11)2]−) and

FESAN ([3-3′]-Fe(1,2-C2B9H11)2]−).

Furthermore, carboranes possess acidic C-H bonds and hydridic B-H groups that
can be functionalized in order to attach novel moieties to their structures [56,67–71]. Such
functionalizations are usually aimed at decreasing carboranes’ lipophilic character, which
currently hampers their clinical translation.

In the last decades, extensive efforts in the scientific community have led to the
synthesis of hundreds of novel carborane-based derivatives and their testing as boron
agents for BNCT. Many in vivo studies have demonstrated the potential transition of
carboranes from laboratory to clinical trials. Such in vivo studies allowed the testing of
carboranes in BNCT but also the assessment of several endpoints, including their fate (i.e.,
stability, partitioning, pharmacokinetic) and effects (i.e., bioaccumulation, toxicity).

The present review focuses on such in vivo investigations with the aim of providing a
comprehensive overview of the published literature and summarizing (i) the strategies for
carborane derivatization or incorporation in delivery systems, (ii) their formulation and
administration modality and (iii) the analytical strategies for their quantification in vivo.

2. In Vivo Studies of Carboranes for BNCT

The present section focuses on the structure, formulation, administration and cancer
models used in in vivo studies employing carborane/carborane derivatives.

The hydrophobicity of pristine carboranes hinders their direct in vivo administration.
To overcome this limitation, two main approaches have been used: (i) the synthesis of
water-soluble carborane derivatives by the chemical functionalization of their structure
and (ii) the use of delivery systems able to mediate their transport in biological media.

2.1. Chemical Derivatization of Carboranes for In Vivo Studies

Carboranes are completely insoluble in water. Installing hydrophilic moieties on the
carborane cages (i) improves their solubility in water, (ii) defines novel pharmacokinetic,
pharmacodynamic and physiochemical profiles and (iii) facilitates their administration in
living organisms. In addition, the derivatization of carboranes with specific moieties (i.e.,
targeting or imaging agents) also enhances their cellular uptake and selectivity against
cancer cells and enables the use of specific analytical techniques for their detection. A list
of the studies employing such strategies, with regard to the derivative category and the
specific molecules applied, is provided in the Supplementary Materials (Table S1).

Different functionalization strategies were developed to target the C-H and B-H bonds
present on the carborane. The presence of acidic C-H groups allows its deprotonation by
a strong base, obtaining a nucleophilic vertex that can perform a nucleophilic attack on the
electrophile molecule of interest. The most common strategy foresees the use of n-BuLi (n-
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butyllithium) [56,67]. However, n-BuLi is an extreme reactive compound and it is not compatible
with many functional groups; therefore, although hundreds of carborane derivatives have been
synthesized in the last few decades using this synthetic strategy, their structures are quite similar
from the chemical point of view. Alternative synthetic approaches, such as the use of carbyne
intermediates [68], allowed the synthesis of more complex structures.

In general, the functionalization of the carboranes at the boron vertexes is much more
challenging than C-H because it is less site-selective and B–H bonds are much less reactive
than C–H. However, the intensive work in carborane derivatization, mainly based on
(transition) metal catalysis [69–72], i.e., the metal-catalyzed activation of the B-H bond or
cross-coupling at the B-X (X = Br or I) bond, is making carborane functionalization more
accessible and easier, advancing the complexity of structures containing carboranes and in
that way advancing BNCT.

2.1.1. Carbohydrate Derivatives of Carboranes

Carbohydrates are polyhydroxylated compounds and their conjugation to carboranes
highly enhances their solubility, leading to an easier dissolution in body fluids and increased
bioavailability, ultimately leading to better therapeutic outcomes. Carbohydrates are able
to target specific tissues by the recognition of certain receptors present on the surface of
cells. Therefore, attaching carbohydrates to carboranes can enhance the selectively towards
these tissues, increasing the concentration of the drug in the desired site [73–75]. Being
involved in various immune recognition processes, the attachment of carbohydrates can
also modulate the immune response, potentially reducing adverse effects and increasing
the efficacy of the drug [76–78].

Despite the great effort reported in the literature regarding the synthesis and in vitro
testing of carbohydrate derivatives of carboranes [73,79–82], the examples of such com-
pounds tested in vivo are few [83–86]. Ortho-carboranyl glycosides of glucose, maltose
and lactose were synthetized and tested in vitro for their toxicity toward C-6 rat glioma
cells after thermal neutron treatment [87], but only the carboranyl maltoside compound
was tested in vivo [88]. This carborane derivative 1 (Figure 3) displayed a boron uptake
in murine induced tumors higher than BSH. Further in vivo tests involved a carborane
derivatized with a chitosan oligosaccharide (COS) [84] 2 (Figure 3), which promoted the
formation of nanoparticles, leading to carborane dispersion and inducing their phagocyto-
sis by cells. Pullulan, a linear polysaccharide consisting of repeating units of maltotriose,
has been covalently linked to ortho-carborane 3 (Figure 3) to obtain a safe and effective
platform to deliver boron to fibrosarcoma through the formation of nanogels [85,86].
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2.1.2. Nucleoside Derivatives of Carboranes

Nucleosides can be recognized and taken up by cells through nucleoside transporters
present on the membrane. Thus, designing and synthesizing boron-containing nucleosides
is justified for their potential to specifically accumulate in rapidly dividing tumor cells.
By attaching these moieties to carboranes, the resulting conjugate can exploit the cellular
uptake pathways already in place for nucleosides, facilitating the entry of carborane into
cells. This can be particularly advantageous when targeting specific sites, such as cancer
cells. For these reasons, various types of carborane-nucleosides derivatives [89], such as
deoxyuridine [90–93], thymidine [94–97], uracil [98] and analogues [99], were synthesized
and their potential in BNCT was assessed in vivo (4–7, Figure 4).
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Figure 4. Structures of deoxyuridine- (4), thymidine- (5), uracil- (6) and pyrimidine-carborane
(7) derivatives.

Special attention was given to thymidine derivatives due to their ability to target
the enzyme thymidine kinase 1 (TK1), which is overexpressed in different cancers. The
3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) [94–97]
and 5-ortho-carboranyl-2′-deoxyudirine [90–93] compounds have been widely tested on
rat glioma and emerged as valid candidates for BNCT. However, a drawback of such
nucleotide-carborane derivatives is that their administration usually requires a variable
amount of organic solvent to allow the complete solubilization.

2.1.3. Drug Derivatives of Carboranes

Another strategy to enhance the solubility and the targeting ability of carboranes is the
conjugation with drugs that are known to possess anticancer or targeting properties. The
novel dual compounds displayed unique biological and physicochemical properties that
complement the pharmacological and targeting activities of both the drugs and carboranes.

Tyrosine kinase inhibitors (TKIs) specifically target and inhibit the activity of tyrosine
kinases, which are enzymes highly expressed on cancer cells and implicated in the process
of cancer formation and growth. TKIs are widely used to treat cancers due to their role
in carcinogenesis [100]. Sunitinib and erlotinib, well-established TKIs [101,102], work by
targeting and inhibiting multiple tyrosine kinases receptors, including vascular endothelial
growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs) and
stem cell factor receptors (KIT). By blocking these kinases, sunitinib and erlotinib interfere
with signaling pathways involved in tumor growth, angiogenesis (formation of new blood
vessels) and metastasis (spread of cancer). Sunitinib [101] and erlotinib [103] have been
conjugated to ortho- and meta-carboranes, as well as to COSAN, in order to develop
bifunctional compounds that showed tyrosine kinase inhibition and boron accumulation
in cancer cells for BNCT application. Among them, sunitinib-meta-carborane hybrid 8
(Figure 5) was tested in vivo for anti-glioblastoma activity in immunosuppressed mice
bearing human U87 MG tumors.
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Figure 5. Structures of sunitinib- (8), doxorubicin- (9), nitroimidazole- (10) and sulfonamide-
carborane (11) derivatives.

Doxorubicin (DOX) displays the interesting features of being a potent chemotherapy
drug, widely used in the treatment of various types of cancers, but also a chromophore,
able to absorb light in a wide range of the visible spectrum [104]. The nuclear transloca-
tion property of DOX was exploited by covalently attaching doxorubicin to carborane 9
(Figure 5) in order to concentrate boron in glioma tumor-bearing mice [105].

In solid tumors, unique microenvironments can be found, often presenting regions
of hypoxia due to inadequate oxygen supply. Reductive cytotoxic agents, such as nitroim-
idazoles, exhibit preferential accumulation in such hypoxic areas of tumors due to the
presence of a nitro group (-NO2) that can undergo reductive activation under conditions of
low oxygen tension [106]. In well-oxygenated tissues, nitroimidazoles are relatively stable
and have low reactivity. However, within hypoxic regions of tumors, the lack of oxygen
hinders normal cellular metabolic processes, leading to the presence of reducing agents,
such as nitroreductase enzymes. These enzymes reduce the nitro group of nitroimidazoles,
resulting in the formation of highly reactive intermediates that immediately react with
biomolecules such as DNA, proteins and lipids. One of the earliest reports found in the
literature about the in vivo testing of nitro-containing carborane is the work of Morris
et al., where 7-(CH3)3N-nido-carborane was derivatized with a nitroaromatic system [107],
10 (Figure 5). This molecule was efficiently incorporated into melanoma and its clear-
ance from blood was reported to be adequate for BNCT requirements. In a later study, a
nitroimidazole-carborane linked to a polyether-isoxazole (or a polyether-carbamate) was
also tested in squamous cell carcinoma or sarcoma-bearing mice [108].

Within solid tumors’ hypoxic regions, acidic microenvironments can also be developed.
Such conditions can lead to the overexpression of carbonic anhydrase IX (CAIX), an im-
portant enzyme that regulates the acid-base balance and pH. Due to its unique expression
pattern and involvement in cancer progression, CAIX has emerged as a potential target for
therapeutic intervention in certain types of tumors [109]. Sulfonamides are a class of CAIX
inhibitors whose structure resembles that of carbonic acid (H2CO3), the natural substrate of
CAIX. In 2020, a sulfonamido-functionalized carborane 11 (Figure 5) was tested as a dual
compound able to simultaneously inhibit CAIX and deliver boron to mesothelioma and
breast cancer [110].

2.1.4. Porphyrin Derivatives of Carboranes

Porphyrins are a family of conjugated macrocyclic compounds, based on four pyrrole
units linked together, displaying a high potential for cancer treatment due to their unique
properties [111,112]. These macrocycles tend to selectively accumulate in cancer cells. In
addition, given their fluorescent properties, porphyrin derivatives can also be used as
imaging agents for fluorescence imaging techniques.

Accordingly, the functionalization of carboranes with porphyrins showed potential
benefits, such as (i) targeted delivery to tumor cells, minimizing the exposure of healthy tis-
sues, (ii) increased cellular uptake of the dual drug, (iii) controlled release, since porphyrins
can be designed to be stimuli-responsive to light, pH or enzymes, and (iv) theranostic
applications exploiting the imaging properties of porphyrin.
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From the beginning of 1990, Miura and colleagues explored the potential of lipophilic
porphyrins containing boron for in vivo applications [43,113–127]. Since then, significant
progress has been made in the development of a series of porphyrin-based drugs [128,129],
also complexed with metals such as Zn and Cu. The incorporation of these metal atoms
into porphyrins can influence their biological activity and allow the use of radionuclides
(i.e., 64Cu) for tracing and quantifying the boron distribution during in vivo treatment.
The functionalization of the porphyrin scaffold led to the synthesis of several compounds
tested for in vivo applications in BNCT, including CuTCPH [116–119,122,124,126,130],
ZnTCPH [122], H2TCP [131–135] and BOPP [136,137], whose structures (12-13) are reported
in Figure 6.
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Figure 6. Structures of CuTCPH, ZnTCPH and H2TCPH (12), BOPP (13), ZnB4Pc phtalocyanin (14)
and TPFC (15), containing carborane moieities.

Phtalocyanine derivatives were also synthesized and tested in vivo: the first exam-
ple dates to 2005, when Friso et al. reported the use of tetra-carboranyl-methylphenoxy-
substituted Zn(II)-phtalocyanine 14 (ZnB4Pc) on melanotic melanoma (Figure 6) [138]. Other
studies focused on the synthesis of carboranyl-containing chlorin 15 (TPFC), (Figure 6), to
develop a dual sensitizer for BNCT and photodynamic therapy (PDT) for the treatment
of malignant glioma [125,139]. Here, the high fluorescence of the chlorine core bound to
carborane allowed the authors to perform a fluorescence-guided detection and resection of
the tumor in mice.

2.1.5. Imaging Agent Derivatives of Carboranes

Pristine structures cannot be detected by several commonly applied imaging tech-
niques. To perform real-time visualization or quantification of the carborane uptake and
selectivity in tumors, several studies functionalized the cage by covalently binding imaging
agents, such as fluorescent dyes, contrast agents or radiopharmaceuticals. These include
the porphyrin derivatives discussed above. Other derivatizations were achieved with
gadolinium-chelates [108,140–142] that are commonly used as contrast agents in magnetic
resonance imaging (MRI), 16 (Figure 7), allowing the real-time localization of the carborane
derivatives during in vivo experiments.
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Figure 7. Structures of magnevist-carborane (16) and COSAN-iodinated (17) derivatives.

Iodine radioisotopes [143–147] 17 (Figure 7) were also conjugated to the carboranes and
used as radiotracers for boron quantification and localization during in vivo BNCT experiments.

2.1.6. Amino Acid Derivatives of Carboranes

Specific membrane transport proteins exist that carry amino acids across cell mem-
branes [148]. For instance, the protein transporter Large-neutral Amino Acid Transporter
1 (LAT-1) is responsible for conveying amino acids such as phenylalanine and tyrosine.
LAT-1 is overexpressed in many different tumor types and can be addressed to develop
cancer-targeted delivery systems [21]. The ortho-carborane derivative of phenylalanine 18
(Figure 8) exploits the selectivity of phenylalanine moiety toward LAT-1 [149].
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2.1.7. Peptide Derivatives of Carboranes

Peptides are widely employed for targeted drug delivery, since they can be designed to
specifically recognize and bind to certain receptors present on the surface of cells, including
cancer cells. In addition, peptides are generally more biocompatible and less immunogenic
compared to other targeting agents. For these reasons, different peptide sequences were
incorporated into the boron delivery system for BNCT [150], and some peptide-carborane
derivatives were synthesized [147,151,152].

Cyclic arginine-glycine-aspartate (cRGD) is the most common aminoacidic sequence
able to bind integrins on the extracellular matrix (ECM). Integrins are overexpressed in
many cancer cells, and carborane derivatives conjugated to a cRGD peptide 19 (Figure 9)
showed a selective antitumor activity and enhanced accumulation in cancer cells during
in vivo experiments [46].

Prostate-specific membrane antigen (PSMA) is significantly expressed in prostate
cancer cells. In the last years, numerous PSMA-targeted inhibitors have been effectively
created and exploited in prostate cancer clinical research. The peptidomimetic inhibitor
EuK (lysine-urea-glutamate), a well-known PSMA inhibitor, was attached to hydroxy-nido-
carborane to deliver boron to prostate cancer cells [147]. An analogous strategy was later
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employed by Wang et al., where one or two ortho-carborane molecules were linked to an
alkyl spacer attached to the EuK inhibitor 20 (Figure 9).
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Figure 9. Structures of cRGD- (19), PSMA- (20) and TAT (GRKKRRQRRRPQ)- (21) carborane derivatives.

Cell-penetrating peptides (CPPs) can cross cellular membranes, and their conjugation
to carboranes resulted in an increased membrane crossing ability, leading to a significant
boron accumulation in the cancer cells. Worthy of note is the recent synthesis of an ortho-
carborane derivative 21 (Figure 9) obtained by the fusion with a short peptide, namely
TAT (GRKKRRQRRRPQ) [151]. By adding hyaluronic acid to the solution, the authors
generated a self-assembling micelle of negative surface charge able to shield the TAT from
non-specific interactions during systemic circulation. The resulting carborane-TAT adduct
exploited the cell-penetrating ability of TAT peptide to selectively enter and deliver boron
to murine breast tumors up to ~20 mg/kg.

2.1.8. Antibody Derivatives of Carboranes

Antibodies (Abs) are proteins that recognize and bind to specific proteins/receptors
present on the cells and have a crucial role in the development of targeted therapies [153].
It is evident that the conjugation of fragments or full antibodies to carboranes may be
used to develop targeted strategies for BNCT. Examples are mT84.66, Mu-9 or 107-1A4
antibodies [145,146,154,155]. The mT84.66 antibody is a murine monoclonal antibody that
targets a specific antigen called carcinoembryonic antigen (CEA). CEA is a protein that
is normally produced during fetal development, but its expression decreases after birth.
However, certain types of cancer, including colorectal, gastric, pancreatic and lung cancers,
can lead to the re-expression of CEA. Mu-9 22 (Figure 10), a murine monoclonal antibody,
specifically targets colon-specific antigen-p (CSAp), a tumor-associated antigen found in
approximately 60% of colorectal carcinoma. 107-1A4, an IgG1 mAb, is selective for prostate
cells [146].
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2.2. Incorporation of Carboranes in Drug Delivery Systems for In Vivo Studies

Different carborane delivery systems were used for in vivo studies, which can be
classified into three distinct categories: (i) supramolecular carriers, exploiting host–guest
interactions, (ii) self-assembled supramolecular structures and (iii) conjugation at the
surface or incorporation into nanoparticles.

These delivery systems present some common features, such as a high biocompat-
ibility and solubility in physiological environments, but can differ in composition, size,
morphology and delivery mechanism. Table S2 in the Supplementary Materials provides
a comprehensive list of the drug delivery systems applied for carborane delivery during
in vivo experiments.

2.2.1. Supramolecular Carriers

Cyclodextrins (CDs) can serve as carriers for carborane-based BDA [110], increasing
the solubility of the drug by incapsulating it in their hydrophobic cavity. CDs are generally
considered biocompatible and have a long history of use in pharmaceutical formulations.
They have been extensively studied for safety, tolerability and compatibility with biolog-
ical systems, making them suitable potential candidates for drug delivery applications.
An example is the use of β-cyclodextrins to enhance the solubility of the sulfonamide
derivative of carborane [110], as shown in 23 (Figure 11). Also, proteins can be considered
supramolecular hosts for the delivery of hydrophobic moieties [156], behaving as “trojan
horses” for theranostic applications [157]. The formation of supramolecular complexes
between blood proteins and carboranes governs their pharmacokinetics and pharmacody-
namics properties. Due to the presence of hydrophobic binding pockets, where endogenous
or exogenous compounds can bind, proteins represent valuable delivery system platforms
for carboranes [158,159].

Cancers 2023, 15, x FOR PEER REVIEW 12 of 35 
 

 

Cyclodextrins (CDs) can serve as carriers for carborane-based BDA [110], increasing 

the solubility of the drug by incapsulating it in their hydrophobic cavity. CDs are gener-

ally considered biocompatible and have a long history of use in pharmaceutical formula-

tions. They have been extensively studied for safety, tolerability and compatibility with 

biological systems, making them suitable potential candidates for drug delivery applica-

tions. An example is the use of β-cyclodextrins to enhance the solubility of the sulfona-

mide derivative of carborane [110], as shown in 23 (Figure 11). Also, proteins can be con-

sidered supramolecular hosts for the delivery of hydrophobic moieties [156], behaving as 

“trojan horses” for theranostic applications [157]. The formation of supramolecular com-

plexes between blood proteins and carboranes governs their pharmacokinetics and phar-

macodynamics properties. Due to the presence of hydrophobic binding pockets, where 

endogenous or exogenous compounds can bind, proteins represent valuable delivery sys-

tem platforms for carboranes [158,159]. 

 

Figure 11. Structure of β-cyclodextrins and carborane sulfonamide (23) [110]. Image created with 

BioRender.com. 

2.2.2. Self-Assembled Supramolecular Carriers 

Liposomes are vesicular structures naturally formed by phospholipids dispersed in 

water and composed of bilayers that completely enclose an aqueous compartment within 

the lipid membrane. Depending on the chemical composition and functionalization, they 

can offer several advantages over conventional drug delivery systems, such as targeted 

delivery to specific sites and prolonged or regulated release of drugs. In addition, they 

contribute to the safeguarding of drugs from degradation and elimination, determining 

an enhanced therapeutic performance and reduced toxicity [160]. Two strategies are re-

ported in the literature for the use of liposomes as carborane carriers for in vivo BNCT 

experiments: (i) the incorporation of the carborane in the lipid bilayer or (ii) the entrap-

ment of the carborane cage in the aqueous core of the liposome. The earliest example of 

liposome application to carry carborane to cancer cells in vivo was reported in 1995 by 

Feaks, where distearoylphosphatidylcholine (DSPC) and cholesterol were used to incor-

porate the anionic [nido-7-CH3(CH2)15-7,8-C2B9H11]− in the bilayer [161]. Later on, a mix-

ture of a nido-carborane anion appended to two alkyl chains with DSPC and cholesterol 

was used to generate liposomes for in vivo carborane delivery to squamous carcinoma in 

hamsters [162,163]. The same liphophilic nido-carborane derivative has also been loaded 

into a transferrin PEG liposome [164] and used as part of the bilayer membrane used to 

incapsulate a borane molecule (TAC) in the hydrophilic core of the liposome, as shown in 

25 (Figure 12) [165,166]. A vesicle structure bearing ortho-carborane-appended PEG was 

synthesized to enhance blood stability and cellular uptake [167]. In 2016, Takeuchi et al. 

were able to obtain a PEGylated liposome by exploiting 1-(4-methoxyphenyl)-1,7-nido-

carborane with a C7 alkyl chain instead of cholesterol to generate the lipid membrane of 

the liposome with DSPC [168]. A biodegradable derivative of meta-carborane conjugated 

to poly(ethylene glycol) methyl ether (mPEG), which is amphiphilic and possesses self-

N
H

S

O

NH2

O

=

23

=

O

OH
HO

OH

O

O

OH

HO
OH

O

OOH

OH

OH

O

O

OH

OH

OH

OO

OH

OH

HO

O

O
OH

OH
HO

O

O

OH

HO

HO

O

Figure 11. Structure of β-cyclodextrins and carborane sulfonamide (23) [110]. Image created with
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2.2.2. Self-Assembled Supramolecular Carriers

Liposomes are vesicular structures naturally formed by phospholipids dispersed in
water and composed of bilayers that completely enclose an aqueous compartment within
the lipid membrane. Depending on the chemical composition and functionalization, they
can offer several advantages over conventional drug delivery systems, such as targeted
delivery to specific sites and prolonged or regulated release of drugs. In addition, they
contribute to the safeguarding of drugs from degradation and elimination, determining
an enhanced therapeutic performance and reduced toxicity [160]. Two strategies are re-
ported in the literature for the use of liposomes as carborane carriers for in vivo BNCT
experiments: (i) the incorporation of the carborane in the lipid bilayer or (ii) the entrap-
ment of the carborane cage in the aqueous core of the liposome. The earliest example
of liposome application to carry carborane to cancer cells in vivo was reported in 1995
by Feaks, where distearoylphosphatidylcholine (DSPC) and cholesterol were used to in-
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corporate the anionic [nido-7-CH3(CH2)15-7,8-C2B9H11]− in the bilayer [161]. Later on, a
mixture of a nido-carborane anion appended to two alkyl chains with DSPC and cholesterol
was used to generate liposomes for in vivo carborane delivery to squamous carcinoma in
hamsters [162,163]. The same liphophilic nido-carborane derivative has also been loaded
into a transferrin PEG liposome [164] and used as part of the bilayer membrane used to
incapsulate a borane molecule (TAC) in the hydrophilic core of the liposome, as shown
in 25 (Figure 12) [165,166]. A vesicle structure bearing ortho-carborane-appended PEG
was synthesized to enhance blood stability and cellular uptake [167]. In 2016, Takeuchi
et al. were able to obtain a PEGylated liposome by exploiting 1-(4-methoxyphenyl)-1,7-
nido-carborane with a C7 alkyl chain instead of cholesterol to generate the lipid membrane
of the liposome with DSPC [168]. A biodegradable derivative of meta-carborane conju-
gated to poly(ethylene glycol) methyl ether (mPEG), which is amphiphilic and possesses
self-assembling properties in water, was synthesized in 2016 [169]. An amide derivative of
closo-carborane was also attached to an aliphatic chain that, together with PEG, generated
a liposome containing 10 wt% of carborane [170]. A notable development of such a strategy
is the recent design of boronsomes 24 (Figure 12) by Li et al. [171], where a carborane-
appended phospholipid led to the formation of a biomimetic nanovesicle displaying high
stability and boron delivery to murine breast tumors. In all these examples, the carbo-
ranes were dispersed within the bilayer membrane. However, a few studies reported their
encapsulation into the liposome aqueous core. As an example, the hydrophilic 2-(dicarba-
closo-dodecaborane) succinate was incorporated into liposomes obtained from a lipidic
mixture of lecithin from egg yolk and cholesterol [172]. In a different study, Lee et al. used
the water-soluble potassium salt of nido-7,8-carborane as a boron agent [173] and exploited
the delivery ability of PEGylated liposomes 23 (Figure 12) to maximize the uptake into
malignant cells while minimizing its presence in the reticuloendothelial system (RES).

Micelles, differing from liposomes due to the presence of a lipid monolayer instead of
a bilayer, were also employed as carriers for the delivery of carborane for in vivo BNCT
applications [174]. The addition of hyaluronic acid to the TAT-derivative of carborane
enabled a self-assembling micelle of negative surface charge able to shield the TAT from non-
specific interactions during systemic circulation [151]. As shown in 26 (Figure 12), a micelle
composed of a carborane and MPEG was synthetized and tested in vivo in BNCT [175].
Another recent study [176] reported an AB-type Lactosome nanoparticle composed of
amphipathic polydepsipeptide (i.e., polymers of α-hydroxy acids and α-amino acid [177])
linked to a hydrophilic polysarcosine (PSar) and a hydrophobic poly-L-lactic acid (PLLA).
This resulted in self-assembling micelles that incorporated dihexyl-ortho-carborane and
delivered it to breast cancer at a high boron concentration and with T/N ~ 3 and T/B > 5
after 72 h.

Nanogels, formed either through chemical crosslinking or physical self-assembly,
demonstrated remarkable potential in encapsulating various types of therapeutics [178].
The nanoscale size of these carriers imparts them with distinct surface area and internal
capacity, enhancing the stability of the enclosed drugs and extending their circulation
duration. In 2017, pullulan, a polysaccharide consisting of repeating units of maltotriose,
was derivatized with an ortho-carborane derivative, forming a cross-linked nanogel 27
(Figure 12) where carborane protrudes in the hydrophobic core [85].

Low density lipoproteins (LDL), which consist of an outer shell of phospholipids,
cholesterol and apolipoproteins and a hydrophobic inner core, are widely employed de-
livery agents due to their high biocompatibility and targeting properties towards specific
receptors. The lipid core of human plasma low-density lipoprotein (LDL) was extracted
using hexane and the LDL was reconstituted with the addition of n-octyl-carborane [179].
LDL was also used to complex an ortho-carborane derivative bearing a crown-ether moiety
where gadolinium (Gd3+) is entrapped, as shown in 28 (Figure 12) [140,141].
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2.2.3. Nanoparticles

An additional strategy applied to deliver carborane employed a polymeric self-
assembled nanoparticle made of poly(ethylene glycol)-b-poly(L-lactide-co-2-methyl-2(2-
dicarba-closo-dodecarborane)propyloxycarbonylpropyne carbonate) that encapsulates dox-
orubicin [180]. This system, based on an amphyphylic copolymer nanoparticle, aimed at
performing a dual chemotherapy and BNCT treatments simultaneously and was tested
in murine cervical cancer models. PLLGA nanoparticles are composed of lactic acid (LA)
and glycolic acid (GA) monomers, which co-polymerize to obtain a biocompatible and
biodegradable copolymer. In 2017, Takeuchi et al. [181] successfully loaded ortho-carborane
into these nanoparticles, obtaining an adequate 10B tumor concentration of 20 mg/kg in
B16 melanoma induced tumors. Furthermore, the tumor/blood ratios in their study ex-
ceeded 5, 8–12 h after the injection, suggesting that these nanoparticles could be effective
carborane-based BDA for BNCT applications.

Covalent organic frameworks (COFs) are a class of porous, crystalline materials
composed of organic molecules connected by covalent bonds. They possess a high degree
of design flexibility, which allows for precise control of their structure and properties. A
porphyrin-based polymer scaffold has been recently used to encapsulate pristine ortho-
carborane to generate a BDA tested in vivo on a skin melanoma model 29 (Figure 13). In
2023, Shi et al. [182] reported a carborane-containing COF used as a capsule to deliver an
immune adjuvant (imiquimod) upon localized nuclear irradiation 30 (Figure 13).

Carbon nanoparticles, such as single walled carbon nanotubes (SWCNTs), generally
present high biocompatibility and low toxicity, making them suitable candidates for drug
delivery applications. Due to their high surface area and easy functionalization, SWCNTs
were derivatized with nido-carboranes (structure 31, Figure 13), and the resulting conjugate
displayed an enhanced boron accumulation in mammary carcinoma with respect to the
healthy cells [183]. Graphene oxide was also grafted with a mono-iodinated COSAN
derivative, obtaining a platform for traceable boron delivery through PET imaging [184].

Hollow mesoporous silica nanomaterials (HMSNs) are effective drug delivery systems
for a variety of drugs, thanks to the high surface area and the possibility of tuning the pore
size. Dendritic MSN decorated with PEG-cDRG and carborane moieties, and pored-loaded
with doxorubicin, was synthetized in 2021 [185] 32 (Figure 13). HMSN was covalently
modified with chitosan (CS), lactobionic (LA) and thioctic (TA) acids, which can target
asialoglycoprotein receptors that are over-expressed in hepatocellular carcinomas [186].
Pristine ortho-carborane was added to the HMSN-CS-LA-TA composite, and BNCT in vivo
experiments resulted in an effective treatment of hepatocellular carcinoma.

Magnetic nanoparticles (MNPs) have lately enlivened interest for their potential use in
cancer therapy and targeted drug delivery [187]. These particles are obtained from metals
or their mixtures, and their magnetic properties, under an external magnetic field, open to
potential applications, especially in magnetic resonance imaging (MRI). In 2010, Zhu et al.
reported the synthesis of carborane-containing magnetic nano-composites obtained by the
“click-reaction” between propargyl group-enriched magnetic nanoparticles and an azide
derivative of ortho-carborane 33 (Figure 13) [188].

Gold nanoparticles were also functionalized with amine-nido-carboranes to enhance
the boron accumulation in cervical cancer cells [189]. In particular, the fluorescent properties
of gold nanoclusters allowed for the precise bioimaging of cancer cells and the targeted
delivery of a carborane compound to the HeLa induced tumors. Recently, Pulagam and
colleagues tested Au nanoparticles [190] and Au nanorods [191] to vehiculate boron to
cancer cells by covalently attaching COSAN derivatives to the metal particles. The gold
particles showed good in vivo stability but poor accumulation in the targeted tissues. The
authors suggested that the performance of such conjugates may be enhanced by appropriate
modifications of the gold core size and shape.
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2.3. Formulation and Administration of Carboranes for In Vivo Studies

The synthesized carborane derivatives/carborane delivery systems were administered
to mice by either (i) the direct injection of the developed chemicals dispersed in water (or
physiological buffer such as PBS) or by using modifiers, enhancing their solubility, such as
(ii) organic solvent or (iii) formulants (Supplementary Materials, Table S3).

Only in the work of Vincente et al. [125] was the use of water as the sole solvent
(clearly) reported: in this particular formulation, the presence of nido-carboranes, nega-
tively charged, probably sufficed for the hydrophilicity of the whole molecule. Aqueous
solutions such as phosphate buffer saline (PBS) are desirable for injection due to high
biocompatibility and have been generally used in the carborane-based formulations incor-
porating liposomes and micelle [113,135,161,168,172,173,175].

Organic solvents are occasionally employed in drug administration to allow the
solubilization of hydrophobic drugs. In general, large fractions of organic solvents are
not desirable in the final formulation to be tested because of the intrinsic toxicity and
side effects that may arise from their presence. It must be noted that, given the low
water solubility of carboranes, basically all the synthetic pathways involved the use of
solvents such as ethanol and DMSO. However, most of these solvents are removed during
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sample processing and may only be present in traces in the final formula. Nonetheless,
some final carborane conjugates required a small percentage of such solvents to enhance
the solubility before administration. In particular, dimethylsulfoxide (DMSO), ethanol
(EtOH) or chloroform (CHCl3) have been employed in variable amounts to dissolve and
administer carborane derivatives with nucleosides [90,92,94–97,193], porphyrines [132,133],
nitroimidazoles [108], SWCNTs [183] and graphene oxide [184].

Formulants such as cremophor EL (CrEL) obtained by the reaction of ethylene oxide
and castor oil are non-ionic solubilizers and emulsifiers and have been extensively used for
the administration of poorly water-soluble drugs. CrEL has been used from the earliest
works of Miura [114–119,121,122,124,126,131] as a solubilizer for porphyrin-based carbo-
rane drugs, together with propylene glycol. Despite its broad use, CrEl has been reported
to be not inert and can potentially induce some clinical reactions [194].

2.4. Cancer Models Used for In Vivo Studies Using Carboranes in BNCT

The in vivo experiments for testing BNCT are typically performed on mice (only
a recent work by Ferrer-Ugalde [184] used C. elegans nematodes). Here, in some cases
(12% of the studies) the carborane formulations were injected in non-tumoral models in
order to monitor only endpoints such as bio-distribution and drug toxicity [103,167,195].
However, in the majority of the cases, a tumor was induced in mice by the subcutaneous
implantation of malignant cells in order to study tissue bioaccumulation as well as the
efficiency of the carborane-based BNCT treatment on mice survival and tumor reduction
(Supplementary Materials, Table S4).

Cancer lines studied were either from rodent (67% of the studies) or human (21%
of the studies) lines. In general, the most-studied tumor types were breast (4T1, BT-474,
BCAP-37, EMT6, Her2+ and KHJJ lines) and brain cancers (9LGS, C6, F98, GL261, RG2,
U87 and U373 lines), investigated in 22% and 19% of the studies, respectively. Other works
mainly focused on skin (B16, Harding-Passey melanoma, MM-138 lines, 15% of the studies),
connective tissues (AB22, KHT, L929, M-1 sarcoma, SCCVII, 12% of the studies) and colon
(ARO, Colon-26, CT26, GW-39, LS-174T lines, 8% of the studies). Cancer lines investigated
to a lesser extent included prostate, liver, pancreas and reproductive system cancers. A
list of the studies classified by cancer type, cell lines tested to induce tumors and murine
models is reported in the Supplementary Materials, Table S4.

3. Analytical Methodologies Used for Carborane Quantification in In Vivo Studies

The possibility to carry out effective BNCT necessarily relies on the delivery of B to
cancer cells at concentrations in the range of 20–40 µg [10B]/g [tumor] [17], corresponding
to approximately 109 atoms of 10B per cell [196].

The right choice of the derivatization or the use of an appropriate delivery system
for carboranes led to better intra-tumoral boron concentrations compared to BPA or BSH,
reaching values higher than 50 ppm [86,94,115,118,134,135,171,175]. In some cases, the
concentration was even greater than 100 ppm [86,135,175].

Intracellular localization of the carborane is necessary for an effective BNCT ther-
apy. In general, cellular uptake of carboranes is more complicated than BPA, due to
their lack of a cell-specific import system. However, the use of targeting agents or ef-
fective delivery systems in many cases determined the expected cellular uptake of the
carboranes [84,86,94,105,134,139,175,186].

The quantification of 10B concentrations is crucial for BNCT to define (i) an effective
treatment window and (ii) the appropriate neutron fluence rate. Accurate and real-time
assessment of tumor boron concentration in the cancer tissue determines the efficiency of
the BNCT treatment. Ideal treatments require the selective accumulation in tumors as well
as a low toxicity and a functional residence time and metabolism of the injected drugs.

Some of the developed carborane derivatives showed a better pharmacokinetic and pharma-
codynamic profile (i.e., tumor accumulation time) than BSH and BPA [83,94,118,137,139,175,186].
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Accordingly, many papers determined B/carborane concentrations and biodistribu-
tion in order to define bioaccumulation and partitioning in mice tumoral models. Typical
endpoints investigated include the quantitation of B in tumor, surrounding tissues, biologi-
cal fluids and their ratios as well as the imaging and monitoring of boron at organ, tissue
and (sub)cellular levels.

The methodologies applied for B analysis in BNCT have been extensively reviewed by
Wittig et al. [197], and, more recently, by Dai et al. [198]. Here, we discuss the techniques
employed during in vivo studies focused on carborane-based drugs. A main distinction
among the different techniques can be made between (i) methodologies aiming at the
quantification of the boron amount in the samples and (ii) those focusing on carborane
localization/quantification by measuring the specific signal provided by imaging tags
attached to the carborane cage.

In the first case, methodologies such as prompt gamma-ray neutron activation anal-
ysis (PGAA) and optical emission spectroscopy (OES), often referred as atomic emission
spectroscopy (AES), were the most widely used techniques. Here, biodistribution was
assessed by ex vivo analysis of mice tissues and biological fluids. In the second case, the
functionalization of the carboranes with fluorophores, contrast agents or radionuclides
allowed ex vivo analysis but also the application of in vivo methodologies such as fluo-
rescence imaging, MRI or tomography-based techniques. The following chapter briefly
summarizes the concepts underlying each methodology, whereas comprehensive tables
summarizing the studies employing them are provided in the Supplementary Materials.

3.1. Gamma-Ray Measurements

The quantification of carboranes in samples from in vivo experiments was often
achieved by quantifying gamma-ray emission in the samples. It must be noted that natural
boron isotopes are not radionuclides. Hence, detection was achieved based on two different
strategies: (i) the irradiation of carboranes with a beam of neutron and the spectrometric
measurement of the resulting prompt-gamma ray emitted or (ii) the labeling of carboranes
with gamma-ray emitters followed by gamma-counter analysis (Figure 14).
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3.1.1. Prompt Gamma-Ray Neutron Activation Analysis (PGAA)

PGAA is a widely used technique exploiting the same principle of the BNCT reaction
for the detection of B in solid or liquid samples. The measurement relies on the spec-
trometric detection of prompt gamma neutrons emitted by 10B upon irradiation with a
thermal neutron beam [199]. The gamma ray energies allow B identification, whereas their
intensities allow its quantitation. In carborane studies, PGAA was routinely applied to
the characterization of B concentrations in the samples collected from in vivo tests as well
as to the characterization of the carborane formulation prior to injection (Supplementary
Materials, Table S5). Such a methodology presents the advantages of being relatively
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fast, with measurements achieved in the range of a few minutes for B concentrations in
the ppm range. In addition, sample preparation is straightforward, and the analysis is
non-destructive, with potential clinical application, i.e., for B concentration screening in
patients during BNCT treatment [197]. A further advantage of PGAA is that the detection
measures the 10B isotope over the total B load. However, limitations are linked to the rela-
tively low sensitivity compared to other techniques and the need for dedicated instruments
and facilities.

3.1.2. Carborane Labeling with Gamma-Ray Emitters

Gamma-ray emitters such as 64Cu, 68Ga, 125I, 211At can be chemically incorporated
to the carborane cage or to the carborane formulation. In many studies, radioiodination
reactions were carried out to covalently bind 125I to B atoms in the carborane clusters such
as COSAN, FESAN or nido-carborane [16,143,144]. Here, the iodine tracer was used to
visualize the bioaccumulation in tumors and organs but also to confirm the stability of the
novel drugs, i.e., by measuring the (absence of) I radioactivity in the thyroid glands.

Interestingly, Gona et al. [143] used this strategy to label Pegylated COSAN with either
124I (positron emitter) or 125I (gamma emitter), which allowed biodistribution analysis by
in vivo PET-CT (described below) and ex vivo gamma counter, respectively. The authors re-
ported a good correlation between the two sets of results and highlighted the advantages of
a multi-technique approach for a better quantitation of B bioaccumulation and distribution.
A similar approach was applied more recently by Pulagam and colleagues [191], which
labeled COSAN-derivatized Au nanoparticles incorporating 64Cu. Here, ex vivo (Cu-based)
gamma counter in the mice organs/tissues was combined with other chemical analysis and
64Cu-PET-CT to provide accurate biodistribution data in nude mice xenografts.

In general, the ex vivo quantitation by gamma-counter analysis was extensively applied,
especially in pioneering studies, with the use of carboranes labeled with 125I but also other
radioactive species such as 211At and 68Ga. A list of the studies employing carborane radio-
labeling/gamma counter analysis is reported in the Supplementary Materials (Table S6).

3.2. Boron Elemental Analysis Techniques

Elemental analysis provides information about the elemental composition of a sample,
which in the case of carboranes focuses on boron detection. Most of the in vivo studies
determined the B concentration ex vivo by spectroscopic OES measurements. Here, the
detection is achieved by measuring the radiation wavelengths emitted by a given element
upon excitement in a plasma, which can be generated by several methods, i.e., Direct
Current Plasma (DCP-OES), Microwave (MW-OES) and Inductively Coupled Plasma (ICP-
OES) [200]. Instruments such as ICP-OES are widely available in laboratories worldwide
and often represent the analytical method of choice for routine analysis of metals and met-
alloids. However, AES analyses are limited by a relatively high detection limit (ppm range)
and cannot discriminate between B isotopes. This is particularly relevant considering that
the 10B isotope, needed for BNCT reaction, accounts for only approximately 20% of the nat-
ural boron abundance. It is worth noticing that some studies tested 10B-enriched carborane,
which can increase BNCT performance and inherently facilitate 10B detection [97,138,174].
However, a better B analysis was achieved with Inductively Coupled Plasma Mass Spec-
trometry (ICP-MS), where mass spectrometric detection granted a more sensitive B analysis
(ppb range) and a higher selectivity for the 10B species of interest [84,186]. In general,
analyses by ICP-AES and ICP-MS were carried out in up to 64% of the in vivo studies
considered herein (Supplementary Materials, Table S7). Usually, carborane formulations as
well as biological samples were treated prior to analysis with a combination of strong acids
(e.g., nitric acid, sulfuric acid) and oxidants (e.g., hydrogen peroxide) to fully disrupt both
carborane structures and biological matrices and to homogenize the samples (Figure 15).
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In the case of more complex samples such as mice tissues or even organs, a better
digestion was achieved with perchloric acid and treatments at relatively high temperatures.
Microwave-assisted digestion was also employed for assuring a complete digestion of such
samples [110,165,200]. Recent advances include the combination of acid digestion and UV
irradiation for the ICP-MS detection of boron in biological matrices [201]. Such methodolo-
gies allowed L-BPA detection in cell cultured in vitro at levels below ppt, and they are also
promising for future analysis of in vivo experiment samples and carborane molecules.

It must be noted that ICP-AES and ICP-MS analysis can be challenging due to the
peculiar properties and behavior of B species that can affect proper qualitative and quan-
titative determination, especially in complex matrices. These include a strong memory
and carry-over effects during the measurements as well as the formation of volatile B com-
pounds. Such problematics have been extensively discussed elsewhere [200] and should be
carefully considered during the experiments. In addition, matrix components can result
in a reduced B extraction, high background elements and signal suppression. In a few
instances, an internal standard, such as Berillium [179], Rhodium [200], Yttrium [126] or
Lithium [163], was added to the samples prior to digestion for a better quantification of the
boron load.

A drawback in the analyses by techniques such as PGAA and ICP-AES is that they
are not selective for carborane and reveal the boron content independently of its state. In
addition, although very robust for determining samples’ concentration in homogeneous
samples at macroscopic levels (tissues or even organs), such techniques cannot provide
information about partitioning and inhomogeneities at the micro (sub)cellular scale. Fur-
thermore, plasma-based analysis is destructive, which should be considered if further
observations are planned for the samples under investigation.

3.3. Fluorescence-Spectroscopy/Microscopy

Although pristine carboranes do not display typical absorption and emission prop-
erties, in the last decade fluorescence detection has been widely used for their quantifi-
cation/imaging by functionalizing their structures with fluorescent dyes. The resulting
labeled structures allowed the quantitation of carboranes at low ppm levels and their
localization with micrometric resolution.

Functionalization was achieved with the chemical conjugation of the dye to the carbo-
rane [122,132] or its incorporation in carborane-supramolecular assemblies [175,185]. In
the first case, the conjugates obtained by the covalent binding of the carboranes with por-
phyrins were observed to be stable in vivo [132] and could be monitored in whole organs
and tissues as well as at intra-cellular levels. Porphyrins and phthalocyanines typically
emit light in the 600–800 nm range, which allows a sensitive detection in complex organic
samples and an estimation of drug bioaccumulation and stability by ex vivo analysis of
treated mice samples at specific time intervals. Furthermore, given the covalent bond
stability, the B concentration could be calculated on the basis of the stechiometry between
porphyrines and carboranes in the injected formulation [122,132,134,139].

Other studies employed fluorescent dyes that were not necessarily bound to the carbo-
ranes but incorporated in the developed formulation. For instance, Rhodamine-B was
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used to label carborane-containing supramolecular assemblies such as micelle [169,175],
liposomes [105,167] and nanogel [85]. Similarly, Doxorubicin was introduced as an an-
ticancer drug and fluorescent tracer in carborane-based mesoporous [185], vesicles and
polymeric nanoparticles [169,202]. Many different dyes were employed for studying tumor
distribution and cellular localization of carborane derivatives, including carbocyanine-
based (e.g., DiR, DiI, DiO), Cyanine-5.5 (Cy5.5) [84,202], Indocyanine Green (ICG) [176]
and VivoTrack 680 for liposomes labeling [173]. Wang et al. [202] physically incorporated
carbocyanine-based fluorescent probes into boron-containing vescicles (BCVs) as donor–
acceptor pairs for fluorescence resonance energy transfer (FRET). A summary of the studies
employing fluorescence-based techniques for carborane analysis during in vivo research
is provided in the Supplementary Materials (Table S8). It must be noted that in these
works, the quantitation of carborane by fluorescence measurements was often confirmed
by additional analysis such as ICP-AES or ICP-MS [180,185].

It is also noteworthy that most studies discussed so far performed fluorescence imag-
ing analysis ex vivo. However, this technique offers the possibility for real-time in vivo
imaging, which could be an added value for imaging guided treatments dosing and mon-
itoring in BNCT experiments (Figure 16). As an example, Wang et al. [189] performed
the in vivo monitoring of fluorescent Au nanoparticles (GNCs) incorporating a carborane
derivative. This granted both an accurate tumor localization/imaging and real-time bioac-
cumulation data in cervical cancer induced in nude mice. Similarly, in recent studies,
DiR-capsulated nanoparticles, Cy5.5-modified nanoparticles and ICG-labeled lactosomes
were used to visualize the biodistribution in ex vivo organs but also for real-time in vivo
monitoring of the carborane drugs up to 72 h after injection [84,176].
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Figure 16. Fluorescence-based analysis of carborane-bearing pullulan nanogels incorporating
rhodamine-b as fluorescent dye. (a) The in-vivo biodistribution in mice 6 h (left) and 24 h (right) after
injection of the carborane drug. (b) The ex vivo analysis of the tumor in organs and tumor of controls
(top) and carborane-treated mice (bottom). Reprinted from ref [85] with permission from Elsevier.

3.4. PET/SPECT

The in vivo spatial distribution of BNCT carborane-based chemicals was also achieved
with tomographic techniques such as single-photon emission computed tomography
(SPECT) and positron emission tomography (PET). In the last decade, the latter has emerged
as a reference technique for monitoring drug delivery and tumor development, especially
in combination with X-ray computed tomography (CT). PET-CT analysis allows for the
simultaneous determination of drug biodistribution and pharmacokinetics together with
tumor volume and morphology (Figure 17). The analysis is performed by measuring
positrons emitted by marked radioisotopes associated with the drugs, and it provides both
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qualitative 3D biodistribution and quantitative data, e.g., expressed as the fraction of the
injected dose per mass or volume (%ID/cm3). As shown in Table S9 (Supplementary Mate-
rials), although tomography-based techniques are regarded as some of the best-performing
approaches for studying cancer systems in vivo, their use in carborane-BNCT studies is
relatively limited. 64Cu was used as radiotracer in recent works focused on carboranes con-
jugated with Au nanoparticles [203], nanorods [191], nanoscale covalent organic polymers
(COPs) [192] and boronsome, innovative carborane-based liposomes showing high stability,
tumor bioaccumulation and residency [171]. Here, the radiotracer was physically trapped
into the supramolecular assembly containing the carboranes. 124I was also used as a PET
tracer for studying the biodistribution of carborane-doped graphene oxide sheets, further
functionalized with iodine [184]. Interestingly, a study on COSAN-PEGilated gold nanopar-
ticles incorporated the 124I tracer either at the core or at the shell of the nano-structures,
and it performed a dual “core-shell” analysis to show the integrity of the developed drug
after injection in mice [190]. Recent studies also employed less common radioisotopes
such as 68Ga and 89Zr. In 2019, Wang et al. [152] bound 68Ga radioisotopes to a PSMA
inhibitor conjugated to carboranes and combined in vivo (Ga-based) PET with ex vivo
ICP-AES analysis for drug biodistribution assessment. 89Zr was also incorporated into the
carborane-based covalent organic framework (B-COF), resulting in an optimal detection by
PET-CT analysis in tumor-bearing mice [182].

Cancers 2023, 15, x FOR PEER REVIEW 22 of 35 
 

 

injection of the carborane drug. (b) The ex vivo analysis of the tumor in organs and tumor of controls 

(top) and carborane-treated mice (bottom). Reprinted from ref [85] with permission from Elsevier. 

3.4. PET/SPECT 

The in vivo spatial distribution of BNCT carborane-based chemicals was also 

achieved with tomographic techniques such as single-photon emission computed tomog-

raphy (SPECT) and positron emission tomography (PET). In the last decade, the latter has 

emerged as a reference technique for monitoring drug delivery and tumor development, 

especially in combination with X-ray computed tomography (CT). PET-CT analysis al-

lows for the simultaneous determination of drug biodistribution and pharmacokinetics 

together with tumor volume and morphology (Figure 17). The analysis is performed by 

measuring positrons emitted by marked radioisotopes associated with the drugs, and it 

provides both qualitative 3D biodistribution and quantitative data, e.g., expressed as the 

fraction of the injected dose per mass or volume (%ID/cm3). As shown in Table S9 (Sup-

plementary Materials), although tomography-based techniques are regarded as some of 

the best-performing approaches for studying cancer systems in vivo, their use in car-

borane-BNCT studies is relatively limited. 64Cu was used as radiotracer in recent works 

focused on carboranes conjugated with Au nanoparticles [203], nanorods [191], nanoscale 

covalent organic polymers (COPs) [192] and boronsome, innovative carborane-based lip-

osomes showing high stability, tumor bioaccumulation and residency [171]. Here, the ra-

diotracer was physically trapped into the supramolecular assembly containing the car-

boranes. 124I was also used as a PET tracer for studying the biodistribution of carborane-

doped graphene oxide sheets, further functionalized with iodine [184]. Interestingly, a 

study on COSAN-PEGilated gold nanoparticles incorporated the 124I tracer either at the 

core or at the shell of the nano-structures, and it performed a dual “core-shell” analysis to 

show the integrity of the developed drug after injection in mice [190]. Recent studies also 

employed less common radioisotopes such as 68Ga and 89Zr. In 2019, Wang et al. [152] 

bound 68Ga radioisotopes to a PSMA inhibitor conjugated to carboranes and combined in 

vivo (Ga-based) PET with ex vivo ICP-AES analysis for drug biodistribution assessment. 
89Zr was also incorporated into the carborane-based covalent organic framework (B-COF), 

resulting in an optimal detection by PET-CT analysis in tumor-bearing mice [182]. 

SPECT was reported in a study from Genady et al. [144] to assess the biodistribution 

in nude mice xenografts injected with carborane derivatives and labeled with iodine radi-

onuclides. Here, iodocarboranyl tetrazine was alternatively labeled with 125I or 123I for 

gamma counter and animal imaging, respectively. 

 

Figure 17. An example of in vivo PET analysis of murine tumoral model after injection of COSAN-
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Figure 17. An example of in vivo PET analysis of murine tumoral model after injection of COSAN-
conjugated [64Cu]-enriched AuNPs at different time intervals. [64Cu]-based detection allowed
imaging of the tumor morphology and localization of the carborane-based drug. Reprinted from
ref [203] with permission from John Wiley and Sons.

SPECT was reported in a study from Genady et al. [144] to assess the biodistribution
in nude mice xenografts injected with carborane derivatives and labeled with iodine
radionuclides. Here, iodocarboranyl tetrazine was alternatively labeled with 125I or 123I for
gamma counter and animal imaging, respectively.

3.5. Magnetic Resonance Imaging (MRI)

Similar to PET, magnetic resonance imaging (MRI) is a powerful imaging technique which
can provide non-invasive, in vivo mapping data valuable for clinical studies (Figure 18). Al-
though the detection of 10B and 11B by MRI is challenging, such methodology has been
optimized for BSH and BPA compounds in recent years [198]. However, in the case of
carboranes, only a few studies employed MRI (Supplementary Materials, Table S10). A
first work from Wood et al. [108] focused on the in vivo analysis of 11B MR spectra after
mice injection with nitroimidazole-carborane, resulting in a proper detection of carbo-
ranes in the tumor and organs but no imaging of the cancer. More recently, other studies
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used a Gd-tracer, which is often used in MRI as a contrast agent [140,141]. Two studies
combined Gd to ortho-carboranes and enhanced the dispersion with β-cyclodextrin and
low-density lipoproteins. The resulting carborane conjugates combined the possibility of
delivering high boron quantities to cancer cells while allowing for in vivo monitoring of
tumor morphology, growth and development (Figure 5). A similar strategy was previously
tested by Nakamura et al. [142], who covalently bound ortho-carborane to a commercially
available Gd-DTPA complex contrast agent (Magnevist®), which was dissolved in NaHCO3
solution and directly injected in mice. Here, carborane biodistribution was assessed with
the combination of in vivo (Gd-based) MRI detection with ex vivo analysis by ICP-MS and
alpha-radiography.
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Figure 18. Magnetic resonance imaging (MRI) analysis of liver metastases in Balb/c mice. The arrows
identify the tumor in non-treated (a) and Gd-carboranes conjugate-treated (b) samples after in vivo
BNCT treatment. Reprinted from ref [141] with permission from Elsevier.

3.6. Other Methodologies for Carborane In Vivo Analysis

It must be noted that several techniques widely applied in BNCT research with BPA
and BSH compounds are in principle valid for carborane analysis but were seldom or not
employed in the studies reported here. For instance, methodologies such as quantitative
neutron capture radiography (QNCR) and secondary ion mass spectrometry (SIMS) found
application in pioneering carborane-based works but were not routinely applied for in vivo
BNCT studies [113,200,204]. Radio high-performance liquid chromatography (HPLC) was
employed in two studies by Schinazi et al. for the analysis of carborane-functionalized
radio-labeled nucleosides [92,93]. Similarly, established alpha-radiography methods for
B analysis in BNCT experiments were seldom applied during in vivo carborane stud-
ies [131,142]. Only two studies [130,190] used (micro) Particle Induced X-ray Emission
(µ -PIXE) for the determination of the ex vivo micro-distribution of either Cu-porphyrin-
carboranes or I-labeled carborane-gold cluster [130]. In particular, Pulagam et al. [190]
combined µPIXE with micro-Rutherford backscattering (µRBS) to simultaneously study
the spatial distribution of elements originated from tissue and NPs collected in vivo. The
results were then combined with previously acquired PET-CT data collected from the same
animals. Also, in a later study, the same authors combined multiple techniques for in vivo
(PET-CT) and ex vivo (ICP-MS, gamma counter) analysis of mice bearing gastroinstestinal
cancer [191]. Given the complexity of the in vivo BNCT experiments, and the need to
collect multiple endpoints (e.g., time-resolved carborane concentration and tumor localiza-
tion/development), similar strategies based on multiple detection techniques are desirable,
and should be considered in future works.

To conclude, other methodologies, such as nuclear magnetic resonance (NMR) and
HPLC coupled to UV or MS detection, were applied during carborane drug synthesis,
formulation and purification, but not for in vivo samples analysis [90,147,205]. Similarly,
transmission electron microscopy (TEM) was used to characterize synthesized carborane
supramolecular structures, but only recently to assess the in vivo cyto-distribution of
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boron capsules in tumor tissues [182]. It is noteworthy that such techniques can provide
accurate qualitative/quantitative data during preparatory analysis and characterization
and could be exploited by future studies for a better understanding of carborane drug
pharmacokinetics, metabolism and transformation during treatments.

4. Conclusions

Boron neutron capture therapy (BNCT) is an emerging anticancer modality and carbo-
ranes are among the most promising boron agents for BNCT.

In this review, we performed a screening of the existing literature on the topic and
focused on in vivo studies, which, although representing only a small portion of the
available literature on carboranes, are the real test-beds for clinical translation.

In general, few studies employed pristine carboranes as boron agents due to their hy-
drophobicity, which hampers their direct in vivo administration. On the other hand, many
carborane derivatives were synthesized to overcome their low water solubility. Derivatiza-
tion of the carborane cage usually improves the pharmacokinetic, pharmacodynamic and
physicochemical properties of the molecule. Additionally, some moieties (i.e., porphyrins,
carbohydrates or small peptides) may improve cancer cell selectivity and absorption.

Alternatively, delivery systems such as supramolecular carriers, self-assembled supramolec-
ular structures or nanoparticles were used to carry carboranes in physiological environ-
ments for in vivo studies. Although they share several characteristics, such as a high
biocompatibility and solubility in physiological settings, these delivery systems can vary in
content, size, shape and delivery method.

The ideal solution to administer the synthesized carborane-derivatives/carborane-
delivery systems is water (or a physiological buffer such as PBS); however, some formula-
tions required small percentages of organic solvents or formulants to effectively solubilize
the carborane. The in vivo experiments for testing BNCT are typically performed on mice,
where murine (67%) or human cancer cells (21%) are implanted. The most-studied tumor
types were breast and brain cancers.

The delivery of sufficient amounts of 10B to tumor cells is essential for the efficacy
of BNCT treatment. With regard to the qualitative and quantitative assessment of boron
biodistribution upon in vivo drug administration, most of the studies we examined em-
ployed plasma-based methodologies, such as DCP- and ICP-AES. Such techniques are
widely available and allow a reliable and fast boron analysis, but require extensive sample
treatments (i.e., samples acid digestion) and provide biodistribution data exclusively ex
vivo. Several studies incorporated fluorescent dyes or exploited the fluorescence properties
of carboranes conjugates in order to carry out spectroscopic analysis targeting the drugs.
This approach allowed a real-time in vivo analysis of drug biodistribution by fluorescence
microscopy. Nonetheless, other powerful techniques for in vivo screening, such as MRI
and PET-CT, were applied to a lesser extent and should be considered in future works. In
particular, when assessing multiple endpoints (e.g., boron delivery/quantitation, tumor
localization/development), the best results were often obtained by combining multiple
methodologies, for instance imaging techniques (fluorescence or PET) with chemical analy-
sis such as ICP-AES.

Imaging tags can be attached to the carborane cage or included in the delivery system
to create innovative theranostic platforms. Drugs or photosensitizers are also used in con-
junction with carboranes to develop a synergistic action between the BNCT treatment and
chemotherapy/photodynamic therapy. Receptor-targeted BNCT or the use of therapeutic
nucleic acids [204,206–209] may represent innovative approaches to improve the selectivity
of boron agents. Biocompatible delivery systems, based on biomolecules such as proteins
(i.e., albumin) or antibodies, will allow for better bioretention and bioavailability of the
investigated boron agents [104,158,210–215].

In summary, carboranes display great potential for the development of next-generation
BNCT drugs. The optimization of carborane conjugations with novel functional groups
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or delivery systems allows high boron concentration and tumor selectivity as well as an
accurate screening of drug delivery and tumor localization in mice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15204944/s1, Table S1: list of the carborane derivatives
tested in vivo in BNCT; Table S2: list of the drug delivery systems tested in vivo in BNCT; Table S3:
formulation used for the administration of the carborane-based drug in in vivo BNCT; Table S4:
classification of the in vivo BNCT studies based on the type of cancer investigated, cell line used
and its origin; Table S5: in vivo BNCT carborane studies employing prompt gamma-ray neutron
activation analysis (PGAA) for the analysis of boron content; Table S6: in vivo BNCT carborane
studies employing gamma-ray emission analysis for the detection of radionuclides-labeled carborane
conjugates; Table S7: in vivo BNCT carborane studies employing plasma-based techniques for the (ex
vivo) elemental analysis of boron. Table S8: in vivo BNCT carborane studies employing fluorescence-
based techniques for the detection of carborane conjugates; Table S9: in vivo BNCT studies employing
tomography-based techniques for the imaging of the carborane drugs; Table S10: in vivo BNCT
studies employing magnetic resonance imaging (MRI) for the imaging of the carborane drugs.
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