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Abstract

English. The great majority of composi-

tional models in distributional semantics

present methods to compose distributional

vectors or tensors in a representation of the

sentence. Here we propose to enrich the

best performing method (vector addition,

which we take as a baseline) with distri-

butional knowledge about events, outper-

forming our baseline.

Italiano. La maggior parte dei mod-

elli proposti nell’ambito della seman-

tica disribuzionale composizionale si basa

sull’utilizzo dei soli vettori lessicali. Pro-

poniamo di arricchire il miglior modello

presente in letteratura (la somma di vet-

tori, che consideriamo come baseline) con

informazione distribuzionale sugli eventi

elicitati dalla frase, migliorando sistem-

aticamente i risultati della baseline.

1 Compositional Distributional

Semantics: Beyond vector addition

Composing word representations into larger

phrases and sentences notoriously represents a

big challenge for distributional semantics (Lenci,

2018). Various approaches have been proposed

ranging from simple arithmetic operations on

word vectors (Mitchell and Lapata, 2008), to

algebraic compositional functions on higher-order

objects (Baroni et al., 2014; Coecke et al., 2010),

as well as neural networks approaches (Socher et

al., 2010; Mikolov et al., 2013).

Among all proposed compositional functions,

vector addition still shows the best performances

on various tasks (Asher et al., 2016; Blacoe and

Lapata, 2012; Rimell et al., 2016), beating more

complex methods, such as the Lexical Functional

Model (Baroni et al., 2014). However, the success

of vector addition is quite puzzling from the lin-

guistic and cognitive point of view: the meaning

of a complex expression is not simply the sum of

the meaning of its parts, and the contribution of

a lexical item might be different depending on its

syntactic as well as pragmatic context.

The majority of available models in literature

assumes the meaning of complex expressions like

sentences to be a vector (i.e., an embedding) pro-

jected from the vectors representing the content

of its lexical parts. However, as pointed out by

Erk and Padó (2008), while vectors serve well the

cause of capturing the semantic relatedness among

lexemes, this might not be the best choice for

more complex linguistic expressions, because of

the limited and fixed amount of information that

can be encoded. Moreover events and situations,

expressed through sentences, are by definition in-

herently complex and structured semantic objects.

Actually, assuming the equation “meaning is vec-

tor” is eventually too limited even at the lexical

level.

Psycholinguistic evidence shows that lexical

items activate a great amount of generalized event

knowledge (GEK) (Elman, 2011; Hagoort and

van Berkum, 2007; Hare et al., 2009), and that this

knowledge is crucially exploited during online

language processing, constraining the speakers’

expectations about upcoming linguistic input

(McRae and Matsuki, 2009). GEK is concerned

with the idea that the lexicon is not organized as

a dictionary, but rather as a network, where words

trigger expectations about the upcoming input,

influenced by pragmatic knowledge along with

lexical knowledge. Therefore sentence compre-

hension can be phrased as the identification of the

event that best explains the linguistic cues used in

the input (Kuperberg and Jaeger, 2016).
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In this paper, we introduce MEDEA, a compo-

sitional distributional model of sentence meaning

which integrates vector addition with GEK acti-

vated by lexical items. MEDEA is directly in-

spired by the model in Chersoni et al. (2017a) and

relies on two major assumptions:

• lexical items are represented with embed-

dings within a network of syntagmatic rela-

tions encoding prototypical knowledge about

events;

• the semantic representation of a sentence is

a structured object incrementally integrat-

ing the semantic information cued by lexical

items.

We test MEDEA on two datasets for composi-

tional distributional semantics in which addition

has proven to be very hard to beat. At least, before

meeting MEDEA.

2 Introducing MEDEA

MEDEA consists of two main components: i.) a

Distributional Event Graph (DEG) that models a

fragment of semantic memory activated by lexical

units (Section 2.1); ii.) a Meaning Composition

Function that dynamically integrates information

activated from DEG to build a sentence semantic

representation (Section 2.2).

2.1 Distributional Event Graph

We assume a broad notion of event, corresponding

to any configuration of entities, actions, prop-

erties, and relationships. Accordingly, an event

can be a complex relationship between entities, as

the one expressed by the sentence The student read

a book, but also the association between an indi-

vidual and a property, as expressed by the noun

phrase heavy book.

In order to represent the GEK cued by lexi-

cal items during sentence comprehension, we ex-

plored a graph based implementation of a distri-

butional model, for both theoretical and method-

ological reasons: in graphs, structural-syntactic

information and lexical information can naturally

coexist and be related, moreover vectorial distri-

butional models often struggle with the model-

ing of dynamic phenomena, as it is often difficult

to update the recorded information, while graphs

are more suitable for situations where relations

among items change overtime. The data structure

would ideally keep track of each event automat-

ically retrieved from corpora, thus indirectly con-

taining information about schematic or underspec-

ified events, by abstracting over one or more par-

ticipants from each recorded instance. Events are

cued by all the potential participants to the event.

The nodes of DEG are lexical embeddings, and

edges link lexical items participating to the same

events (i.e., its syntagmatic neighbors). Edges are

weighted with respect to the statistical salience of

the event given the item. Weights, expressed in

terms of a statistical association measure such as

Local Mutual Information, determine the event ac-

tivation strength by linguistic cues.

In order to build DEG, we automatically har-

vested events from corpora, using syntactic re-

lations as an approximation of semantic roles of

event participants. From a dependency parsed sen-

tence we identified an event by selecting a seman-

tic head (verb or noun) and grouping all its syn-

tactic dependents together (Figure 1). Since we

expect each participant to be able to trigger the

event and consequently any of the other partici-

pants, a relation can be created and added to the

graph from each subset of each group extracted

from sentence.

Figure 1: Dependency analysis for the sentence The student
is reading the book about Shakespeare in the university li-
brary. Three events are identified (dotted boxes).

The resulting structure is therefore a weighted hy-

pergraph, as it contains relations holding among

groups of nodes, and a labeled multigraph, since

each edge or hyperedge is labeled in order to rep-

resent the syntactic pattern holding in the group.

As graph nodes are embeddings, given a lexical

cue w, DEG can be queried in two modes:

• retrieving the most similar nodes to w (i.e.,

its paradigmatic neighbors), using a standard

vector similarity measure like the cosine (Ta-

ble 1, top row);

• retrieving the closest associates of w (i.e., its

syntagmatic neighbors), using the weights on

the graph edges (Table 1, bottom row).



320

para. neighbors

essay/N, anthology/N, novel/N, author/N,

publish/N, biography/N, autobiography/N,

nonfiction/N, story/N, novella/N

synt. neighbors

publish/V, write/V, read/V,

include/V, child/N, series/N,

have/V, buy/V, author/N, contain/V

Table 1: The 10 nearest paradigmatic (top) and syntagmatic
(bottom) neighbours of book/N, extracted from DEG. By fur-
ther restricting the query on the graph neighbors, we can ob-
tain for instance typical subjects of book as a direct object
(people/N, child/N, student/N, etc.).

2.2 Meaning Composition Function

In MEDEA, we model sentence comprehension

as the creation of a semantic representation SR,

which includes two different yet interacting in-

formation tiers that are equally relevant in the

overall representation of sentence meaning: i.)

the lexical meaning component (LM), which is a

context-independent tier of sentence meaning that

accumulates the lexical content of the sentence,

as traditional models do; ii.) an active context

(AC), which aims at representing the most prob-

able event, in terms of its participants, that can be

reconstructed from DEG portions cued by lexical

items. This latter component corresponds to the

GEK activated by the single lexemes (or by other

contextual elements) and integrated into a seman-

tically coherent structure representing the sentence

interpretation. It is incrementally updated during

processing, when a new input is integrated into ex-

isting information.

2.2.1 Active Context

Each lexical item in the input activates a portion of

GEK that is integrated into the current AC through

a process of mutual re-weighting that aims at max-

imizing the overall semantic coherence of the SR.

At the outset, no information is contained in the

AC of the sentence. When new lexeme - syntac-

tic role pair 〈wi, ri〉 (e.g., student - nsbj) are en-

countered, expectations about the set of upcoming

roles in the sentences are generated from DEG (fig-

ure 2). These include: i.) expectations about the

role filled by the lexeme itself, which consists of

its vector (and possibly its p-neighbours); ii.) ex-

pectations about sentence structure and other par-

ticipants, which are collected in weighted list of

vectors of its s-neighbours.

These expectations are then weighted with re-

spect to what is already in the AC, and the AC is

similarly adapted to the ewly retrieved informa-

tion: each weighted list is represented with the

weighted centroid of its top elements, and each

Figure 2: The image shows the internal architecture of a
piece of EK retrieved from DEG. The interface with DEG

is shown on the left side of the picture, each internal list of
neighbors is labeled with their expected syntactic role in the
sentence. All the items are intended to be embeddings.

element of a weighted lists is re-ranked accord-

ing to its cosine similarity with the correspondent

centroid (e.g., the newly retrieved weighted list of

subjects is ranked according to the cosine similar-

ity of each item in the list with the weighted cen-

troid of subjects available in AC).

The final semantic representation of a sentence

consists of two vectors, the lexical meaning vec-

tor (
−−→
LM ) and the event knowledge vector (

−→
AC),

which is obtained by composing the weighted cen-

troids of each role in AC.

3 Experiments

3.1 Datasets

We wanted to evaluate the contribution of ac-

tivated event knowledge in a sentence compre-

hension task. For this reason, among the many

existing datasets concerning entailment or para-

phrase detection, we chose RELPRON (Rimell et

al., 2016), a dataset of subject and object rela-

tive clauses, and the transitive sentence similar-

ity dataset presented in Kartsaklis and Sadrzadeh

(2014). These two datasets show an intermediate

level of grammatical complexity, as they involve

complete sentences (while other datasets include

smaller phrases), but have fixed length structures

featuring similar syntactic constructions (i.e., tran-

sitive sentences). The two datasets differ with re-

spect to size and construction method.

RELPRON consists of 1,087 pairs, split in devel-

opment and test set, made up by a target noun

labeled with a syntactic role (either subject

or direct object) and a property expressed as

[head noun] that [verb] [argument]. For in-

stance, here are some example properties for

the target noun treaty:
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(1) a. OBJ treaty/N: document/N that delega-
tion/N negotiate/V

b. SBJ treaty/N: document/N that grant/V in-
dependence/N

Transitive sentence similarity dataset consists

of 108 pairs of transitive sentences, each

annotated with human similarity judgments

collected through the Amazon Mechanical

Turk platform. Each transitive sentence in

composed by a triplet subject verb object.

Here are two pairs with high (2) and low (3)

similarity scores respectively:

(2) a. government use power

b. authority exercise influence

(3) a. team win match

b. design reduce amount

3.2 Graph implementation

We tailored the construction of the DEG to this

kind of simple syntactic structures, restricting it

to the case of relations among pairs of event

participants. Relations were automatically ex-

tracted from a 2018 dump of Wikipedia, BNC,

and ukWaC corpora, parsed with the Stanford

CoreNLP Pipeline (Manning et al., 2014).

Each 〈(word1, word2), (r1, r2)〉 pair was then

weighted with a smoothed version of Local Mu-

tual Information1:

LMIα(w1, w2, r1, r2) = f(w1, w2, r1, r2)log(
P̂ (w1,w2,r1,r2)

P̂ (w1)P̂α(w2)P̂ (r1,r2)
) (1)

where:

P̂α(x) =
f(x)α

∑
x
f(x)α

(2)

Each lexical node in DEG was then represented

with its embedding. We used the same training

parameters as in Rimell et al. (2016),2, since we

wanted our model to be directly comparable with

their results on the dataset. While Rimell et al.

(2016) built the vectors from a 2015 download of

Wikpedia, we needed to cover all the lexemes con-

tained in the graph and therefore we used the same

corpora from which the DEG was extracted.

We represented each property in RELPRON as

a triplet ((hn, r), (w1, r1), (w2, r2)) where hn is

the head noun, w1 and w2 are the lexemes that

1The smoothed version (with α = 0.75) was chosen in
order to alleviate PMI’s bias towards rare words (Levy et al.,
2015), which arises especially when extending the graph to
more complex structures than pairs.

2lemmatized 100-dim vectors with skip-gram with nega-
tive sampling (SGNS (Mikolov et al., 2013)), setting mini-
mum item frequency at 100 and context window size at 10.

compose the proper relative clause, and each el-

ement of the triplet is associated with its syntactic

role in the property sentence.3 Likewise, each sen-

tence of the transitive sentences dataset is a triplet

((w1, nsbj), (w2, root), (w3, dobj)).

3.3 Active Context implementation

In MEDEA, the SR is composed of two vectors:

•
−−→
LM , as the sum of the word embeddings (as

this was the best performing model in litera-

ture, on the chosen datasets);

•
−→
AC, obtained by summing up all the

weighted centroids of triggered participants.

Each lexeme - syntactic role pair is used to re-

trieve its 50 top s-neighbors from the graph.

The top 20 re-ranked elements were used to

build each weighted centroid. These thresh-

old were choosen empirically, after a few tri-

als with different (i.e., higher) thresholds (as

in Chersoni et al. (2017b)).

We provide an example of the re-weighting pro-

cess with the property document that store main-

tains, whose target is inventory: i.) at first the head

noun document is encountered: its vector is ac-

tivated as event knowledge for the object role of

the sentence and constitutes the contextual infor-

mation in AC against which GEK is re-weighted;

ii.) store as a subject triggers some direct object

participants, such as product, range, item, technol-

ogy, etc. If the centroid were built from the top of

this list, the cosine similarity with the target would

be around 0.62; iii.) s-neighbours of store are re-

weighted according to the fact that AC contains

some information about the target already, (i.e.,

the fact that it is a document). The re-weighting

process has the effect of placing on top of the list

elements that are more similar to document. Thus,

now we find collection, copy, book, item, name,

trading, location, etc., improving the cosine sim-

ilarity with the target, that goes up to 0.68; iv.)

the same happens for maintain: its s-neighbors are

retrieved and weighted against the complete AC,

improving their cosine similarity with inventory,

from 0.55 to 0.61.

3.4 Evaluation

We evaluated our model on RELPRON develop-

ment set using Mean Average Precision (MAP), as

3The relation for the head noun is assumed to be the same
as the target relation (either subject of direct object of the
relative clause).
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in Rimell et al. (2016). We produced the compo-

sitional representation of each property in terms

of SR, and then ranked for each target all the 518

properties of the dataset portion, according to their

similarity to the target. Our main goal was to eval-

uate the contribution of event knowledge, there-

fore the similarity between the target vector and

the property SR was measured as the sum of the

cosine similarity of the target vector with the
−−→
LM

of the property, and the cosine similarity of the tar-

get vector with the
−→
AC cued by each property. As

shown in Table 2, the full MEDEA model (last col-

umn) achieves top performance, above the simple

additive model LM.

RELPRON

LM AC LM+AC

verb 0,18 0,18 0,20

arg 0,34 0,34 0,36

hn+verb 0,27 0,28 0,29

hn+arg 0,47 0,45 0,49

verb+arg 0,42 0,28 0,39

hn+verb+arg 0,51 0,47 0,55

Table 2: The table shows results in terms of MAP for the
development subset of RELPRON. Except for the case of
verb+arg, the models involving event knowledge in AC al-
ways improve the baselines (i.e., LM models).

For the transitive sentences dataset, we evalu-

ated the correlation of our scores with human rat-

ings with Spearman’s ρ. The similarity between

a pair of sentences s1, s2 is defined as the cosine

between their LM vectors plus the cosine between

their EK vectors. MEDEA is in the last column of

Table 3 and again outperforms simple addition.

transitive sentences dataset

LM AC LM+AC

sbj 0.432 0.475 0.482

root 0.525 0.547 0.555

obj 0.628 0.537 0.637

sbj+root 0.656 0.622 0.648

sbj+obj 0.653 0.605 0.656

root+obj 0.732 0.696 0.750

sbj+root+obj 0.732 0.686 0.750

Table 3: The table shows results in terms of Spearman’s ρ

on the transitive sentences dataset. Except for the case of
sbj+root, the models involving event knowledge in AC al-
ways improve the baselines. p-values are not shown because
they are all equally significant (p < 0.01).

4 Conclusion

We provided a basic implementation of a mean-

ing composition model, which aims at being in-

cremental and cognitively plausible. While still

relying on vector addition, our results suggest that

distributional vectors do not encode sufficient in-

formation about event knowledge, and that, in line

with psycholinguistic results, activated GEK plays

an important role in building semantic representa-

tions during online sentence processing.

Our ongoing work focuses on refining the way

in which this event knowledge takes part in the

processing phase and testing its performance on

more complex datasets: while both RELPRON and

the transitive sentences dataset provided a straight

forward mapping between syntactic label and se-

mantic roles, more naturalistic datasets show a

much wider range of syntactic phenomena that

would allow us to test how expectations jointly

work on syntactic structure and semantic roles.
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