
Citation: Bordoni, S.; Tarroni, R.;

Monari, M.; Cerini, S.; Battaglia, F.;

Micheletti, G.; Boga, C.; Drius, G.

Ru-Controlled Thymine

Tautomerization Frozen by a k1(O)-,

k2(N,O)-Metallacycle: An

Experimental and Theoretical

Approach. Molecules 2023, 28, 3983.

https://doi.org/10.3390/

molecules28103983

Academic Editor: Ana Margarida

Gomes da Silva

Received: 31 March 2023

Revised: 1 May 2023

Accepted: 4 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Ru-Controlled Thymine Tautomerization Frozen by a k1(O)-,
k2(N,O)-Metallacycle: An Experimental and
Theoretical Approach
Silvia Bordoni 1,2,* , Riccardo Tarroni 1 , Magda Monari 3 , Stefano Cerini 1 , Fabio Battaglia 1,
Gabriele Micheletti 1,* , Carla Boga 1 and Giacomo Drius 1

1 Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna,
Viale del Risorgimento 4, 40136 Bologna, Italy; riccardo.tarroni@unibo.it (R.T.); carla.boga@unibo.it (C.B.);
giacomo.drius2@unibo.it (G.D.)

2 Health Sciences and Technologies Interdepartmental Center for Industrial Research (CIRI SDV),
University of Bologna, 40126 Bologna, Italy

3 Department of Chemistry ‘Giacomo Ciamician’, Alma Mater Studiorum, Università di Bologna, Via Selmi 2,
40126 Bologna, Italy; magda.monari@unibo.it

* Correspondence: silvia.bordoni@unibo.it (S.B.); gabriele.micheletti3@unibo.it (G.M.)

Abstract: The reaction of mer-(Ru(H)2(CO)(PPh3)3) (1) with one equivalent of thymine acetic acid
(THAcH) unexpectedly produces the macrocyclic dimer k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2

(4) and, concomitantly, the doubly coordinated species k1(O), k2(O,O)-(Ru(CO)(PPh3)2THAc) (5).
The reaction promptly forms a complicated mixture of Ru-coordinated mononuclear species. With
the aim of shedding some light in this context, two plausible reaction paths were proposed by at-
tributing the isolated or spectroscopically intercepted intermediates on the basis of DFT-calculated
energetic considerations. The cleavage of the sterically demanding equatorial phosphine in the
mer-species releases enough energy to enable self-aggregation, producing the stable, symmetric
14-membered binuclear macrocycle of 4. The k1-acetate iminol (C=N-OH) unit of the mer-tautomer
k1(O)-(Ru(CO)(PPh3)2(THAc)) (2) likely exhibits a stronger nucleophilic aptitude than the prevalent
N(H)-C(O) amido species, thus accomplishing extra stabilization through concomitant k2(N,O)-
thymine heteroleptic side-chelation. Furthermore, both the ESI-Ms and IR simulation spectra val-
idated the related dimeric arrangement in solution, in agreement with the X-ray determination
of the structure. The latter showed tautomerization to the iminol form. The 1H NMR spectra in
chlorinated solvents of the kinetic mixture showed the simultaneous presence of 4 and the doubly
coordinated 5, in rather similar amounts. THAcH added in excess preferentially reacts with 2 or
trans-k2(O,O)-(RuH(CO)(PPh3)2THAc) (3) rather than attacking the starting Complex 1, promptly
forming the species of 5. The proposed reaction paths were inferred by spectroscopically monitoring
the intermediate species, for which the results were strongly dependent on the of conditions the
reaction (stoichiometry, solvent polarity, time, and the concentration of the mixture). The selected
mechanism proved to be more reliable, due to the final dimeric product stereochemistry.

Keywords: ruthenium; Ru(II); thymine; (N,O) chelation; self-assembly; X-ray crystal structure; DFT;
H-bonding network

1. Introduction

We recently reported the synthesis, crystal structure, and theoretical investigations of the re-
action between the dihydride complex (Ru(H)2(CO)(PPh3)3) (1) and two equivalents of thymine
acetic acid (THAcH) that promptly produced k1(O), k2(O,O)-(Ru(CO)(PPh3)2(THAc)2) (5)
with a good yield (90%), simultaneously bearing monohapto- and dihapto-acetate with
vicinal phosphine ligands [1]. Analogous cyclo-metalated (N,O)- [2–11] and (O,O)- [12–14]
chelated species have been previously reported by other groups. (Figure 1).
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Figure 1. Selected examples of the previously reported homoleptic k2-(O,O) and heteroleptic k2-
(N,O)-cyclometalated heterocyclic complexes. Adapted with permission from Refs. [4–8,10,11,13,15].
2015 Małecki J.G., 2012 Małecki J.G., 2012 Xiang J., 2007 Ruiz J., 2012 Esteruelas M.A., 2018 Corrêa
R.S., 2018 dos Santos E.R., 2009 Lynam, J.M., 2012 Lynam J.M., 2015 Lang, H.

These compounds have claimed particular interest, particularly concerning their
catalytic features such as the isomerization or reduction of propargylic alcohols [13–15]
and transfer hydrogenation [16]. Moreover, in the last 10 years, they have demonstrated
remarkable bioactivity as anticancer agents [9,11], ascribable to the exhibited versatility
and flexibility (mainly due to the facile cleavage of phosphine ligands and their relocation),
but also to their thermodynamic robustness as carriers, due to the function of chelated
carboxyl. Recently, we also described the pivotal role of Ru’s coordination in the derivatives
of thymine acetate (THAc), even in the absence of electron conjugation, due to the N-
methylene spacer between thymine ring and the tethered acetate [1]. The role of metal
coordination and the H-binding interactions network both result in affecting the transfer
of H by triggering the transformation from the prevalent (C(O)NH) keto-amino to the
rare tautomeric (N=C(OH)) iminol fragment. The iminol/amido isomer ratio has been
evaluated to be 33% through the presence of low-shifted 1H NMR signals in the interval of
12.0–7.7 ppm, as observed in (k1-2a,b + k2-3) numerous mixtures of various preparative
paths and attributed to the iminol forms stabilized by intra- or inter-H-binding network.
Analogous results have been accomplished under the same conditions by doubling the
concentration of the reaction mixture, albeit with a remarkably reduced yield (25%).

2. Results and Discussion

2.1. Synthesis of the Complexes cisP,P-k1(O), k2(N,O)-(Ru(CO)(PPh3)2(THAc)2) (5) + cisP,P-
k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2 (4)

Through the addition of one equivalent of THAcH to (Ru(H)2(CO)(PPh3)3) (1) [17] in reflux-
ing toluene, the solution gradually darkened from the initial light brown, with a slight con-
comitant release of gas. According to IR monitoring, after 3 h, the reaction had completed,
due to the disappearance of the reactants. Upon the removal of the solvent and a work-up
by filtration on a celite pad, a mixture of the known k1(O),k2(O,O)-(Ru(CO)(PPh3)2(THAc)2)
(5) and the novel dimeric species cisP,P-,k1(O),k2(N,O)-(Ru(CO)(PPh3)2(THAc))2 (4) were
detected by the 1H NMR spectra. After standing at −20 ◦C for 30 days, the CDCl3 solution
produced crystals of 4 (33%) and, concomitantly, 5 (18%), both exhibiting an unexpected
cis-conformation for the phosphine ligands in the crystalline structures.

As illustrated in Figure 2, the THAcH molecule shows, in theory, four different chelate-
coordinative modes (indicated by the different colored arrows in Figure 2). Each of them
potentially could generate a pair of diastereoisomers, depending on the reciprocal opposite
positions of the H/CO ligand.
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Figure 2. Thymine acetic acid attacks metal complexes via chelation, producing four distinct four-
membered metallacycles: two of them show (N,O)-heteroleptic coordination (those designated by red
and black arrows involve N3,O4 and N3,O2, respectively), while one (green) concerns the homoleptic
k2-(O,O). Analogous chelation through (O,O2) (blue arrows) involves the possible formation of two
distinct metal heptacycles.

Indeed, every dihapto-coordinative mode generates two distinct metallacycles, except
for the k2(O,O)-heptacycle (blue arrows) or the k2(O,O)-carboxy-chelate derivatives (green).

Due to the strong acidity of the carboxy moiety, the first attack of the thymine deriva-
tives is directed toward the Ru-H moiety, achieving the monohapto-acetate complexes
k1(O)-(RuH(CO)(PPh3)3THAc) (2a,b) attributed to the typical high-shifted residual hydride
signals in the δ −4/−8 interval.

The observed 1H NMR doublets of the triplets have been assigned to the monohapto-
diastereoisomers 2a and 2b, depending on the opposite position of the H/CO (Figure 3). A
push–pull electron density motif enabled us to distinguish the more stable 2a, which shows
CO trans- to the donor acetate moiety from 2b. The ratio between the two diastereoisomers
depends on the solvent’s polarity, which is able to induce 2 to further reactivity. For
example, upon standing at room temperature the mixture of 2a,b in a CDCl3 solution,
within the more deshielded signal in the range of −(5.8/6.4) ppm related to the isomer 2b
was more intense than that of 2a, indicating the faster reactivity of the latter. In this context,
the monohapto species spontaneously evolved at room temperature in 90–120 min into the
chelate derivative 3, as shown by the remarkable Ru-H shift of the 1H NMR triplet, which
was greatly influenced by the shielding due to the dihapto coordination. The partially
overlapped triplets, observed in the δ = −(19/16) interval, are hydride units typically
coupled with the mutually located and magnetically equivalent phosphine ligands at an
axial position (2JHP ∼= 24 Hz).
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Figure 3. The newly formed monohapto-acetate intermediates 2a (red) and 2b (blue) are supported
by the two distinct 1:0.8 1H NMR multiplet signals centered at δ = −6.1 and −7.2 in the hydride
region with 2JH-Ptrans = 111 Hz and 2JH-Pcis = 24 Hz.
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Under the general assumption that more stable species correspond to the major 1H
NMR hydride signals, the very broad major triplet at −17.01 ppm (in green) was assigned to
the entropically favorable complex 3. The latter revealed uncountable conformations due to
the mobility of the k2(O,O)-side arm, with low energy rotation (10 kJ mol−1) around the C-C
bond between the methylene spacer and the carboxy unit (Figure 4). Both experimental and
theoretical studies of the rearrangement have been detailed in our recent publication [1].
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Figure 4. The rotamers relative to the isomers of 3 due to the low energy torsion barrier, which was
calculated to be 10 kJ mol−1.

However, in our case, the reaction monitored for 60 min in refluxing toluene rapidly
evolved into a complicated kinetic mixture (see Figure 5), the nature of which was revealed
by attributing the 1H NMR signals on the basis of the energetic considerations obtained by
means of the theoretical DFT calculations.
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Figure 5. The 1H NMR spectrum in the hydride region. The large triplet depicted in green (δ = −17.10)
is attributed to the k2(O,O)-3, while the adjacent red (δ = −16.93) and blue (δ = −16.87) boxes
are related to the heteroleptic 6b and the minor signal analogous to 6a.The adjacent overlapped
triplets are assigned to the heteroleptic chelated k2(N,O) species (orange, 7a, δ = −16.56; black, 7b,
δ = −16.50 ppm). The newly formed four-membered metallacycles are generated by the action of
heteroleptic chelation, depending on the involvement of CO(4) or CO(2). These species may be
further stabilized by the C(O)OH−−−(O)C-Ru intramolecular H interaction between the carboxy
group and the function of the ketone ring as suggested by the low-shifted weak but sharp signal at
δ = 11.2, tentatively attributed to H-bond interactions [1].
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Depending on the intermediates formed by the chelation of the thymine ring, k2(N3,O4)-6
or k2(N3,O2)-7, a further possible course of the reaction may be postulated (Scheme 1).
However, in our case, these intermediates were fairly elusive, as suggested by the relative
energy factors calculated by DFT in the case of trans- (6b: 22.1, 7a: 23.9, 7b: 24.5, 6a:
28.8 kJ mol−1) and cis-stereogeometry. Further, the opposite stereogenic center needs to be
selected to explain the resulting geometry observed in the dimer 4 (Figure 6).
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places the vicinal phosphine ligand in the mer-species. The resulting complexes commonly 
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donor N-atom is trans located to the Ru-CO acceptor ligand (6a). The minor signals can 

instead be attributed to the diastereoisomers k2(N3,O2)-(RuH(CO)(PPh3)2THAc) (7). 

In the latter case, closure of the ring is not favorable for steric congestion, taking into 

account that the thymine O(2) atom is partially engaged in the H-bond with the carboxyl- 

nit. In this context, the strained seven-membered species 8 (Scheme 2), which is probably 

derived from the chelation of k2(O,O)-, was never observed, in agreement with the high 

calculated energy (39.0 and 26.3 kJ mol−1). 

The nature of the THAc–coordinated species k2(O,O)-3 was supported by the ESI-Ms 

analysis in MeOH. The occurrence of the cationic stable species (Ru(CO)(PPh3)2(k2-

Scheme 1. The major triplet sets at δ = −16.87 (blue) and −16.56 (orange) belong to k2(N3,O4)-
(RuH(CO)(PPh3)2THAc) (6), giving rise to distinct diastereoisomers depending on the location of
H/CO in 6a, 6b; the carbonyl opposite to the donor N atom was less energetic and more stable
(Figure 5). The minor triplet at δ = −16.93 (red) partly overlapping with an analogous signal centered
at δ = −16.50 (black) is attributed to the isomers 7a and 7b (23.9 and 24.5 kJ mol−1, respectively).
The heteronuclear k2(N,O) complexes have been named as described in the theoretical section (see
Figure S11).
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Figure 6. As a proposed alternative path to produce the macrocycle of 4, the initially formed k2(N,O)
metal fragments, designated by opposite stereogenic Ru centers, might mutually self-aggregate.

The (N,O)-chelated species are formed by the acid–base reaction between the N(3)H
unit with the hydridic H-Ru fragment with the less congested thymine CO(4), which dis-
places the vicinal phosphine ligand in the mer-species. The resulting complexes commonly
show transPP-stereochemistry. The more stable configurations are likely formed when the
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donor N-atom is trans located to the Ru-CO acceptor ligand (6a). The minor signals can
instead be attributed to the diastereoisomers k2(N3,O2)-(RuH(CO)(PPh3)2THAc) (7).

In the latter case, closure of the ring is not favorable for steric congestion, taking into
account that the thymine O(2) atom is partially engaged in the H-bond with the carboxyl-
nit. In this context, the strained seven-membered species 8 (Scheme 2), which is probably
derived from the chelation of k2(O,O)-, was never observed, in agreement with the high
calculated energy (39.0 and 26.3 kJ mol−1).
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Scheme 2. The seven-membered k2(O,O2)-8 species that were never observed. The inversion between
the adjacent H and CO ligands would produce distinct isomers with relatively high energy (26.3 (8a)
and 39.0 (8b) kJ mol−1).

The nature of the THAc–coordinated species k2(O,O)-3 was supported by the ESI-
Ms analysis in MeOH. The occurrence of the cationic stable species (Ru(CO)(PPh3)2(k2-
THAc))+, where (M − H)+ = 837 m/z, and fragments generated by the loss of the THAc
(m/z = 653) and CO (m/z = 625) ligands, respectively, are also observable (Supplemental
Figures S9 and S10). Signals related to the rapid oxidation of PPh3 under the experimental
conditions were also revealed (m/z = 301 and 279, OPPh3). The loss of a hydride to give a
(M − H)+ peak is common for this kind of complex, as already been reported [6].

The spectrum of the less stable monohapto species instead shows the occurrence of
the cationic fragment (m/z = 1123) relative to (M + Na)+ (Supplemental Figure S8).

The names (colors) for each diastereoisomer imply the stereo-location of the reciprocal
axial phosphine (Pa); the chelated heteroatoms are labeled with the same numbers as
shown in Figure 2, and the final atoms in parentheses separated by the hyphen indicate the
mutual trans-position. Through self-coupling, the orange or blue major isomers of trans-6a,
7a could also generate the macrocycle of 4 (Figure 6). However, the higher energies and
geometric criteria required to select the opposite stereogenic centers to be coupled make
the formation of the dimer through this path significantly unfavorable.

2.2. Characterization of 4 and 5
2.2.1. ESI-Ms of 4

The cationic ESI mass spectrum of the dimer of 4 presented a pattern motif analogous
to the parent k1-fragment, but was significantly broader and unresolved, typical of species
generated from symmetrically fragmented dimeric molecules (see Figure 7A).

2.2.2. Description of the X-Ray Crystal Structure of 4

The X-ray molecular structure of 4 is shown in Figure 8, and the related bond lengths
and angles are reported in Table 1. The molecule sits around an inversion center located
midway between the Ru atoms, and consists of two Ru(PPh3)2(CO) units bridged by two
thymine acetate groups. The geometry of the coordination at the Ru centers is a distorted
octahedron with the PPh3 ligands adopting an unusual cis-configuration, one CO, and two
bridging thymine acetate groups. The thymine acetate units are arranged in an antiparallel
mode, coordinated to each Ru atom through one oxygen of the carboxylate moiety of one
ligand and chelated by the (N,O) atoms of the thymine belonging to the second bridging
ligand, thus forming a 14-membered dimetallacycle.
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Figure 7. (A) The ESI-Ms spectra (positive mode) support the formation of a dimeric form, stabilized
by the ring compenetrating the k1(O)-2 metal fragments, as observed by the signal at 859 (M + 2Na)2+.
(B) Simulation of ESI-Ms (positive mode) relative to 4.
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Figure 8. X-ray crystal structure of k2(N,O),k1(O)-(Ru(CO)(PPh3)2THAc)2 (4). The crystallographic
inversion center is located midway between the Ru atoms.

Table 1. Selected bond lengths (Å) and angles (◦) of 4 compared with the free THAcH. Adapted with
permission from Ref. [18]. 2004, Liu M.C.

Thymine Acetate 4 THAcH

C6-O4 1.23 (1) 1.241 (2)
C6-N2 1.35 (1) 1.371 (2)
C7-N2 1.341 (9) 1.379 (2)
C7-O3 1.280 (8) 1.213 (2)
C7-N1 1.358 (9) 1.376 (2)
C3-C4 1.33 (1) 1.338 (2)
C3-N1 1.38 (1) 1.375 (2)

Metal Center
Ru-P1 2.355 (2)
Ru-P2 2.348 (2)
Ru-O1 2.108 (5)
Ru-O3 2.216 (5)
Ru-N2 2.109 (7)
Ru-C8 1.81 (1)

For the thymine acetate, this bridging mode is unprecedented, since the most com-
mon bridging mode is that involving only carboxylate oxygens, as has been found, for
example, in a series of copper complexes (Cu2(µ-OOCCH2-T)4(G)2) (T = thymine-1-acetate,
G = dimethylformamide, etc.) [19]. As a consequence of the bidentate coordination of O3
and N2 at the ruthenium atom, a lengthening of the C7-O3 bond (C7-O3 1.280(8) Å) associ-
ated with a shortening of the C7-N2 bond (C7-N2 1.341(9) Å) was observed in comparison
with the corresponding bond distances in the free THAcH [18].

Furthermore 4 established several nonclassical intermolecular H bonds (Figure 9)
involving the uncoordinated carboxylic O atoms of the thymine acetates with the aromatic
hydrogens (O2 . . . H43-C43) and the O of the carbonyl group bound to Ru that interacted
simultaneously with the aromatic hydrogens H43 and H24 (O5 . . . H43-C43 and O5 . . .
H4-C24), with each molecule engaging with six neighboring H bonds. The supramolecular
network is controlled by intermolecular H bonds, as shown by the packing of the crystals
(Figure S14).
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2.3. Proposed Reaction Path

Herein, we describe the reactivity of the dihydride (Ru(H)2(CO)(PPh3)3) complex,
1, in refluxing toluene with an equimolar amount of THAcH (Scheme 3), unexpectedly
producing the dinuclear 14-membered symmetric macrocycle of the type k2(N,O), k1(O)-
THAc-(Ru(CO)(PPh3)2)2 (4).

The course of the reaction, likely driven by the reciprocal association of the mer-k1(O)-
monohapto species of 2, is induced by:

• The rapid release of H2 from the reaction of the acidic NH-thymine ring and the Ru-H
fragment;

• The dissociation of a PPh3 ligand through the action of the N-nucleophilic addition to
the center of the Ru;

• Stereo-rearrangement of the phosphine ligands to achieve the less encumbered cisP,P
conformation, which was ultimately exhibited by the Ru skeleton in the solid state.

The cleavage of the vicinal phosphine in the mer-k1(O)-2 complex to form the chelate
trans-k2(O,O)-(RuH(CO)(PPh3)2THAc), 3, is, however, a competitive route favoring entropy.
In solution, the phosphine ligands occupy a mutual trans position, as confirmed by the
relative triplet in the 1H NMR spectra. Thus, the trans–cis rearrangement of phosphine
is required to explain the stereochemistry of the crystallized macromolecule of 4. The
precursor mixture, after standing in a CDCl3 solution in an NMR tube for 30 days at
−20 ◦C, formed crystals of the dimeric species of 4 together with a minor amount of
the monohapto-dihapto species 5. This result suggested that the k2-chelated species of
3 favoring entropy exhibited faster incorporation of a further THAcH molecule into the
Ru skeleton, promoted by the stronger hydridic character than the parent, 1. Thus, the
formation of the unexpected dimetallacycle k1(O), k2(N,O)-4 and the monomeric species
k1(O), k2(O,O)-5 can be attributed to the influence of distinctive features:
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• The poor solubility of the large molecule of 4 in chlorinated polar solvents, such as
CH2Cl2, or CDCl3;

• The stronger nucleophilic ability to promote self-coupling, shown by the tautomeric
iminol species, compared with the stable keto-amino form.
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Scheme 3. Scheme of the distinct courses of the reaction to explain the concomitant formation of
the mixture composed of the dimer k2(N,O), k1(O)−(Ru(CO)(PPh3)2THAc)2 (4) and the doubly
coordinated k1(O), k2(O,O)−(Ru(CO)(PPh3)2(THAc)2) (5).

On the other hand, the enhanced hydridic character (δ = −16.5) of the chelate transP,P,
k2(O,O)-(RuH(CO) (PPh3)2THAc) (3), due to the influence of the dihapto-acetate ligand,
and the minimized inter-ligand encumbrance, in agreement with the previous theoretical
calculations for the energy of torsion (10 kJ mol−1) [1], are factors which promote both
the extra stabilization of 4 and the competitive formation of 5. The resulting cisP,P rear-
rangement, which was exhibited by the crowded species of 5, was also observed also in the
self-aggregated multihapto complex, 4.

2.3.1. IR Spectra

In the THAcH ring, the CO(2) and CO(4) groups may act as hydrogen acceptors,
whereas the amino N3 is a hydrogen donor. Due to the forms of isoenergetic resonance,
it is commonly assumed that the lactim–lactam tautomerism prevails over the enol–keto
equilibrium. In a previous report, the absorption at 1918 cm−1 was attributed to a mixture
of 2, while more extensive degradation was exclusively assigned to 2a in keto form (see
Supplemental Figure S6). The IR spectrum of 2a, indicated as a precursor of the metallacycle
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4, shows a pattern with 1683 (CO asym), 1654 (CO sym), and 1362 (C-O) cm−1 bands, typical
of the structure of monohapto-acetate. The Ru-carbonyl moiety appeared at 1918 cm−1

with weak broad absorption of Ru-H at ν = 2044. The acidic nature of the lactam form
increased in the tautomerized lactim form through the presence of the iminol-(HO-C=N)
moiety. Likewise, the imino-nucleophilic aptitude, permitting self-aggregation towards the
center of Ru’s center, was strongly enhanced. We believe that the tautomeric equilibrium
from the lactam to the lactim forms was triggered by both the intramolecular interaction
of H of the O-H-O type and by the extensive intermolecular H-binding network. The key
to the rearrangement of the Ru-monohapto-thymine acetate 2a to the minor tautomeric
iminol species relies on the promotion of H-transfer to the stable lactim form. On the
other hand, the growing IR absorbance at ν = 1511 (w) in the k1-acetate precursor 2b
may be associated with the Ru-CO at ν = 1930 and the weak carbonyl thymine band
observed at 1737 cm−1, indicating the tautomerized transformation towards the “transient”
lactim –((HO)C=N-C(O)NH) species (see Supplemental Figure S4). It is conceivable that
the N-imine moiety of 2b may exhibit a nucleophilic aptitude to the center of Ru which is
stronger than that of the stable keto-amino species, thus favoring a concerted cleavage of
the opposite equatorial phosphine to alleviate steric congestion. This process is triggered
by multiple intermolecular interactions, which shuttle the transfer of H to promote the
transformation to the iminol forms [20–29]. The coordination of Ru enables the stabilization
of the unstable tautomer through the intramolecular interaction o fH (O-H——(O)C-ORu)
between the tethered carboxy unit and the C2(OH) iminol moiety of C (Figure 10), as
suggested by the observed high-shifted signal at δ = 11.2. The intermolecularly bound keto
forms of B, which appeared at δ = 8.2, is the typical NH—(O)C Watson–Crick type bond [1].
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Figure 10. Typical intra- or intermolecular H–bonds in the monohapto k1(O)–2 precursor [1].
(A) neither intra– nor intermolecular H–bond is present. (B) exclusively intermolecular H–bonds of
Watson–Crick type are present in the reciprocal interactions between the species. (C) intramolecular
H–bond between monohapto carboxyl unit and ring CO2 carbonyl function is evidenced.

As a clue to its potential anticancer activity, the formation of minor iminol–tautomers
may induce mismatching of the pairs of DNA nucleobases. The process of tautomer-
ization is commonly recognized to induce remarkable consequences for the structure of
DNA [30–44]. Since the canonical keto-amino isomers define the structure of the H–bond
for Watson–Crick nucleobase pairing, the minor tautomeric species, when impaired during
replication, may lead to mutagenesis [45–48]. Plausibly, both the intra– or inter–H–bonding
networks of the Ru-coordinated k1(O)-THAc may be responsible for enol–thymine tau-
tomerization, which ultimately produces the kinetically driven self-assembled Ru macrocy-
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cle. Further, the entire structure exhibits extra stabilization through the mutual coordination
of the heteroleptic thymine ring k2(N3,O2). We suppose that, as a biochemical implica-
tion, the rare tautomeric forms are likely to act in the replication of mismatched DNA
nucleobases. Unfortunately, the great insolubility precludes any attempts at biochemical
tests. Further applications might be in trapping small molecules such as solvents (CHCl3,
cyclohexane, or EtOH), as observed by X–rays of the crystallographic cells in different
preparations, or by sequestering CO2 or alkaline metals such as Na+ or K+, which may be
confined in the 14-membered large metallacycle. The central cavity, where the distance
between the carboxyl C atoms is 557 pm, exhibited similar dimensions to zeolite holes,
as revealed by the space-filling molecular model (Supplemental Figure S12). However,
the sterically demanding phosphine ligands can regulate the entrances by closing the
cyclo–metalated ring, and this process may be dynamic, owing to the flexible motion of the
related P-phenyl rings.

The IR pattern of acetate units, which reciprocally penetrate the opposite centers
of Ru, were influenced by the four-membered dihapto–heteroleptic k2(N,O)–chelate (6
and 7), since the electrons’ density was strongly affected by the N-donor atom, revealing
distinctive bands at 1654 and 1624 cm−1 assigned to the asymmetrical and symmetrical
stretching modes of carboxy, respectively, with ν = 1340 cm−1 for the ν of C-O. The intense
sharp band at ν = 1975 cm−1 of dimer 4 (Figure 11) was indicative of the presence of
Ru-CO. Furthermore, the bending absorption at 1091 cm−1 likely generated an overtone at
2222 cm−1, the attribution of which was suggested by the IR simulation calculated by DFT
(see Supplemental Figure S13), which distinguished the keto form of absorption from the
tautomeric form of enol, confirming the occurrence of the latter.
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2.3.2. NMR Characterization

As revealed by the Ru-H triplet at −16.9 ppm, the remaining solution, composed of the
related isomer, 2b, underwent thermodynamically driven evolution of the chelate k2(O,O)-
3. Meanwhile the insoluble microcrystalline white powder of 4 was dissolved in a 1:1
EtOAc–CH2Cl2 solvent mixture and purified upon filtration on a celite pad. The resulting
compound showed 1H NMR signals at δ 5.75, 3.20, and 1.91 (see Supplemental Figure S1)
in CDCl3, attributed, respectively, to the methyne, N-methylene, and methyl groups. Due
to the extreme insolubility, any attempts to dissolve the microcrystalline white powder in
deuterated Me2SO (dielectric constant ε = 46.7) or MeOH (dielectric constant ε = 32.6) led
exclusively to rapid decomposition within 36 h at room temperature. However, the 31P
NMR spectrum of CDCl3 revealed two residual doublets at 44.1 and 47.6 ppm assigned
to the cis-located phosphine ligands of 4, and a broad signal at 38.4 ppm attributable to
the decomposition to the chelate precursor, trans-k2(O,O)-((CO)(PPh3)2(THAc)), which
was around δ = 29 (see Supplemental Figure S2) was the predominant signal, due to the
OPPh3-oxidized phosphine released from the mer-k1(O)-2a.

2.3.3. DFT Calculations

To shed some light on the unexpected results and the relative stereochemistry, further
theoretical calculations were run by adopting a more accurate density-functional approach
and by introducing the effects of the solvent and the temperature to mimic the actual
transformation (see Scheme 4).
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As an alternative description of a further plausible mechanism, inspired by the stereo-
geometry of the final product (see Figure 8), we report the following nucleophilic reciprocal
attack (see Figure 12).
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Figure 12. Description of the “synchronic” acid–base reaction of the carboxyl units and the alcohol
moieties to the ruthenium hydrides, driven by the release of H2 favoring entropy, together with
the N-nucleophilic attack by the iminol units, which induce the cleavage of the opposite phosphine
ligand to achieve the observed stereochemistry of the final macrocycle of 4.

3. Materials and Methods
3.1. General

All reactions were routinely carried out under an argon atmosphere, using the standard
Schlenk techniques. The solvents were distilled immediately before use under nitrogen
from the appropriate drying agents. Chromatographic separation was carried out on
columns of dried celite. The glassware was oven-dried before use. The infrared spectra
were recorded at 298 K on a PerkinElmer Spectrum 2000 FT-IR (Fourier transform infrared)
spectrophotometer (Waltham, MA, USA), the electrospray ionization mass spectrometry
(ESI MS) spectra were recorded on a Waters Micromass ZQ 4000 (Milford, MA, USA),
with the samples dissolved in CH3OH. All the deuterated solvents were degassed before
use. All NMR measurements were performed on a Mercury Plus 400 instrument (Ox-
ford Instruments, Abingdon-on-Thames, UK). The chemical shifts for 1H and 13C were
referenced to internal TMS. All NMR spectra were recorded at 298 K. The decomposition
point (dec. point) was measured on a Büchi 535 apparatus (Flawil, Switzerland). All the
experimental and calculated yields were referenced to the precursor 1. All the reagents
were commercial products (Aldrich, Saint Louis, MI, USA) of the highest purity available
and were used as received. The (RuCl3·xH2O) was purchased from Strem (Bischheim,
France) and used as received. The compound (Ru(H)2(CO)(PPh3)3) (1) was prepared by
published methods [17].

3.2. Experimental Procedure

3.2.1. Synthesis of the Complex k1(O), k2(O,O)-(Ru(CO)(PPh3)2THAc) (5)

A refluxing toluene solution of (Ru(H)2(CO)(PPh3)3) (100 mg, 0.109 mmol) were added
under stirring to two equivalents of thymine acetic acid (40 mg, 0.218 mmol). After 4 h,
the absorption of Ru-CO at 1940 cm−1 disappeared. After drying under a vacuum, the
light brown solid was washed with Et2O (3 × 10 mL) to remove the released PPh3. The
crystallization that occurred in the CDCl3 produced white crystals of 5 (0.095 mmol, 97 mg,
87%). The same reaction was carried out by adding an excess of THAcH or two equivalents
consecutively until the infrared (IR) absorption bands of the starting material disappeared.

The spectroscopic characterization, including the mass spectra of 5, has already been
reported in previous studies [1].
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3.2.2. Synthesis of the Complexes k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2 (4) + k1(O),
k2(O,O)-Ru(CO)(PPh3)2(THAc)2) (5)

The ligand thymine acetic acid (20 mg, 0.109 mmol) and (Ru(H)2(CO)(PPh3)3) (100 mg,
0.109 mmol) were dissolved in 10 mL of toluene and refluxed until the initial Ru-CO IR
absorption of 1 at 1941 cm−1 disappeared. After 3 h of refluxing in toluene, the mixture
was cooled to room temperature and the solvent was evaporated under a vacuum. Then
the solid was dissolved in dichloromethane and filtered on a celite pad. After evaporation
of the solvent, the dark brown solid was re-dissolved in CDCl3 and cooled to −20 ◦C.
After standing for 30 days at −20 ◦C, white crystals belonging to the macrocyclic dimer
complex (4) (30 mg, 0.018 mmol, 33%) and to the doubly coordinated species of 5 (20 mg,
0.020 mmol, 18%) were collected and filtered.

IR (KBr, cm−1): ν CH, 3059 m; Ru-CO 1975 vs. νasym C(O)O 1654 vs. νsym C(O)O 1624
vs. C=N-C(O) 1535 vs. ν C=C 1473 vs. 1437 s; ν C-O 1340 s. 1H NMR (300 MHz, 25 ◦C
CDCl3) δ (ppm): 7.74–7.29 (PPh3, 30H) 5.75 (s, 1H), 3.17 (s, 2H), 1.91 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ (ppm): 191.97 (C=O THAc), 167.91 (C(O)O THAc), 135–127 (PPh3),
125.17 (CH), 68.30 (N-CH2), 38.88 (CH3). 31P NMR (162 MHz, CDCl3) δ (ppm): 46.51
(d, 2JPP = 25.7 Hz), 43.09 (d, 2JPP = 25.7 Hz). Dec. point 185–187 ◦C. Elemental analysis:
calculated C, 63.15; H, 4.46; O, 9.56; P, 7.40; actual C, 61.83; H, 4.57; O, 9.07; P, 7.31.

3.3. X-ray Crystallography

The X-ray intensity data were measured on a Bruker Apex II CCD diffractometer.
The cells’ dimensions and the orientation matrix were initially determined from a least-
squares refinement on the reflections measured in three sets of 20 exposures, collected
in three different ω regions, and eventually refined against all data. A full sphere of the
reciprocal space was scanned in steps of 0.3◦ ω. The software SMART (version 5.051)
was used for collecting the frames of data, indexing the reflections, and determining the
lattice parameters. The collected frames were then processed for integration by the SAINT
program, and an empirical absorption correction was applied by using SADABS. The
structure was solved by direct methods (SIR 2004) and subsequent Fourier syntheses,
and refined by the full-matrix least-squares on F2 (SHELXTL) [49–52] using anisotropic
thermal parameters for all non-hydrogen atoms. The asymmetric unit contained one CHCl3
molecule and one H2O molecule.

CCDC-2,252,045 contains the supplemental crystallographic data from this study.
The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html,
(accessed on 27 march 2023), or by contacting The Cambridge Crystallographic Data Centre
CB2 1EZ, UK; fax: +44 1223 33603, e-mail: deposit@ccdc.cam.ac.uk).

3.4. Computational Details

All DFT calculations were performed using the ORCA 5.0.3 suite of quantum chemistry
programs [53]. The geometries were optimized in a vacuum using the M06L function [54]
and the def2-TZVP basis [55]. Dispersion corrections were also accounted for by following
the DFT-D3 procedure (with zero damping functions), as suggested by Grimme et al. [56].
The vibrational frequencies were calculated at the optimized geometries to check the stabil-
ity of the stationary points. The free energies at the boiling temperature of toluene (383.8K)
were evaluated by applying a scale factor of 0.9824 to the vibrational frequencies, which
was adequate for the present combination of functional DFT and the basis set [57] and a
hypothetical pressure of 294.7 atm for the toluene solvent [58], to correct the overestimation
of the entropic contributions. The final single-point energy calculations at the previously
optimized geometries were performed with the large def2-QZVPP basis [55] and the M06
function [59], with the inclusion of the effects of solvation (with a toluene solvent) through
the SMD model [60] and the interactions of dispersion [56]. The final energy of each
structure, which was used to evaluate the relative free energies of the various products
and intermediates, was determined by summing the difference between the def2-TZVP
electronic energy and the free energy to the single-point electronic energy of def2-QZVPP.

www.ccdc.cam.ac.uk/conts/retrieving.html
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4. Conclusions

By reacting 1 with one equivalent of THAcH after standing for 30 days at −20 ◦C in
CDCl3, both 4 and 5 were formed. This unexpected result can be explained by postulating
the intercepted intermediates as key reaction steps. The self-aggregation of the rapidly
formed monohapto-acetate 2a, followed by the mutual addition of heteroleptic (N,O)
produced 4. Conversely, the homoleptic chelation of 2b to form the chelated species 3
was kinetically competitive, promoting the further incorporation of the THAc ligand to
produce 5.

The energetic considerations calculated by DFT enabled us to interpret the mechanism
through the penta-coordinated derivatives, postulated as rather low energetic transition
states. The trans–cis rearrangement required the occurrence of a much higher energy bar-
rier than the nucleophilic attack of the mer-monohapto acetate of 2 on the reciprocal Ru
site, which released an apical ligand, to produce the resulting cis-P,P stereochemistry. The
proposed mechanism supports the facile promotion of H to explain the tautomerization
from keto-amino to iminol species, exhibiting a stronger Ru-nucleophilic reaction of the
k1(O)-coordinated thymine ring by regulating the distribution of the kinetic products. The
observed dynamic behavior of the particular aptitude for the transfer of H, by keeping the
metallic scaffold, might suggest further tailored catalytic processes, such as isomerization,
as in the case of the chelate homoleptic k2(O,O)- species [13] or novel insight into thera-
peutic antitumor agents for the versatile heteroleptic k2(N,O) compounds [3]. Trapping
small molecules such as solvents or CO2, or sequestering alkaline metal ions may also
constitute some visionary applications of the macromolecule 4, considering its behavior
as an organometallic crown ether. These targeted topics could be the subjects of novel
perspectives and future investigations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28103983/s1. NMR spectra (Figures S1–S3 in Supple-
mentary Ffile). IR spectra (Figures S4–S6 in Supplementary File). Mass spectra (Figures S7–S10 in
Supplementary File). Computations (Figures S11–S13 in Supplementary File). Crystal structure (Table
S1, Figure S14 in Supplementary File). PXRD (Figure S15 in Supplementary File).

Author Contributions: Conceptualization, S.B. and R.T.; methodology, S.B, R.T. and M.M; software,
R.T.; validation, S.C., C.B. and G.M.; formal analysis, F.B.; investigation, G.D.; resources, C.B.; data
curation, M.M.; writing—original draft preparation, S.B.; writing—review and editing, R.T. and G.M.;
visualization, C.B.; supervision, R.T.; project administration, S.B.; funding acquisition, S.B and C.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Alma Mater Studiorum—Università di Bologna (RFO 2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are deeply grateful to Alessandra Petroli for the NMR recordings and
discussions, and to Pietro Paolo Cristallini for the experimental graduate thesis work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bordoni, S.; Cerini, S.; Tarroni, R.; Monari, M.; Micheletti, G.; Boga, C. Ruthenium–Thymine Acetate Binding Modes: Experimental

and Theoretical Studies. Appl. Sci. 2021, 11, 3113. [CrossRef]
2. Małecki, J.G. Half-sandwich ruthenium(II) complexes with N- and N,(N,O)-donor ligands: Molecular, electronic structures, and

computational study. Struct. Chem. 2012, 23, 461–472. [CrossRef]
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