Table of Contents

NMR SPECTRA
S1
S2
S3
IR SPECTRA
S45
S5
S6
MASS SPECTRA
S7
S8
S9
S10
COMPUTATIONAL
S1110
S12 11
\$13
CRYSTAL STRUCTURE
Table S1
S14
PXRD
S15

NMR SPECTRA

Figure S1: ¹H NMR spectrum of 4 in CDCl₃ (300 Mhz)

Figure S2: ³¹P NMR spectrum of **4** in CDCl₃ (162 Mhz)

Figure S3: ¹³C NMR spectrum of **4** in CDCl₃ (101 Mhz)

IR SPECTRA

Figure **S4:** IR spectrum of k 1 (O)-**2a** enolic form. The band at 1511 cm-1 is attributable to the incipient transformation to the enol moiety of the precursor of **4**.

Figure S5: IR spectrum of microcrystalline powder 4 of a different preparation: the band atv = 1533.64 is characteristic for the lactim tautomeric form.

Figure S6: IR spectrum of KETO 2a, after extraction in DCM/Et2 1:1

MASS SPECTRA S7

Figure S7: Mass spectrum of 4 compared to simulations.

S8

A

B

Figure S8: (A) Mass spectrum of $k^1(O)$ -2a. (B) simulation of $[M + Na]^+$

A

B

Figure S9: (A) Mass spectrum of k²(O,O)-3 (positive mode). (B) simulation of [M – THAc]+

S10

A

B

Figure S10: (A) Mass spectrum of $k^2(O,O)$ -3 (positive mode, m/z: 680 – 940). (B) Simulation of $[M - H]^+$

COMPUTATIONAL

Figure S11: DFT calculations of all four membered- k2(N,O)- heteroleptic and k2(O,O)- heptacycles. All energies are calculated relative to the energy of mer-1 + thymine-acetic acid reactants. All species are named using the following scheme: the three couples of ligands at opposite vertex of the octahedron are enclosed in parentheses, with the additional specification of relative phosphine position. Legend: Pa=axial phosphine, Pe=equatorial phosphine, CO=carbonyl, H=hydride, OCO=thymine carboxylate, O2=thymine oxygen in 2 position, N3=thymine nitrogen in 3 position, O4=thymine oxygen in 4 position

Figure S12: Space filling of 4

Figure S13: Comparison between the experimental IR spectrum of DFT-simulated IR spectra of keto and Enol form relative to the dimer 4.

CRYSTAL STRUCTURE

Table S1

Table S1. Crystal data and experimental details for 4

Compound	4
Formula	C88H72N4O10P4Ru2.2CHCl3.2H2O
Fw	1942.25
Т, К	296(2)
λ, Å	0.71073
Crystal symmetry	Monoclinic
Space group	P21/c
<i>a,</i> Å	10.220(2)
<i>b,</i> Å	29.771(7)
<i>c,</i> Å	14.713(3)
α	90
β	90.005(2)
γ	90
Cell volume, Å ³	4476.7(17)
Ζ	2
D _c , Mg m ⁻³	1.441
μ (Mo–K $_{\alpha}$), mm ⁻¹	0.649
F(000)	1976
Crystal size/ mm	0.15 x 0.05 x 0.05
θ limits, °	1.368 to 25.000
Reflections collected	36382
Unique obs. Reflections $[F_o > 4\sigma(F_o)]$	7816 [R(int) = 0.1264]
Goodness-of-fit-on F ²	0.983
$R_1(F)^a$, $wR_2(F^2)[I > 2\sigma(I)]^b$	0.0738, 0.1418
Largest diff. peak and hole, e. Å ⁻³	0.773 and -0.616

^{a)} $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$.^b w $R_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$ where $w = 1/[\sigma^2 (F_0^2) + (aP)^2 + bP]$ where $P = (F_0^2 + F_c^2)/3$.

Figure S14: View down the c axis of the crystal packing of 4. Light blue dotted lines represent H bonding interactions.

Figure S15: Comparison between the experimental (A) and simulated (B) PXRD spectra of 4, which supports the phase purity of compound 4.