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Handling Data Handoff of AI-based
Applications in Edge Computing Systems

Domenico Scotece, Member, IEEE, Claudio Fiandrino, Member, IEEE, Luca Foschini, Member, IEEE

Abstract—Edge computing aims at better supporting low-
latency applications. One of its key techniques is computation
offloading, the process that outsources computing tasks from
resourced-constrained mobile devices and moves them to edge
data centers. In this paper, we tackle an emerging problem within
the umbrella of computation offloading, i.e., migration of offloaded
inference tasks of Artificial Intelligence (AI) trained models. Such
context tailors migration aspects of data-sensitive services where
i) the value of the updates is inversely proportional to the data
age and ii) outage is highly detrimental to accuracy. To tackle
this challenge, we propose Mobile Edge Data-handoff (MED) a
framework able to relocate inference or online training tasks from
one edge datacenter to another by moving only the necessary
data to minimize any accuracy drop during the process. We
implemented MED in a well-known edge computing emulator,
openLEON, and experimentally verified its performance with an
AI-based Industry 4.0 application that forecasts the gas flow in a
chemical plant. For our experiments, we use a real, open-source
dataset that contains sensors readings. Collected results show that
MED, employing proactive data handoff algorithms, is able to
minimize the packet loss during the handoff thereby providing
guarantees on the inference accuracy.

Index Terms—Multi-access Edge Computing, Industry 4.0, data
handoff, computation offloading

I. INTRODUCTION

IN the recent years, edge computing has gained momentum
and attracted the interest of both industry and academia [1]–

[5]. Driven by the widespread diffusion of mobile and wearable
devices and the tremendous growth of the Internet of Things
(IoT), a number of new applications has emerged and calls
for stringent requirements such as intensive computation
and tight latency budgets. Examples of such applications
are virtual and augmented reality (VR/AR), navigation, and
gaming [6]. Although preliminary measurement studies on
existing commercial edge platforms are yet not so promising in
terms of latency improvement [1], edge computing is regarded
as key to meet strict constraints by pooling computing resources
closer to the end user and not in the far cloud. Such concept
coincides with other paradigms, including fog computing, mist
computing [7], and Multi-Access Edge Computing (MEC) [8]
that work at different protocol stack layers. In this paper, we
focus on the application layer and tackle a problem that is
independent of the actual technology/standard used; hence,
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hereafter we will only use the term edge computing to refer
to all those significant and ongoing efforts in this area.

Computation offloading is the process that moves away from
the resource-constrained mobile devices part of the computing
tasks onto the edge, for instance, to a micro data center
deployed in close proximity of the network access that we call
herein after edge data center (EDC). This is key to cut the
latency and augment performances of the mobile devices by
prolonging battery life time and by enabling the execution of
applications that would be impossible to run on the mobile
devices alone [9], [10]. In the presence of mobility, offloading is
more complex because the process of detaching from the current
service anchor (base station and computing server) and attach
to the new anchor increases latency and that negatively impacts
user Quality of Experience (QoE). To this end, migrating the
service anchor in a way that follows the user movement has
been proven effective [11], [12].

In this paper, we take the research on computation offloading
and service migration in edge computing systems one step
forward. In particular, we tackle an emerging problem within
the umbrella of computation offloading, which we partially
analyzed in [13], i.e., migration of offloaded inference tasks
of Artificial Intelligence (AI) pre-trained models. This is a
radically different problem than the one concurrently tackled
in the literature (e.g., [11], [12]) and is becoming more and
more important in the context of beyond 5G and 6G use
cases like Industry 4.0 (I4.0) and unmanned mobility [14],
[15]. Let us consider the example of precision sensing and
actuation that is typical in I4.0 scenarios. Let us focus on
smart factory applications that leverage AI for handling big
data and machine learning algorithms to monitor and evaluate
processes [16]. In this scenario, the value of the updates is
inversely proportional to their age; hence, the capability to
process the latest sensing readings is of the utmost impor-
tance [17]. However, sudden downtime in the EDC devoted
to process such tasks might prevent the timely computation
thereby leading to a drop of inference accuracy. Static over-
provisioning or resource reservation are trivial solutions that
can be obviously outperformed by more intelligent approaches.
To this end, we seek a self-configuring mechanism, called
Mobile Edge Data-handoff (MED), which fully aligns with the
6G vision of zero-touch orchestration and configuration, and
we propose an intelligent data handoff migration solution that is
easy to integrate in MEC systems. In a nutshell, upon detecting
a possible system congestion that could lead to downtime, MED
migrates both data and the process status to a nearby EDC so
to reduce the amount of data loss and to always provide an
acceptable accuracy level.

MED differs from related works in several ways. On0000–0000/00$00.00 © 2021 IEEE
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the one hand, the existing literature on service and data
migration on MEC and fog computing has primarily focused
on the migration aspects. Examples include optimization of
live migration of Virtual Machines (VMs) [18], container
migration such as [19] that propose to use containers in its
live service migration framework by showing the associated
advantages, or IBM Voyager [20] that proposed a live container
migration service, which is vendor-agnostic, with consistency
guarantees, and designed according to the Open Container
Initiative (OCI) principles. On the other hand, several virtual
machine (VM) placement algorithms have been proposed to
optimize various metrics such as network overhead [21] and
server congestion [22]. As better clarified later on, this wealth
of work largely differs from ours because i) MED is designed
to achieve the best of the two worlds, i.e., to align with the
reactive schemes in relation to accuracy drop and be as efficient
as proactive schemes in terms of completion time, ii) its design
considers drop of accuracy reduction as a primary objective,
and iii) it enables to relocate inference from EDC-A to EDC-B
by moving fresher data. Actually, as we say later in the paper,
what is important for inference is the fresher data. Finally,
unlike our approach, several research works in the literature
do not provide evidence of a real deployment experience nor
in-the-field experimental evaluations [23].

We implement MED and extensively test an I4.0 application
with an open-source dataset. While a number emulators for
MEC exists [24]–[26], they model either network or computing
mechanisms, but fail at modeling both components precisely
thereby preventing to perform a fully-fledged performance eval-
uation that encompasses both mobile network and computing
domains. For this reason, we implement our system in the
openLEON testbed that allows to benchmark the performance
of edge solutions end-to-end, from the EDC to the end mobile
user or device [27]. openLEON uses srsLTE [28] to emulate
the mobile network, which is LTE. Despite being well-known
for higher latencies than 5G New Radio (RN) in standalone
mode, many solutions can be applied for its reduction [29] and
even make this technology usable for Virtual Reality (VR) [30].
The synopsis of contributions of this work is as follow:

1) We propose MED, a framework for service and data
migration in MEC environments that resembles a proac-
tive handoff algorithm. Moreover, MED enables data
handoff for data-sensitive applications, especially for
smart industry applications. We also show how to
implement MED in Kubernetes.

2) We conduct extensive evaluations implementing MED in
openLEON, a well-known emulator for edge computing
and tested with a real I4.0 application.

3) The results demonstrate that MED reduces inference loss
and data loss. Compared to the case of not performing the
handoff that leads to unlimited data loss during outages,
MED limits the number of packets lost (down to 2 packets
in the worst case) without service interruption.

The remainder of the paper is organized as follows. We
explain our motivation for this work in Section II. We introduce
the models and the problem in Section III. The MED solution
and a possible implementation blueprint are proposed in
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Figure 1. Task scheduling results at different edge node. The accuracy improves
(green box) if the computation is moved from the current EDC of execution.

Sections IV. We evaluate its performances in Section V. After
reviewing the related works in Section VI, we report a thorough
retrospective discussion of our solution in Section VII. The
conclusion of this paper is presented in Section VIII.

II. MOTIVATING EXAMPLE

As described in the 5G-PPP specifications, factories of the
future will leverage the integration between the Cyber-Physical
Systems (CPS) and the applications of the Internet of Things
(IoT) [31]. For example, in process automation industries (e.g.
automotive production, industrial machinery and equipment,
consumer products) typical cycle times are around 100 ms and
require high reliability (i.e., 99.9999)% [32]. Cloud computing
in conjunction with edge computing can effectively handle
those issues by guarantying high reliability very low latencies
by offloading the computation at the edge of the network.

To work properly, an industrial machine that offloads data
for computation to a EDC requires low latency and high
availability. Task t, depicted in Fig. 1, is sent from an industrial
machine (representing the User Equipment - UE) to an EDC
(named current EDC) for processing. Industrial applications
already use networks technologies such as wired Ethernet or
wireless technologies like WiFi [33] that represent a starting
point for more demanding, transformative automation using
5G technologies. Moreover, the factory owner has full control
of deployment environment and industrial 5G networks can be
designed and optimized differently in different shop floors. For
instance, in the same industry center, there could be several
shop floors that work in different sectors, and the workload
is likely to vary over time. Typically, a node of one floor is
connected to a single Base Station (BS) that interconnects the
node with the closest EDC (e.g., on the same floor). In the
event that the current edge node is running out of resources
(e.g. high CPU consumption), it may not be able to meet the
service requirements.

In this paper, we consider the Industrial Analytics sce-
nario—is the use of analytics in IIoT systems [34]. The
most representative example is predictive maintenance where
analytics can be directly applied in the control loop of machines
to adapt their behavior in order to avoid system outage.
Generally, industrial analytics leverages machine learning
algorithms to analyze large amounts of data gathered from
industrial sensors. However, there are several challenges and
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requirements posed by industrial analytics. The first and the
most important is the Correctness. Industrial Analytics must
satisfy a higher level of accuracy when providing analytic
results [34].

Back to our industry center example, if the EDC located
on the same floor of the node is predicted to be temporarily
overloaded in the near future, it may be beneficial to move
the computation to another “idle” EDC located on another
shop floor. Indeed, by leveraging the computing load variations
across the different EDCs, MED exploits un-utilized capacity
when available. Figure 1 shows the drop of accuracy and the
service total time if the computation would remain at the current
EDC and thus with no handoff procedure into action. The data
loss during server downtime leads to a drop of accuracy and, in
turn, the predictive maintenance system will not work properly.
To avoid this critical situation, it is important to promptly move
the entire predictive maintenance system to the new EDC in
order to lose as little of accuracy as possible. The gain in terms
of accuracy and service time can be appreciated in Fig. 1, see
the blue line at bottom left of the figure. Another different
solution might be to collect data locally (i.e., in the sensor’s
memory) during the service downtime and upload those data
once the system restores. However, considering a scenario
where real-time data streams have to be processed by machine
learning algorithms online (e.g., inference for alarm prediction)
and if this is not possible, such data can be considered lost
because it is no longer useful being outdated.

Therefore, to compute correctly the task t at the new EDC,
both service and input data shall be available. Nowadays,
services are commonly built as microservices (or containers)
typically managed by an orchestrator engine such as Kuber-
netes [35]. Moreover, service autoscaling functionalities are
included in Kubernetes and allow service migration purposes.
The same could be applied to the input data if stored in
a container. The problem occurs when moving AI-based
applications. On the one hand, service migration solutions
should support proactive data migration as well in order to
grant negligible start-up time [36]. On the other hand, data
migration strategies should be not proactive, but move data
“just in time"; proactive migration would create too much
unnecessary overhead because for inference purposes only the
most recent data counts.

Finally, MED handoff process is characterized by three
different modules: triggering, decision, and execution. The
first module, as proved by our model in the next Section,
works in a proactive way and is in charge of selecting the
best time window to start the handoff according to different
metrics. The decision module identifies the candidate EDC
for the handoff and it works in a reactive way. Specifically,
when the triggering module triggers the handoff, the decision
module is turned on. Last, the execution module effectively
performs the handoff and it works in two distinct ways, that is
a proactive way for AI models and applications and a reactive
way for data. Specifically, the choice to move data in a reactive
way is justified by the recent trend of working with fresher
data (Age of Information [17], [37]), our objective is to move
only the last window of data that is the most important for AI
applications. We call this process data handoff.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model is first presented, followed
by the problem formulation. Finally, the migration condition
problem is formulated.

A. System Model

We consider a set of U = {1, 2, . . . , U} users that access
computing resources available from a set N = {1, 2, . . . , N}
EDCs via mobile network technology. Specifically, each user
u ∈ U can access computing resources of the EDC n ∈ N
through a wireless link that provides the interconnection to a
base station (eNB or gNB according to 4G and 5G terminology
respectively) which is the entry point to the network of EDCs
N . Without loss of generality, we assume eNBs/gNBs to be
interconnected with the EDCs via fiber optics or high capacity
wireless links, e.g., millimeter-wave backhaul links [38]. The
set E = {1, 2, . . . , E} defines the set of links that interconnects
the set of N EDCs, i.e., the network of edge data centers can
be represented as a graph G = (N , E). The edge e = ⟨n, n′⟩
where {e|n, n′ ∈ N , and e ∈ E} represents the link that
interconnects EDCs n and n

′
and is characterized by a time-

varying bandwidth bn,n′ (t).
Let cn ∈ C be a long-standing computing process that is

currently in execution in EDC n:

xn
c =

{
1 if task c is executed in EDC n,

0 otherwise.
(1)

We assume that by default, cn runs in background and when
it becomes active, for its execution it requires a time-varying
amount of CPU resources rcn(t). The CPU load can be
expressed in terms of floating-point operations per second
(FLOPS) or instructions per seconds (IPS). The CPU load
Ln(t) of each EDC n is defined as:

Ln(t) =
∑
cn

xn
c · rcn(t). (2)

Call L the maximum acceptable load when all the servers
in EDC n run at full capacity. Then, it follows that
Ln(t) ≤ L, ∀t ≥ 0.

For the set of computing processes C, we consider tasks
that are typical of I4.0 scenarios, like actuation, inference
of previously off-line trained learning model, etc. All these
tasks share a common aspect, i.e., for their execution, it is
required to process both historical and fresh information coming
from the sensors. Call Oi

cn the output of task cn at time
step i, let Γcn the set of outputs generated by cn: the past
outputs are denoted with Γ−

cn,i
⊂ Γcn . To make the notation

easy to follow, from now on we refer always to task cn,
which allows to drop the corresponding index. In other words,
Γ−
i = {Oi−1, Oi−2, . . . , Oi−κ} ⊂ Γ. Let us denote with tEi

and tSi the end and start time at step i. The precedence
constraint among the steps is defined by:{

tSi ≥ maxh∈Γ−
i
tEh Γ−

i ̸= ∅,
tSi = 0 Γ−

i = ∅.
(3)

In other words, the step i can not start if the previous steps
i− 1, i− 2, . . . , i− κ are not concluded. The task cn starts its
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execution at tSi upon receiving input data Di from the mobile
device. Without loss of generality, Di consists of one or more
data packets, e.g., information about sensor readings to be
processed. For its execution at step i and to produce the output
Oi to be included in Γ, i.e., Γ ← Γ ∪ Oi, task cn requires
Di and the historical data that produced the previous set of
outputs Γ−

i . We denote the historical data as the set I−i =
{Ii−1, Ii2 , . . . , Ii−κ}, hence Oi = (Di, I

−
i ). This captures the

case of inference on a previously trained learning model, e.g.,
the forecast of the status of the system in the next step. Over the
set of outputs Γ in a time window ∆t = (t, t+ τ ], ∀τ , further
processing is computed and if some criteria are met, e.g., an
important event is detected like an abnormal gas pressure in a
room, a reply message Ri is sent back to the mobile device,
e.g., to inform it about the actuation to be performed. For
example, the computation over Γ is needed to determine the
angle of rotation given the past actions that have been taken
by the robot or to trigger an alarm because the gas pressure in
a room has augmented too quickly.

B. Problem Formulation and Migration Condition

Our objective is to maximize the reliability of the system.
Call A(Γ)|∆t the accuracy of the event detection that is
computed over Γ in the window ∆t. A is maximized when
the computation takes place over all the outputs Oi ∈ Γ = Γ∗:

max
∆t

A(Γ). (4)

In the presence of service downtime in the edge data center
n, the mobile device can not send fresh inputs D and therefore
some of the outputs are missing and the resulting set is not
Γ∗, but Γ†. Also, the presence of sudden variations in the load
Ln(t) (the data center load is known to be a highly varying
time-series [39]) might prevent the timely computation of Oi

and therefore leading to Γ† as well. Such conditions trigger the
migration of the computation from EDC n to a nearby EDC n

′
.

To adhere to (4) for a successful migration, both Γ−
i and I−i

should migrate from EDC n to n
′
. When not successful, the

computation occurs on older values, which leads to a drop of
accuracy. This problem, can therefore be casted to the problem
of cache replacement when the server has no knowledge about
incoming data arrival at the time of making the decision (of
moving data in our case), which is NP-HARD [40].

The goal of the algorithm explained in the next Section is to
understand when this migration should be triggered in order to
minimize the start time tSi . Indeed, when migrating, the start
time of the process in a new server is the most time consuming
component. To understand if it is necessary to migrate a service,
we resort to mechanisms that anticipate future computational
load [39], [41], i.e., Ln(t+ 1), Ln(t+ 2), . . . , Ln(t+ T ).

IV. EFFICIENT DATA HANDOFF AT THE EDGE

In this section, we illustrate the proposed MED algorithm
for data migration tailored for specific AI inference type of
tasks according to the discussed theoretical analysis. Note
that, the following algorithm is specifically focused on data
migration. MED designs the execution module to work in a
proactive way for AI models and applications by following

Algorithm 1 Mobile Edge Data-Handoff
1: Fix parameters EDC n ∈ N , and L∗

2: At time t > 0
3: Give the average CPU load of each EDC Ln(t)
4: Give Lo(t) the average CPU load of the old EDC no

5: Give L∗ the threshold
6: Decision: Edge Selection (Periodically, select the new EDC

n′ based on average CPU load and run the service on it)
7: Execution: Move the AI model and the set of computing

processes C to neighbor EDCs
8: Triggering module: handoff occurs
9: if Lo(t) > L∗ then ▷ The node no is running out of

resources
10: Data Backup: Create the archive A← zip(Oi)
11: Send Backup: Send the archive A to the node n′

12: Restore Backup: Restore the archive A at the node n′

and prepare the service (i.e., unzip(Oi) and restore both
Γ−
i and I−i )

13: Start Computation: Start the set of computing pro-
cesses C at the node n′

14: end if

design guidelines proposed in our previous work [36], [42].
Moreover, MED proactively orchestrates AI applications by
using standard solutions such as Open Source MANO and
Kubernetes. Prior to an handoff occurrence, MED identifies
neighbor EDCs and sends them business logic and trained
model so that the AI model is ready to use in case of handoff.
In this way, MED minimizes the downtime and service restart.
Then, during the normal application workflow, MED strives to
move data right before the handoff occurrence to reduce the
accuracy drop of inference tasks.

A. MED Algorithm

In order to start the migration process from the current
EDC no towards the new EDC n′, MED relies on timely
detection of system congestion or failures. It is really important
to have historical data at the new EDC n′ for ensuring an
acceptable delay and accuracy. Most of I4.0 applications (e.g.,
predictive analysis, fault predictions, preventive maintenance
and automation, etc.) regard AI as the enabler for smart industry
and, to operate, those AI models need historical data for tasks
like forecasting the failure of equipment That said, we claim
the importance of having data, at least the last data, to the
new EDC n′ in order to promptly restart the computation. To
ensure that it is important to: i) identify potential exhaustion
of resources at the old EDC no early; ii) select the candidate
EDC n′; and iii) migrate the historical data when the handoff
starts. Note that, as we explain later, we save the historical
data in a circular buffer and during the handoff we move only
data in the buffer.

Therefore, the algorithm proposed in the MED framework is
based on the following principles. First, as explained in Section
III, it is very important to timely predict node congestion for
multiple reasons. On the one hand, it allows us to properly
select the new EDC n′ based for instance on average load, and
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to move data at the node n′ when handoff happens. On the other
hand, it enables us to greatly reduce the service interruption
time for improving the service accuracy (fewer data are lost
from the user perspective). Note that, decision and triggering
modules are executed proactively before the handoff. The same
is applies to the execution module only for the AI model and
application to ensure that they are available at the new EDC. To
efficiently manage the handoff, we define the parameter (line 1
Algorithm 1) L∗ which represents the threshold value of CPU
consumption to start the handoff process. The Ln(t) value is
defined as an average prediction of the CPU load of the EDC
no at time t. Note that, the process to select the new EDC n′,
Decision (line 6 Algorithm 1), is performed periodically and in
background and is not a core part of the MED algorithm. For
the purpose of this work, we adopt a selective strategy based
on the CPU load at the edge (we select the more "idle" EDC at
time t). Moreover, a description of possible implementations of
how to run the service at new EDC n′ is described in Section
IV-B. That said, when the average prediction of the CPU load
of the current EDC Lo(t) is greater than the threshold L∗

(line 9 Algorithm 1 - this can be statistically inferred with
existing forecasting algorithms) the migration process starts
and involves four stages: Data Backup, Send Backup, Restore
Backup, and Start Computation. The Data Backup step (line
10 Algorithm 1) creates an archive A, typically a tar o zip
archive, containing all the historical data collected at the old
EDC no (i.e., A← zip(Oi)). Specifically, the archive contains
both Γ−

i and I−i sets respectively the generated output data
and the input gathered data. The remaining steps (line 11, 12
and 13 Algorithm 1) involve directly the selected EDC n′ and
are respectively Send Backup step which sends the archive
A from the EDC no to the EDC n′, Restore Backup step
that restores the archive A at the EDC n′ i.e., unzip(Oi) and
restore both Γ−

i and I−i ), and Start Computation that re-starts
the connection with the user u.

Note that, the service now is hooked at the target EDC n′

and we consider the service already available at the selected
EDC n′, as stated before. Finally, Fig. 2 shows the visual
representation of the MED algorithm with emphasis on the
Service Interruption time. Specifically, the Service Interruption
time involves the steps Data Backup, Send Backup, and
Restore Backup of the MED algorithm.

B. MED: Implementation Blueprint

As we have motivated in Section II, services and network
functionalities can be implemented as software components
executed on standard operating systems by leveraging the latest
technologies in the field, such as Virtual Network Function
(VNF) and software light virtualization (Docker Container).
Specifically, MED leverages our previous work on the manage-
ment of Docker containers including the management of the
historical data that is implemented as a separated data volume
container [36].

Kubernetes allows to efficiently manage services among
different EDCs. In particular, Kubernetes defines a concept
named Pod that represents a group of one or more application
containers, see the example in Listing 1. Therefore, Kubernetes

New EDC n′Curr EDC noBS (gNB)UE u
Task t

Decision: edge selection

Execution: move AI model
and application

Triggering: Handoff Happens
Lo(t) > L∗

Data Backup

Send Backup

Restore Backup

Start Computation

Loss Connection

Re-start task t

Se
rv

ic
e

In
te

rr
up

tio
n

Figure 2. MED sequence diagram

proactively orchestrates Pods among the EDCs while MED
defines when and where the handoff process happens. In this
way, the AI application is always available to the neighbor
EDC.

Listing 1. application/app-inference.yaml
a p i V e r s i o n : v1
k ind : Pod
m e t a d a t a :

name : app − i n f e r e n c e
spec :

c o n t a i n e r s :
− name : < c o n t a i n e r −name>

image : < c o n t a i n e r −image >
p o r t s :
− c o n t a i n e r P o r t : < c o n t a i n e r − p o r t >

As motivated in Section II, input data should be moved in a
reactive way. Once the handoff is started, MED moves historical
data to the new EDC and starts the data volume container at
the new EDC according to the Kubernetes primitives. A snippet
implementation to automatically manage the historical data is
presented below (Listing 2).

k u b e c t l a p p l y − f da t a − i n f e r e n c e −EDC2 . yaml

Listing 2. application/data-inference-EDC2.yaml
a p i V e r s i o n : v1
k ind : Pod
m e t a d a t a :

name : da t a − i n f e r e n c e
spec :

nodeName : EDC2 # s c h e d u l e pod t o EDC2
c o n t a i n e r s :
− name : mongo

image : mongo : l a t e s t
volumeMounts :
− mountPath : / knowledge

name : i n f e r e n c e −volume

Here is very important to have a dedicated framework, such
as MED, to guide Kubernetes for data migration, moving data
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Figure 3. The openLEON platform

in the last possible window time could be essential in the loss
of accuracy for AI-based applications.

V. PERFORMANCE EVALUATION

We now evaluate our proposed algorithm MED. First, we
explain the methodology and the evaluation settings in the
openLeon testbed (see Section V-A). Second, we analyze
the dataset used in the analysis (i.e., Section V-B). Finally,
we evaluate MED in terms of accuracy and performance,
respectively, in Section V-C2 and V-C3.

A. Evaluation Methodology

Figure 3 shows the openLEON setup. We use a laptop
equipped with an Intel i7-4600U processor at 2.1 GHz, 8 GB
RAM and Linux Ubuntu 16.04 LTS to run the core network
(srsEPC application from srsLTE version 19.0.6) and the data
center network emulated with Containernet [43]. A desktop
computer equipped with an Intel i7-6700 processor running
at 3.4 GHz, 16 GB RAM and Linux Ubuntu 16.04 LTS, runs
the BS application (srsENB application from srsLTE version
19.0.6). The LTE physical BS is an Ettus B210 connected with
USB 3.0 to the desktop computer. The UE as well uses a Ettus
B210 connected to a laptop with an Intel i7-4600U processor
up to 2.1 GHz and 8 GB of RAM running the UE application
(srsUE application from srsLTE version 19.0.6).

To assess the performance of the algorithms, we implement
an I4.0 application on openLEON. Specifically, the objective
of this application is to predict the gas flow rate in an industry
plant for safety reasons. By leveraging a dataset whose details
are hereafter reported (see Section V-B), we trained (splitting
the dataset into a common 80/20 train-test components) offline
a Long-Short Term Memory (LSTM) model (with 64 neurons
in the hidden layer, ReLu activation function, and dropout layer
set to 0.1 to avoid overfitting) and saved the resulting model in
the form of a .h5 file that is used for inference at later stage.
The .h5 model was then distributed to nearby EDCs (see
Section IV). We create a client-server application that allows
the mobile terminal to stream sensing readings to the edge
server. Upon reception of the readings, the inference phase
takes place. An alarm is fired with a message if the forecasts
indicate that the flow rate differs from a standard value plus
a given bound. Figure 4 shows the architecture when no data
handoff occurs.

ML EPC
10.0.0.1 - 10.16.0.1

· · ·Hosts/
Containers

Top of Rack

Aggregation

Core

Layers SDN Controller NAT

10.0.0.65 192.168.0.1

Containernet

eNB

192.168.0.2

10.16.0.2

UE
10.16.0.3

Internet

GTP

Inference (.h5 model) Dataset sensing readings

Figure 4. The architecture and the application

APP

.h5 data

EDC 2

EPCAPP

.h5data

EDC 1

eNB UE

Dataset sensing readings

Figure 5. Data handoff for learning

B. Dataset Analysis

We leverage a publicly available IIoT dataset of a chemical
detection platform that provides information on CO concen-
tration (ppm), humidity (% r.h.), temperature (ºC), flow rate
(mL/min), heater voltage (V), and the resistance of 14 gas
sensors1. The dataset is composed of around 4 million instances
separated into 13 text files. Each file corresponds to a different
measurement day and consists of around 300 000 rows and
each one includes in addition to the above mentioned indicators,
the sample time t. We observe that the sampling frequency is
3.5 Hz.

First, we analyze the characteristics of the entire dataset
in order to motivate the decisions made to implement the
parameters mathematical model (e.g., the duration of the
window - see Section III). Our first analysis is on the deviation
between consecutive dataset entries. Specifically, we study the
deviation between subsequent steps of the flow rate metric (we
vary the distance or deviation step that defines how close are
two samples, e.g., given the deviation step ∆ = 1, 3, 5, 7, we
computed i− j where i is the value of the current sample at
time t and j is value of the sample at time t−∆). The longer
is the outage duration, the higher is the number of samples lost.
This is to effectively calculate the loss in precision when a fail
happens at the EDC, in correspondence to a big event in the
dataset there is a certain probability of losing very significant
data. Figure 6 shows the cumulative distribution functions
(CDF) for different deviation steps, i.e., 1, 3, 5, and 7 samples.
The maximum deviation is obtained in correspondence of 5
as a deviation step and furthermore, we noted that using 7
or more as a deviation step the CDF does not change. This
analysis reveals the region of interest in the dataset that if lost
because of an outage, would negatively impact the inference
accuracy. Consequently, although for the evaluation we run

1Available at: https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+tem
perature+modulation
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Figure 6. The Cumulative Distribution Functions (CDF) for different deviation
steps computed over the entire dataset. We can appreciate that we reach the
maximum deviation value after 5 steps.
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Figure 7. A comparison between a category 1 packet and category 5 packet

MED on the entire dataset, we specifically report results in the
correspondence of the highest deviation values to highlight the
worst case scenarios in terms of accuracy performance drops.

Finally, we identified five different packet categories. Each
packet contains a number of samples (e.g., 100 samples) and
we classified packets depending on the number of spikes inside
it: category 1 packets contain at least a spike greater than 150,
category 2 packets contain at least a spike between 50 and
150, category 3 packets contain at least a spike between 20
and 50, category 4 packets contain at least a spike between 5
and 20 and category 5 packets contain only minor spikes. The
categories and the spike levels are obviously tailored to the
specific dataset in use and for the flow rate metric. Specifically,
if we lost a category 1 packet we probably lost an important
behavior of our system, while if we lost a Category 5 packet
probably we do not lost any information. Figure 7 shows the
content of two different packets of different categories, e.g., a

Table I
TYPICAL PARAMETERS FOR MOST COMMON IIOT SENSORS [44]

Type Sampling Frequency (Hz) Resolution (Bit)
Inclinometers 10 to 800 16

Accelerometers 1 to 1600 16
Inertial module 1 to 6000 16
Magnetometers 10 to 100 16

Temperature 1 to 200 16
Humidity 1 to 10 16
Pressure 1 to 200 24

category 1 packet and a category 5 packet. Both contain 100
samples each.

C. Experimental Results

1) Preliminary Results: Before delving into the actual
results, we make a few clarifying statements on today man-
agement of IIoT sensors. In current settings, like those of an
industry plant, it is extremely common that the sensor network
is heterogeneous, with a wide range of IIoT sensors sharing
completely different characteristics, e.g., sampling frequencies,
duty cycles, etc... The sampling frequency defines how many
samples a sensor can produce in an unit of time. Table I shows
the range of operation of the typical today IIoT sensors, which
is very large and ranges from 1 Hz to several kHz even for the
same type of sensor, e.g., the temperature sensor. Note that,
typically, the resolution (number of bits) of one sample is very
low, and usually several samples from different sensors are
aggregated together, e.g., in a JSON file, to reduce the network
overhead.

We now perform a preliminary study that aims at highlighting
the relation between the sampling frequency of IIoT sensors
and the possible data loss during the service handoff. With the
increase of the sampling frequency, the number of generated
samples increases; accordingly, and consequently, the network
overhead is reduced. However, the processing time increases
as well and in case of system outage we may loss more data.
Therefore, we simulate a system composed of a mix of sensors
that have different sampling frequencies while we keep a fixed
observed window set to 1 second. The results are shown in
Fig. 8 and Fig. 9 respectively for processing time and for
data exchanged. We observed that processing time and packet
size grow exponentially if the number of samples increases.
Therefore, the choice of the number of samples should be
tailored to have a reasonable network overhead and less data
loss in case of system outages.

2) Results about Inference Accuracy during Data Handoff:
According to our model, we calculated the inference on a
previously trained learning model to forecast the status of the
system in the next step and subsequently detect anomalies. To
ensure this, we calculated the average inference value for every
single packet which is composed of 100 data samples. We chose
to merge together 100 data samples in a single packet due to
the high overhead cost to send one single sample at a time. The
process calculates the inference value at step t+ 1 according
to the entire historical data gathered at the edge. The historical
data in our testbed is composed of ten input file {i0, i1, . . . , i9}
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and ten output file {o0, o1, . . . , o9}. Those file are put into two
circular buffers (one for the input file and the other for the
output file) where when a new file is produced the oldest
file will leave the buffer. The output files are used for further
processing; for instance, if some criteria are met, an important
event is detected (e.g., decision process). Finally, let us note
that we used circular buffers because are the ideal structures for
cases where data production and consumption might happen at
different rates and allow to use always fresh data. This choice
is pretty standard in networks, e.g., for packet scheduling [45].
See Fig. 10 for a complete vision of our implemented circular
buffer.

Previous studies on outages of edge computing platforms
indicate that there are 2 min of outages every two weeks on
average [46], [47]. By relating this information to our dataset,
this is equivalent to losing 4 data packets with a 3 Hz sampling
frequency. Our objective is to reduce the data loss because
this translates into a lower inference accuracy. Depending on

Input Data

100 Samples

input file
i.csv

i0.csv

i4.csv

Inference output file
o.txt

o0.txt

o4.txt

Decision

Figure 10. MED historical data representation in a circular buffer
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Figure 11. Drop of accuracy according to relation between sample category
and handoff trigger moment.

the phenomenon under observation, the dynamics of the time
series might change significantly or not in a short period of
time. For example, as discussed in the previous section, for
the dataset under analysis and for the gas flow rate metric,
the time-series presents itself to be very regular with sudden
spikes, see Fig. 7. Therefore, the loss of one or more packets
may be totally insignificant if the packet does not features
important events, like spikes, or severe if the packet does
register important events. Precisely, Fig. 11 connects the drop
of accuracy with the category of the sample and the handoff
trigger timing. Specifically, is important to start the handoff
process not in correspondence of a packet with an important
spike. To better understand Fig. 11, let us explain the handoff
trigger moment which is intended to be the time instant where
the handoff is started compared to an important spike. The
value -1 represents the packet before the important spike. The
value 0 represents the exactly packet that contains the important
spike and, finally, the value +1 represents the moment after the
important spike. Therefore, the category shows the strictness
of the accuracy drop, before, during, or after a data spike.
Certainly, a category 1 packet that contains a very important
spike has a big impact on the accuracy drop if we lose that
packet due to the handoff process. While if we lose a category
4 packet during the handoff, the drop of accuracy is not that
serious. The value reported in the Fig. 11 are the absolute error
between the "real" average inference (value without the handoff)
and the predicted average inference with the handoff. Let as
note that category 1 packets present a significant spike but
immediately after they work as they should without presenting
intermediate steps as we noted in most of category 2 and 3
packets. This trend should be noted from Fig. 11 by comparing
the drop of accuracy in the case of handoff trigger moment 0
and +1 for category 1 and category 2 packets. Finally, in that
analysis we have omitted the category 5 packets due to non
significant results.

3) MED Performance Evaluation: We widely assessed and
validated the feasibility of our solution; this section presents
a comprehensive selection of experimental results achieved
in our testbed deployment scenario. The testbed evaluates
the performance of the MED framework in terms of handoff
procedure completion times by carrying out over 50 runs on
the openLeon emulator.

The testbed calculated the performance of the MED frame-
work by considering the migration of the accumulated historical
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data from the old EDC to the new EDC to ensure service
continuity. To the best of our knowledge, recent service
migration solutions tailored explicitly to AI-based applications,
are focused on service scheduling and orchestrating [48].
Moreover, no migration algorithms with the goal of reducing
the loss of accuracy are presented in the literature. For this
reason, we compare the MED framework with standalone
Kubernetes service handoff algorithms both proactive and
reactive, specifically, following the design guidelines mentioned
in [36]. Furthermore, we created two prototype algorithms
(i.e., one reactive, and the other proactive) that follow these
principles. Specifically, we considered a tar archive that contains
all the historical data that first is created at the old EDC, second
is sent to the new EDC, and, finally, is restored at the new EDC.
The results shown in Fig. 12 highlight the aforementioned steps
of the MED algorithm: the Data Backup step that takes 9 ms,
the Send Backup step that takes 18 ms, and the Restore Backup
that takes 6 ms (line 10, 11 and 12 Algorithm 1). The last step,
Start Computation, depends on the specific application and
does not count the service startup stage. Specifically, in the
MED framework the service is already available at the new
EDC when the handoff starts. This behavior is similar to the
proactive service handoffs.

In the case of reactive handoff, the handoff process is started
when the User u loses connection with the old EDC. In this
kind of handoff, the migration involves all data to the new
EDC which is around 63573 Bytes. Data Backup stage, Send
Backup step, and Restore Backup step took around 50 ms, the
problem in most of the reactive handoff systems lacks services
already active at the new EDC. Therefore, Startup Service
step is needed before the Start Computation stage. On the
contrary, in the proactive handoff not only can we provide
needed services at the new EDC before the handoff starts, but
we can proactively move a portion of data at the new EDC. For
this specific evaluation test, the algorithm proactively moves
75% of data so that to move leftovers data when the handoff
starts. This results in less execution time for each protocol stage.
Figure 12 shows the reactive and proactive results and also
displays a comparison with the MED framework. In conclusion,
we proved that the MED framework takes inspiration from
Kubernetes standalone proactive handoff systems, but rather
with a different objective is the minimum loss of accuracy.

Finally, for the sake of completeness, we report in Fig. 13
the comparison in the drop of accuracy between our MED
algorithm and the Kubernetes-based reactive and proactive
algorithms during the handoff. The drop in accuracy is
calculated considering different numbers of spikes present in
the last data packet. As specified before, our sensor application
sends 1 data packet containing 100 samples every 1 second. If
we have no data spikes inside the packet, proactive algorithms,
for sure, work better than reactive algorithms. This means that
we can anticipate the migration without losing accuracy and
gain on migration time. However, if we have unstable data
(e.g., multiple spikes inside a data packet) and we use proactive
solutions, we may incur some drop in accuracy. This happens
when we lost an important packet. Using reactive solutions,
such as MED, allows us to delay the migration as much as
possible in order to gather fresher data. To conclude, the MED
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Figure 12. Comparative breakdown of the handoff procedure completion time
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accuracy according to the data spikes

solution brings the best of both approaches. On the one hand, it
offers a service downtime comparable to proactive approaches.
On the other hand, the behavior in terms of gain in accuracy
is similar to reactive solutions.

VI. RELATED WORK

We now present related works in the areas of edge computa-
tion offloading and service migration to the edge. Furthermore,
we also provide an overview of the research on data replication
between datacenters.

A. Offloading Computing at the Edge

Offloading computation to the edge has attracted extensive
research in the past years because of the inherent advantages
it can offer (e.g., lower latency and jitter). For the IoT
ecosystem, offloading computation at the edge also brings
considerable advantages in terms of quality of service [49].
On the one hand, computation offloading at the edge has been
applied to Industrial IoT [50] in order to drop the delay in
typical industrial closed control loop applications. On the other
hand, computation offloading oriented optimization is also
proposed, such as the energy-efficient computation offloading
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and resource allocation [51]–[53]. Specifically, MECO (Mobile-
edge computation offloading) [52], is envisioned to be a
promising solution for prolonging the battery life and enhancing
the computational capacity of mobile nodes. In [54], P. Zhou et.
al have proposed an handoff solution for 5G and MEC systems
for computation-intensive applications. However, they do not
take the importance of historical data or data in general into
account but focusing on pure handoff aspects. Finally, another
relevant scenario for computation offloading is edge-cloud
collaboration. This scenario has been studied in [55], [56]. In a
nutshell, edge computing and cloud computing will collaborate
in several environments including smart cities, smart homes,
industrial IoT, connected autonomous vehicles, and so on, to
take full advantage of on-premises edge and cloud computing
capabilities. Our proposal, even if is not directly related to
computation offloading, leverages computation offloading at the
edge to solve a sub-problem such as moving the computation
from an edge data center to another one if this helps to
guarantee an acceptable end-to-end delay.

B. Service Migration at the Edge

With the rise of the edge computing paradigm efforts of
researches have been focused on its benefits and challenges.
One of the uncleared challenges is service migration, which
aims to guarantees service continuity across different edge
nodes. Cloudlet [57] is one of the seminal examples of
edge computing and proposed a mechanism for edge-enabled
handoff management based on VM synthesis. In contrast, other
seminal works have been focused on VM Live Migration [18]
to guarantee low service downtime. Live migration ensures
users to continue using the service “during” the migration
procedure. This complex mechanism is guaranteed by two
relevant algorithms such as pre-copy and post-copy. Pre-copy
is the basic approach using by Clark et al. [18], where the
VM state is transferred from source to destination while
the VM is still running on the source. If some memory
pages change during this process, they will be re-copied.
On the contrary, post-copy migration defers the VM state
transfer phase until after the VM’s CPU state has already
been transferred to the target and resumed there [58]. Ha et al.
[59] proposed a mechanism called VM handoff that supports
VM live migration for cloudlet-based applications in edge
computing environments. The mechanism uses a parallelized
computational pipeline approach to achieve high throughput
by leveraging data reduction mechanisms so as to move fewer
pieces of VM between edge datacenters. To build services for
edge computing, container technologies have gained attraction
because of their small memory footprint, rapid boot, and low
I/O overhead. Machen et al. [19] have investigated the LXC
containers live migration by proposing a layered framework
that ensures low service downtime by splitting services into
different layers and transferring only the necessary layers at
destination host. The experimental results show the benefits
of using the proposed approach with LXC containers against
the standard KVM migration. Similarly, CloudHopper [60]
is a proposed solution for container live migration across
cloud providers. CloudHopper, with optimizations, can live

migrate a heavy container between cloud providers within 30s
while the procedure is completely transparent to the client.
Unlike CloudHopper, the work proposed in [12] leverages
the layered storage system of Docker containers to improve
service migration performance across edge nodes by eliminating
unnecessary transfers of portions of the application file system.
Although VM/container live migration can be considered a
starting point for service migration at the edge, none of the
mentioned solutions are proactive, which is the strength of our
approach. Our proposed model tries to move static data (heavy
data) before the handoff starts so that it can move small data
chunks in a “live migration” fashion during the handoff.

C. Data replication in Datacenter

In the last decade, with the rise of the cloud computing
paradigm, a lot of research works have studied resource man-
agement. Specifically, the management of data in datacenters
has followed different paths. The objective of DepSky [61] is to
improve availability, integrity and confidentiality of information
stored in the cloud through the encryption, encoding, and
replication of the data. DepSky achieves these objectives
by building a cloud services integration on top of a set of
storage clouds, combining Byzantine quorum system protocols,
cryptographic secret sharing, erasure codes and the diversity
provided by the use of several clouds. Zhang et al. [62]
present two online algorithms to minimize the cost of moving
a huge amount of data across different datacenters for effective
processing using a MapReduce approach. The difference
between the above solutions and our work lies in the fact
that the objective is not the same, and this work uses data
replication as a means to boost offloading performance so that
once a task is offloaded to a new EDC, it can be executed
right away.

Our work is related to the VM placement problem [63].
Meng et al. [64] propose a VM placement algorithm that
aims to improve network scalability. Specifically, the algorithm
optimizes the placement of VMs on datacenters in a way that
VMs with large mutual bandwidth usage are assigned to host
machines in close proximity. Other works like [65] take into
account the problem of workload consolidation to minimize
energy consumption. Specifically in [65], the authors aim to
pack the base station traffic load into fewer number of general
purpose processors (VMs) and the problem is formulated as a
bin-packing problem (NP-hard). In addition, the VM placement
problem is addressed in [66], whereby the objective is to
minimize the network congestion within the system. Finally,
the closest to our work is [67] where the authors investigated the
use of data replication in conjunction with the VM placement
problem to decide both on which data should be replicated
where and which VM must be migrated so as to minimize the
network overhead. The major differences with our work are
as follows: i) motivations to have data replicated to different
edge datacenters, and ii) the way the data were moved. We
claim that having data replicated to different edge datacenters
can speed up the handoff process as mentioned in Section II.
In addition, by being proactive in the migration process, it is
possible to further reduce the migration time.
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VII. DISCUSSION

In this paper, we mainly focus on reducing the drop of
accuracy for intelligent industrial applications during edge
datacenters outages. For this purpose, we presented the MED
solution for data handoff and we showed results about inference
accuracy during the handoff according to our implementation
and realistic dataset. Suppose that another industry plant creates
a different dataset or uses a different implementation of the
MED algorithm with different parameters. First, we analyzed a
dataset that has a linear trend of data without multiple spikes in
one or more consecutive packets [68]. In the case of different
datasets, according to Fig. 11, packet categories might cease
to make sense due to multiple spikes, for instance, multiple
consecutive category 2 packets might result more critical in
terms of accuracy drop than one miss of category 1 packet
during the handoff. Therefore, according to the application, this
might change the behavior of the MED algorithm described
in Fig. 11. To address such a problem, we have though MED
as completely agnostic to datasets and able to react to change
given its performance results that make it similar to standalone
proactive handoff algorithms. Second, in the experimental
results, we considered 100 samples per packet. As explained
in Section V, we evaluated which was the correct size of the
packet beforehand. However, it creates a trade-off between
loss of data and sending frequency. If we send much data, we
certainly need to reduce the network overhead, but at the same
time we stand to lose lot of data if the handoff occurs and this
results eventually in loss of accuracy. Note that the choice of
packet size depends also on datasets, namely, linear datasets
tend to have more data in a packet compared to discontinuous
datasets.

On the contrary, we can consider different parameters of
the MED algorithm for instance the circular buffer size. For
this case, the buffer size represents the number of historical
data (they are considered as the number of file) that we
used for calculating the inference. Here, we have a trade-off
between accuracy and speed of execution, if we have all files
containing all the history we have maximum accuracy. Besides,
the inference algorithm will take more time and the handoff will
move more data between EDCs. This implies that the system
should be dimensioned according to the desiderata accuracy.
Finally, MED provides steps for efficient data handoff at the
edge, while we cannot provide precise size of the buffer, and
consequently we can only achieve an approximate truthfulness
and individual rationality.

VIII. CONCLUSIONS

In this paper, we focus on efficient data handoff at the edge.
To address this problem, we introduce Mobile Edge Data-
Handoff (MED) framework that is capable to handle AI-driven
I4.0 applications. Specifically, the proposed MED algorithm
is focused on migration of offloaded inference tasks of AI
pre-trained models in edge computing environments. MED
is able to relocate inference from one EDC to another EDC
for preventing service outages. In order to evaluate MED, we
implemented it in the openLEON emulator and demonstrated
its performance with an AI-based Industry 4.0 application that

forecasts the gas flow in a chemical plant. The results attest that
the MED algorithm performs similarly to standalone proactive
handoff algorithms and provides an high level of accuracy
during the handoff.
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