
25 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Asprino, L., Ceriani, M. (2023). How is Your Knowledge Graph Used: Content-Centric Analysis of SPARQL
Query Logs. Cham : Springer [10.1007/978-3-031-47240-4_11].

Published Version:

How is Your Knowledge Graph Used: Content-Centric Analysis of SPARQL Query Logs

Published:
DOI: http://doi.org/10.1007/978-3-031-47240-4_11

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/948153 since: 2024-05-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-47240-4_11
https://hdl.handle.net/11585/948153

How is your Knowledge Graph Used:
Content-Centric Analysis of SPARQL Query

Logs⋆

Luigi Asprino1[0000−0003−1907−0677] and Miguel Ceriani2,3[0000−0002−5074−2112]

1 University of Bologna, Via Zamboni 33, Bologna, Italy
2 University of Bari Aldo Moro, Via Orabona 4, Bari, Italy

3 ISTC-CNR, Via S. Martino della Battaglia 44, Roma, Italy
luigi.asprino@unibo.it
miguel.ceriani@uniba.it

Abstract. Knowledge graphs (KGs) are used to integrate and persist
information useful to organisations, communities, or the general public.
It is essential to understand how KGs are used so as to evaluate the
strengths and shortcomings of semantic web standards, data modelling
choices formalised in ontologies, deployment settings of triple stores etc.
One source of information on the usage of the KGs is the query logs, but
making sense of hundreds of thousands of log entries is not trivial. Pre-
vious works that studied available logs from public SPARQL endpoints
mainly focused on the general syntactic properties of the queries disre-
garding the semantics and their intent. We introduce a novel, content-
centric, approach that we call query log summarisation, in which we
group the queries that can be derived from some common pattern. The
type of patterns considered in this work is query templates, i.e. common
blueprints from which multiple queries can be generated by the replace-
ment of parameters with constants. Moreover, we present an algorithm
able to summarise a query log as a list of templates whose time and space
complexity is linear with respect to the size of the input (number and
dimension of queries). We experimented with the algorithm on the query
logs of the Linked SPARQL Queries dataset showing promising results.

Keywords: SPARQL · Query log summarisation · Linked SPARQL
queries.

1 Introduction

Knowledge Graphs (KGs) are pervasive assets used by organisations and com-
munities to share information with other stakeholders. For knowledge engineers,
it is essential to understand how KGs are used so as to assess their strengths and
shortcomings, but, neither established methodologies nor tools are available. We
observe that it is customary to make KGs accessible via SPARQL endpoints,

⋆ This is the extended version of [6].

2 L. Asprino and M. Ceriani

therefore their query logs, i.e. the list of queries evaluated by the endpoint, are
a valuable source from which the use of the KGs can be pictured. Compared to
logs of “traditional” (centralised) databases (both relational and NoSQL), logs
of public SPARQL endpoints bear much more information because they show
usage of a dataset by multiple agents (human or robotic), for multiple applica-
tions, in different ways, and even in the context of multiple domains (especially
if the dataset is generic).

Several works had already analysed the available SPARQL
logs [30,2,33,17,38,12,11,39,10]. Most of them centred the analysis on the
general structure of the queries (usage of specific SPARQL clauses, the shape
of the basic graph patterns). The output of the analyses is mostly quantitative,
possibly coupled by some examples. Relatively less focus has been so far given
to aspects that go beyond the general query syntactic structure and relate to the
actual content, such as aspects ranging from the usage of specific RDF terms
(both classes, properties, and individuals), to specific (sub)query patterns, to
inference of template usage and query evolution. Analysis of the actual content
of queries can lead to further quantitative results, but most importantly can be
used as a tool for qualitative analysis of one or multiple query logs: different
levels of abstractions on the queries enable a meaningful exploration of the
given data set.

The potential usage contexts for such analysis are manifold. For example,
maintainers of SPARQL endpoints could optimise the execution of common
queries by caching results or indexing predicates; designers of ontologies could
assess what predicates are actually used thus allowing reshaping the model with
shortcuts or removing unused predicates; designers of semantic web standards
could introduce new constructs and operators in order to address common query
patterns; and, researchers of the field could design benchmark to assess the per-
formance of SPARQL endpoints.

The present work introduces a novel general approach to analyse query logs
with a focus on query content and qualitative information. Specifically, we frame
the query log summarisation as the problem of finding a list of templates mod-
elling a query log. We introduce an algorithm able to solve the problem whose
time and space complexity is linear in the size of the input. Finally, we experi-
ment with the algorithm on the logs available in the LSQ dataset [38] to evaluate
its usefulness. The analysis of the results shows that the method is able to pro-
vide more concise representations of the logs and novel insights on the usage of
28 public SPARQL endpoints.

The rest of the paper is organised as follows. Section 2 gives an overview of the
existing work on query logs analysis. Section 3 lays the theoretical foundation of
the work and introduces the problem of query log summarisation. The proposed
algorithm to address the problem is presented in Section 4. Section 5 describes
the experimental evaluation and its results, discussing strengths and opportu-
nities enabled by the proposed approach. Section 6 concludes and outlines the
ongoing and future work.

How is your Knowledge Graph Used 3

2 Related Work

Query logs are insightful sources for profiling the access to datasets. Although
there are no approaches that aim to summarise SPARQL query logs as a list of
query templates, an overview of the main approaches to analysing query logs is
worthwhile. We classify the approaches according to the target query language.

Approaches targeting SQL query logs. Even if not directly applicable to assess
the usage of knowledge graphs, techniques analysing query logs of relational
databases may be adapted as SQL and SPARQL have syntactic similarities.
These techniques have been used for detecting anomalous access patterns [22],
preventing insider attacks [27] and optimising the workload of database man-
agement systems [15] thus becoming standard features for automatic indexing
in commercial relational databases [29,32]. All the approaches can be gener-
alised as feature extraction methods needed for clustering queries and profiling
user behaviour. In most cases, the features extracted are basic, such as the SQL
command used (e.g. SELECT, INSERT), the list of relations queried, and the
operators used. Nevertheless, similarly to our approach, query templates and
structural features are also used for computing query similarity [23,45], albeit
still in a clustering approach. Some issues of such feature-based clustering ap-
proaches are that finding a useful way to convey the meaning of the clusters is not
trivial, that scalability can be a problem as the worst-case cost is quadratic, and
that some aspects of the query are scraped since the beginning for performance
reasons, while they may be a relevant facet of a common pattern. Specifically,
some methods [23,45,44] replace all the constants in the query with placeholders
as a pre-processing step, which for SPARQL would hide the intent of most of the
queries. Our method also replaces the constants with placeholders in an initial
phase but, crucially, keeps the mapping with the original constants and puts
them back if they have always the same value in a group of queries.

Approaches targeting SPARQL query logs. Analyses of SPARQL query logs have
been performed since the early years of the Semantic Web. These studies fall
into a more general line of research adopting empirical methods for observing
typical characteristics of data [4,7], identifying common patterns in data [5],
assessing the usage and identifying shortcomings of data [25,3] and using the
obtained insights for developing better tools [21]. This kind of analysis has been
also promoted by international workshops, such as USEWOD4 which from 2011
to 2016 fostered research on mining the usage of the Web of Data [26]. Most
of the existing work focus on quantitative and syntactic characteristics, such
as the types of clients requesting semantic data [30] (including analyses of the
characteristics of queries issues by humans, called organic, and those sent by
artificial agents, robotic queries [10,37]), the user profile [20], the number of
triple patterns per query [30,2,33,42,17], the use of predicates [30,2,33], the use
of SPARQL operators [2,33,42,17] or a specific function (e.g. REGEX [1]), the

4 http://usewod.org/workshops.html

http://usewod.org/workshops.html

4 L. Asprino and M. Ceriani

structure of the Basic Graph Patterns (e.g. the out-degree of nodes, the number
of join vertices) [2,42], the monotonicity of the queries [17], the probabilistic
safeness [39], and the presence of non-conjunctive queries [33]. However, the
analysis is limited at the triple-pattern level by paying less attention to the
structural and semantic characteristics of the queries, thus making it difficult to
figure out what the prototypical queries submitted to the endpoints look like. A
noteworthy exception is [36], in which the author, while analysing queries at the
triple pattern level, attempts to extract generic query patterns.

Bonifati et al. [12] investigate the structural characteristics related to the
graph and hypergraph representation of queries by outlining the most common
shapes. Moreover, they analyse the evolution of queries over time, by introducing
the notion of the streak, i.e., a sequence of queries that appear as subsequent
modifications of a seed query. By grouping queries based on similarity, this aspect
of their work is akin to the approach presented in this work.

The existing studies are valuable for assessing the usage of SPARQL as a
standard query language or for benchmarking and optimising the query engines.
However, none of the existing approaches provides any insight into how KG is
actually queried in terms of KG patterns queried by the users, and, therefore
are of little help in designing the KGs. This paper investigates an alternative
approach aiming at extracting query templates from SPARQL logs that may
help designers to characterise the prototypical queries submitted by the users.

3 Preliminaries

This Section lays the theoretical foundation of this work.

RDF and SPARQL. For the sake of completeness, we introduce the basic notions
of RDF [14] and SPARQL [18] needed to understand the methods and analysis
described in this work. We defer the reader to the corresponding documentation
for a complete description of these standards. Formally, let I, B, and L be infinite
sets of IRIs, blank nodes, and literals. The sets are assumed to be pairwise
disjoint and we will collectively refer to them as RDF terms. A tuple (s, p, o) ∈
(I ∪ B) × (I) × (I ∪ B ∪ L) is called (RDF) triple and we say s is the subject
of the triple, p the predicate, and o the object. An RDF graph is a set of RDF
triples, whereas an RDF dataset is a collection of named RDF graphs, each one
identified by IRI, and a default RDF graph.

SPARQL is based on the idea of defining patterns to be matched against
an input RDF dataset. Formally, considering the set of variables V , disjoint
from the previously defined I, B, and L, a triple pattern is a tuple of the form
(s, p, o) ∈ (I∪B×V)×(I×V)×(I∪B∪L×V). A basic graph pattern (BGP) is a set
of triple patterns. A SPARQL query Q is composed of the following components:
(i) the query type (i.e. SELECT, ASK, DESCRIBE, CONSTRUCT); (ii) the
dataset clause; (iii) the graph pattern (recursively defined as being a BGP or the
result of the composition of one or more graph patterns through one of several
SPARQL operators that modify and combine the obtained results); (iv) the
solution modifiers (i.e. LIMIT, GROUP BY, OFFSET).

How is your Knowledge Graph Used 5

3.1 Query templates

Intuitively, a query template is a SPARQL query containing a set of placeholders
which are meant to be substituted with RDF terms. The placeholders are called
parameters of the query template and will be represented in queries using vari-
able names starting with “$_”5. For example, consider the following queries 1.1
and 1.26. The intent of both queries is to retrieve the types of a given entity.
Such intent can be expressed via the Template 1.1.

Query 1.1:
SELECT ?type WHERE {
dbr:Barack_Obama rdf:type ?type

}

Query 1.2:
SELECT ?type WHERE {
dbr:Interstellar_(film) rdf:type ?type

}

Template 1.1:
SELECT ?type WHERE {

$_1 rdf:type ?type
}

Query 1.3:
SELECT ?p WHERE {
?p rdf:type foaf:Person

}

Template 1.2:
SELECT ?type WHERE {
$_1 $_2 ?type

}

We say that a query template qt models a query q, indicated as qt ≺ q, if
there exists a partial bijective function mt, called mapping, that maps parameters
P t in qt onto RDF terms of q such that applying mt onto qt gives q, i.e. mt :
P t → (I ∪ L) and m(qt) = q. For example, the following mappings m1 and m2

transform the Template 1.1 into the queries 1.1 and 1.2 respectively: m1($_1)
:= dbr:Barack_Obama and m2($_1) := dbr:Interstellar_(film).

It is worth noticing that, to preserve the intent of the query, templates do not
substitute variables and blank nodes (as they are considered non-distinguished
variables) with parameters, reduce the number of triple patterns, or replace
SPARQL operators. As a result, a template for modelling a set of queries does
not always exist (e.g. a single template modelling queries 1.1, 1.2, and 1.3 can
not exist). Moreover, multiple templates may model the same set of queries.
For example, the Template 1.2 models the queries 1.1 and 1.2 (in this case
m1 and m2 must also map $_2 onto rdf:type, i.e. m1($_2) := rdf:type and
m2($_2) := rdf:type). In fact, the number of parameters of a template allows
us to formalise the intuition of more specific/generic template. We say that the
Template 1.2 is more generic (or, less specific) of Template 1.1 as it maps a
higher number of parameters. As a result, given a query q, the most generic
5 Using the initial underscore in the variable name to identify parameters matches

with existing practice [28], while using “$” visually helps distinguish the parameters
from query variables that often start with “?”

6 For brevity, the queries omit prefix declarations:

– dbr: <http://dbpedia.org/resource/>
– rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
– foaf: <http://xmlns.com/foaf/0.1/>
– dbo: <https://dbpedia.org/ontology/>

6 L. Asprino and M. Ceriani

template modelling q is the template in which all the IRIs and literals of q are
substituted by parameters. Therefore, it is easy to see that given a set of queries
(that can be modelled by a single template) it is always possible to derive the
most generic template by substituting all literals and IRIs by parameters.

We characterised templates as queries having placeholders that are to be
replaced by IRIs or literals. However, there are two extensions to this rule which
are needed to capture very common patterns for paginating the results and
injecting values into a query. One is the usage of placeholders in LIMIT and
OFFSET clauses, which are the solution modifiers used to get a specific slice of all
the results. Both clauses are always followed by an integer, specifying respectively
the number and initial position of the query solutions. By allowing this, integers
to be replaced by parameters, multiple versions of the same query in which only
one or both are changed (e.g., changing the OFFSET to perform pagination) can
be represented by the same template.

The second extension to the rule has been defined for another specific clause:
VALUES. This clause is used to bind one or more variables with a multiset of RDF
terms. It is thus a way to give constraints to a query with multi-valued data that
could come from previous computations, possibly also other queries7. In the case
of a VALUES clause, rather than replacing single RDF terms, a placeholder either
replace the whole corresponding multiset of terms or none.

Even if they are not explicitly mentioned, all the SPARQL clauses and oper-
ators (FILTERs, OPTIONALs, UNIONs etc.) can be part of a query template.
We only mentioned the VALUE, LIMIT, and OFFSET operators as they deserve
special treatment.

One of the main intuitions behind the usage of query templates to study a
log is that it can help to “reverse engineer” the methods and processes used to
generate the queries. In order to discuss this aspect, we define a query-source
as a specific and unique piece of code (which could nevertheless span multiple
software components in complex cases) that is responsible for the generation
(possibly based on parameters) and execution of a query. A template that models
many queries in a log may capture a common usage pattern that spans multiple
query sources or a broadly used single query source. Both cases can be of interest
in the analysis of a query log.

3.2 Query log summarisation problem

We formally describe a query log and frame its summarisation as a theoreti-
cal problem. A SPARQL Query Log l = [e1, e2, .., en] is a list of entries ei =
(q, t, s,m) each representing the execution at a certain time t of a query q by a
SPARQL endpoint s with associated metadata m. For the purpose of the algo-
rithm presented below, the information of the SPARQL endpoint executing the
query is only used to group together queries evaluated over the same KG, and
we do not consider time and metadata. Therefore, for brevity, SPARQL query
logs reduce to a sequence of queries l = [q1, q2, .., qn]. Note that queries can be

7 It is for example a recommended way to perform query federation [35].

How is your Knowledge Graph Used 7

repeated in a log, so for convenience, we define an operator Q to get them as a
set (hence without repetitions): Q(l) = {qi|qi ∈ l}.

Given a query log l = [q1, q2.., qn], the SPARQL log summarisation is the
problem of finding a set of query templates Qt = {qt1, qt2, .., qtm} (with m ≤ n),
called log model, such that for each query qi ∈ l, there exists a query template
qtj such that qtj ≺ qi. It is worth noticing that, since each query is the template
of itself (in this case the mapping from placeholders to RDF terms is empty), a
trivial solution to the problem is Qt = Q(l). Therefore, we have that the size of
log model Qt may range from 1, in the case that all the queries in the log are
modelled by a single template, to |Q(l)|, when a common template for any pair
of queries does not exist.

It is worth noticing that summarising a query log differs from evaluating the
containment/equivalence of a pair of queries [13,34]. In fact, given a query q and
its template qt (i.e. qt ≺ q), q and qt are (except for constants and parameters)
the exact same query. Whereas evaluating the query containment/equivalence
requires deciding if the result set of one query is always (i.e. for any dataset)
contained into/equivalent to the result set of a different query. Of course, the
two approaches, log summarisation and query containment/equivalence can be
potentially combined to derive more succinct log models, but this is outside the
scope of this paper.

Metrics. The aim of summarising a query log is to assist KG engineers in un-
derstanding how their KGs are queried. To do so, a KG engineer has ideally to
go through the list of all the queries. Obviously, the shorter the list of queries
to examine, the less effort from the KG engineer is required for the analysis.
Intuitively, the benefit of using a log model instead of a full query log is to
reduce the list of queries to examine. This benefit is proportional to the differ-
ence between the size of the log model and the size of the query log. However,
one must consider that not all the query templates have the same informational
value. In fact, we can consider that the more log entries a template models, the
more informative it is (in other words, it allows the KG engineer to have an
indication of a larger portion of the query log). Therefore, if the templates are
ordered according to their informational value, the KG engineer would be able
to analyse a large portion of the log by going only through the most informative
templates.

To measure the impact of this on the informational value of a model we
employ the concept of entropy. The entropy over a discrete random variable X,
taking values in the alphabet X and distributed according to p : X → [0, 1], is
defined as follows [40]:

H(X) := −
∑
x∈X

p(x) log p(x)

Given a query log l and a model Qt over it, we consider a random variable
T taking values over the “alphabet” Qt and distributed as the templates of Qt

are distributed over the log l. That is, with probability distribution pQt
defined

as follows:

8 L. Asprino and M. Ceriani

pQt
(qti) =

|{qj |qj ∈ l, qti ≺ qj}|
|l|

We can thus measure the entropy of this distribution, which depends both
on the log l and the model Qt. The entropy corresponds to the average number
of bits (considering base 2 for log) used to encode an item, which in our case is a
template, in an optimal encoding. For a uniform distribution over n values, the
entropy is log(n), which is the number of bits required for a simple encoding of
n values. If the values are not uniformly distributed a more efficient representa-
tion (as in a lossless compression) can be used, where more frequent values are
represented with shorter encodings.

Recalling that the set of queries Q(l) is already a model of l, the one created
by simply taking all the queries as they are, we can compute the entropy for
this model. The aim of another computed model Qt of l is to achieve a more
concise representation of the log and thus lower entropy. In the experiments with
a dataset of logs (cf. Section 5), we measure the entropy of Q(l) (indicated as
H(Q)) as opposed to that of a derived log model Qt (indicated as H(T)). The
difference between H(Q) and H(T) indicates how much less information needs
to be screened by the KG engineer to examine the log.

4 Approach

We describe the procedure for query log summarisation. Appendix A contains
the complete pseudo-code for the algorithm, the sketch of the proof of soundness,
the detailed complexity analysis, and other formal considerations on the output
of the algorithm. To convey the intuition, we use the following log as a running
example l =[Query 1.1, Query 1.2, Query 1.1, Query 1.4, Query 1.2, Query 1.5]
where Queries 1.1 and 1.2 are defined above and Queries 1.4 and 1.5 follow.

Query 1.4:
SELECT ?director ?starring WHERE {

dbr:Pulp_Fiction dbo:director ?
director .

dbr:Pulp_Fiction dbo:starring ?
starring .

}

Query 1.5:
SELECT ?director ?starring WHERE {

dbr:Django_Unchained dbo:director
?director .

dbr:Django_Unchained dbo:starring
?starring .

}

Template 1.3:
SELECT ?director ?starring WHERE {

$_1 $_2 ?director .
$_3 $_4 ?starring .

}

Template 1.4:
SELECT ?director ?starring WHERE {

$_1 dbo:director ?director .
$_1 dbo:starring ?starring .

}

Intuitively, the algorithm performs two steps, called generalise() and
specialise(). The function generalise() creates a generic template for a
query, replacing each occurrence of IRIs and literals with a different new pa-
rameter. Therefore, the generated template is the most generic that mod-

How is your Knowledge Graph Used 9

els the query. At the same time a mapping is created, associating each
parameter with the RDF term that was replaced. For example, gener-
alise(Query 1.1) returns the Template 1.2 and the mapping m1 defined
as follows: m1($_1) := dbr:Barack_Obama, m1($_2) := rdf:type; gen-
eralise(Query 1.2) returns the Template 1.2 and the mapping m2 de-
fined as follows: m2($_1) := dbr:Interstellar_(film), m2($_2) :=
rdf:type; generalise(Query 1.4) returns the Template 1.3 and the map-
ping m4 defined as follows: m4($_1) := dbr:Pulp_Fiction, m4($_2) :=
dbo:director, m4($_3) := dbr:Pulp_Fiction, m4($_4) := dbo:starring;
generalise(Query 1.5) returns the Template 1.3 and the mapping m5 defined
as follows: m5($_1) := dbr:Django_Unchained, m5($_2) := dbo:director,
m5($_3) := dbr:Django_Unchained, m5($_4) := dbo:starring.

The function specialise() takes as input a template and an associated set
of mappings and, by just analysing the set of mappings, it establishes if the
number of parameters can be reduced. There are two interesting cases for this
purpose: (i) for a parameter, all the mappings in the set map it to the same
RDF term (it is thus a constant); (ii) for a pair of parameters of a template,
each mappings in the set maps them to a common RDF term (one parameter is
actually a duplicate of the other). For each instance of these cases, the template
and the mappings are updated accordingly: (i) in the first case (the parameter
is constant), the parameter in the template is replaced by the constant and
removed from the mappings; (ii) in the second case (two parameters mapped to
the same RDF terms), one parameter in the template is replaced by the other
and removed from the mappings. For example, both m1 and m2 map $_2 to
rdf:type which can be considered as a constant (i.e. m1($_2) = m2($_2) =
rdf:type), therefore the Template 1.2 can be specialised as Template 1.1 and
the parameter $_2 replaced with rdf:type. Concerning the Template 1.3 and
the mappings m4 and m5, the specialise function replaces $_2 and $_4 with
two constants (dbo:director and dbo:starring) and unifies $_1 and $_3 in
both mappings as they map to the same RDF term (dbr:Pulp_Fiction and
dbr:Django_Unchained respectively for m4 and m5). The function returns the
Template 1.4 and m4 and m5 updated.

The main function discoverTemplates(): (i) takes a set of queries; (ii) ex-
tracts a pair (template, mapping) for each query by invoking generalise;
(iii) accumulates the mappings associated with the same template into a dic-
tionary (the dictionary uses the templates as keys and mapping sets as values);
(iv) then, for each pair (template, mapping set), calls specialise() and, possibly,
replaces the pair with a specialised one.

Furthermore, along with the mappings, the algorithm maintains the original
query ids, which in turn allows to find the data of each corresponding execution
in the log. Keeping track of this relationship is crucial so that is later possible to
derive statistics based on their usage or explore the detail of specific executions.

Properties of the extracted log model. It is worth noticing that, given a query
log, the algorithm first maximizes the number of queries a single template can
represent, by grouping each query under its most generic template. Then, the

10 L. Asprino and M. Ceriani

algorithm minimizes the number of parameters of each template, by returning
the most specific template modelling that group of queries (in other words, it
keeps a minimal set of parameters needed to represent the set of queries). This
ensures that for any pair queries of the log, if a single template can model the
queries, then, the template is in the log model and the template is the most
specific one.

Moreover, since the algorithm does not perform any normalisation of the
input queries, syntactic differences affect the templates, e.g. two queries having
the same triple patterns in a different order result in two different templates.
This implies that the extracted templates generalise over fewer input queries
(hence the algorithm tends to extract more templates) in respect to what could
be if some normalisation was adopted, but the extracted templates are closer
to the queries sent by the clients (which is desirable for identifying queries sent
from the same process). Some form query normalisation can then be included as
a preliminary step for different perspectives, but this is left to future work.

Implementation of the algorithm. The algorithm has been implemented in
Javascript, relying on the SPARQL.js library8 for SPARQL parsing. Both the
LSQ dataset in input and the discovered templates are represented as RDF in a
local triple store, namely Apache Jena Fuseki9. The code is freely available on
GitHub10

5 Experimentation

The LSQ dataset, already briefly introduced in Section 2, is the de-facto state-
of-the-art collection of SPARQL query logs. We tested our method by using it to
analyse all the logs available in the latest version of the LSQ dataset. In this sec-
tion, we describe and discuss the dataset, its analysis, and the findings, focusing
on the high level view and the details that can be useful to discuss the algorithm.
For the detailed description of the results obtained for each endpoint and the
full code of all the templates we refer the reader respectively to Appendix B and
C.

5.1 The Dataset

The LSQ 2.0 dataset11 contains information about approximately 46M query
executions and is composed of logs extracted from 28 public SPARQL endpoints.
24 of the endpoints are part of Bio2RDF, a project aimed at converting to
RDF different collections of heterogeneously formatted structured biomedical
data [9]. The other four endpoints are the following ones: DBpedia, a well-
known knowledge base automatically extracted from Wikipedia [8]; Wikidata,
8 https://github.com/RubenVerborgh/SPARQL.js
9 https://jena.apache.org/documentation/fuseki2

10 https://github.com/miguel76/sparql-clustering
11 http://lsq.aksw.org/

https://github.com/RubenVerborgh/SPARQL.js
https://jena.apache.org/documentation/fuseki2
https://github.com/miguel76/sparql-clustering
http://lsq.aksw.org/

How is your Knowledge Graph Used 11

an encyclopedic knowledge graph built collaboratively [43]; Semantic Web
Dog Food (SWDF), a dataset describing research in the area of the semantic
web [31]; LinkedGeoData [41], an RDF mapping of OpenStreetMap, which is,
in turn, a user-curated geographical knowledge base [16].

The LSQ project provides the collection of these SPARQL logs and their
conversion to a common (RDF-based) format. In the process of conversion, the
LSQ software performs also some filtering (e.g., only successful queries are con-
sidered) and anonymisation (e.g., client host information is hidden). The main
information items offered by LSQ from each entry of a query log are the following
ones: the endpoint against which the query was executed; the actual SPARQL
query, the timestamp of execution, and an anonymised identifier of the client
host which sent the query.

Dataset Execs Hosts Queries H(Q) Templ.s H(T) ∆H

Bio2RDF 33 829 184 2 306 1 899 027 15.22 12 296 3.73 11.49
DBpedia 6 999 815 37 056 4 257 903 21.16 17 715 5.58 15.59

DBpedia-2010 518 717 1 649 358 955 17.99 2 223 5.66 12.33
DBpedia-2015/6 6 481 098 35 407 3 903 734 21.01 15 808 5.21 15.80

Wikidata 3 298 254 - 844 260 12.26 167 578 7.47 4.80
LinkedGeoData 501 197 25 431 173 043 14.24 2 748 4.78 9.46
SWDF 1 415 568 921 101 422 14.54 1 826 1.03 13.51
Table 1: Statistics on the LSQ 2.0 dataset before/after summarisation.

Table 1 shows some statistics about the data in the LSQ dataset, organised
by endpoints12. The column Execs indicates the number of query executions
contained in the log. Column Hosts is the total number of client hosts and
Queries is the number of unique queries. The column H(Q) is the entropy of the
unique queries distribution across the executions.

5.2 Methodology of Analysis

The aforementioned templates-mining algorithm was applied separately on each
query log in the LSQ 2.0 dataset, with the corresponding set of queries as input.
Furthermore, the queries of Bio2RDF were also considered as a whole, on top of
analysing each specific endpoint13

The templates obtained with our method can be analysed in a variety of ways.
Different statistics can be computed on top of this summarised representation
12 In the table, for conciseness, the statistics of the Bio2RDF endpoints are shown only

aggregated for the whole project. In Appendix B there is a more detailed version of
the table showing the statistics endpoint by endpoint.

13 This choice is motivated by the fact that the Bio2RDF endpoints are part of the same
project, the collected logs refer roughly to the same period, and there is considerable
overlap in the clients querying the endpoints.

12 L. Asprino and M. Ceriani

of the original data. Furthermore, the templates can be explored in several ways
to have a content-based insight of how an endpoint has been used. In this study
we will focus on two main aspects:

– a quantitative analysis of the effectiveness of the summarisation by measur-
ing for each log 1) the number of templates in comparison with the number
of queries and 2) the entropy of the templates distribution in comparison
with the entropy of the query distribution;

– a qualitative analysis of the templates obtained, choosing for each log the ten
most executed ones and discussing the possible intent of the queries, what
they say about the usage of the endpoint, which ones probably come from
a single code source, which ones instead probably correspond to common
usage patterns, if and how some of them are related between each other.

It should be noted many other perspectives are possible (some of them will
be sketched among the future work in Section 6).

5.3 Results

The execution of the algorithm overall took approximately nine hours on con-
sumer hardware. Statistics about the results for each log or set of logs are shown
in Table 1, alongside the previously described information. The column Templ.s
corresponds to the number of templates generated, while the column H(T) is
the entropy of the templates distribution across the log and ∆H is the difference
between the entropy according to the unique queries and the one according to
the templates (∆H = H(Q)−H(T)).

For all the logs the number of templates is significantly smaller than the
number of unique queries, with a reduction amounting to around two orders
of magnitude (the ratio going from ∼56 to ∼240) for all cases but Wikidata
(for which the reduction is smaller, namely five-fold). The reduction in entropy
considering the distribution using templates shows even more strongly the ef-
fectiveness of the summarisation, as the value is in all the cases greater than
log2

|Q|
|T | , which would be the reduction in entropy in case of uniform distribu-

tions, showing that the algorithm is able to merge the most relevant (in terms
of executions) queries.

Furthermore, it is worth noticing that, regarding the DBpedia log, while there
is a significant difference in the query entropy from the data of 2010 (17.99) to
the ones of 2015/6 (21.01), in line with a ten-fold increase in both executions
and unique queries, the respective entropies measured on templates distribution
are much closer, actually sightly decreasing from 2010 (5.66) to 2015/6 (5.21).
This is interesting because it shows that the template diversity remains stable,
while the number and diversity of specific queries increase roughly as the volume
of the executions. In our opinion this case also manifests the importance of using
the entropy as an index of diversity, rather than just counting the total number
templates (which is instead quite different between the two datasets, ∼2.2K
against ∼16K).

How is your Knowledge Graph Used 13

Then, for each endpoint14, we performed the qualitative analysis of the ten
most frequently executed templates. As part of the interpretation of these tem-
plates, we labelled them using a functional syntax composed of the a name
given to the function (template) and a name given to each parameter. Inter-
estingly, the most executed templates are quite vary across different endpoints
and fulfil different kinds of purposes. Some templates correspond to generic,
content-independent, patterns, like the template from SWDF log labelled prop-
ertiesAndValues(resource) that list all properties and values associated to
a resource and has been executed ∼17K times. Others are specific of some
triple store software as they use specific extensions, as it is the case for as
in the template commonSuperClassAndDistance(class1,class2) from Wiki-
data, executed ∼107K times, which employs a feature specific of Blazegraph,
the software used for this dataset. Others are specific of some domain that the
dataset encompasses, like closePois(latitude,longitude) from LinkedGeoData,
executed ∼81K times, that looks for points of interest close to a geographic
location. Some of them, finally, are specific of a certain application, like air-
portsForCity(cityLabel,lang) in DBpedia, executed ∼1.4M times,.

As previously mentioned, it can be of interest to understand if a template
correspond to a single query-source or instead arises from a pattern which is
common in the usage of an endpoint. While we do not propose a specific met-
ric for this purpose, nor we have a general way to check the ground truth, the
qualitative analysis of the most executed templates offers a chance to reason on
this topic. The generality of the template, as accessed above, offers a hint: the
more general the more likely that it correspond to commonly adopted pattern
rather than a single query-source. But the analysis of the general-purpose tem-
plates found show that they are not necessarily simple and may not correspond
to the most straightforward solution to design a certain query. The structural
complexity is perhaps then a better predictor of the usage of a template. For
example, the template triples(subject) in Bio2RDF is a CONSTRUCT that return
all the triples for which subject is the subject. The query is hence functionally
generic but it is peculiar for being in a form slightly more complex than neces-
sary: it is composed of a triple pattern and a filter instead of using directly a
triple pattern with fixed subject. This template has been executed across most
of the endpoints of Bio2RDF, for a total of ∼9.3M times.

Another interesting aspect that emerges from the qualitative analysis is the
evidence of relationships between different templates. For each endpoint, even
considering just the most executed templates, it is possible to find one or more
groups of templates that for structure, function, number of executions, hosts,
period of use show many commonalities and can reasonably be conjectured to
be part of a common process. For example among the most executed templates
on SWDF four of them have been executed the same number of times and have
the same kind of parameter (a researcher) albeit they extract different kind of
data (respectively general information, affiliations, participation to events, pub-
lications). Still on SWDF, there are other two groups of templates having the

14 With the exception of the Bio2RDF endpoints, which are considered as a whole.

14 L. Asprino and M. Ceriani

same aspects in common (with a group having as common parameter an arti-
cle and another having as common parameter an organisation). While in this
case the grouped templates are probably part of a single process that executes
multiple queries, in other cases the related templates could testify the evolu-
tion of a process. The template commonSubclasses(class1, class2) from the
LinkedGeoData log is executed ∼17K times across a span of ∼7 hours, then it
is “replaced” by the template commonSubclasses(class1, class2, class3) that
fulfills the same purpose but having one class more as parameter. The second
version is then executed ∼17K times across a span of other ∼7 hours.

Such hypothesises about the relationship between among a group of queries
are reinforced in all the cases we found by the fact that the templates are exe-
cuted by a common set of hosts. In most of the cases it is a single host that exe-
cute all the templates in a group, but not necessarily: on DBpedia the templates
countLinksBetween(res1, res2) and countCommonLinks(res1, res2) have
different but related functions15 on the same kind of parameters, they are both
executed ∼181K times by the same set of ∼1130 hosts.

The complete results are available online for download16 The templates found
for each endpoint are represented both as CSVs and RDF. The RDF represen-
tation of the templates is meant to be used alongside the RDF representation
of LSQ and is based on the Provenance Vocabulary [19], a specialisation of the
standard W3C provenance ontology (PROV-O) [24] dealing with web data and
in particular SPARQL queries and query templates.

5.4 Discussion

The aim of the analysis of the LSQ dataset was to prove that our method is able
to effectively summarise the given logs, that the inferred templates often corre-
spond to broadly used patterns or single query-sources, and that their analysis
can give new insights on the usage of the considered endpoints. We quantitatively
measured the efficacy of the summarisation through the ratio of original queries
per template and the reduction in entropy when considering each log entry as
an instance of a template, rather than as an instance of a query. Both measures
show that the summarisation had a noteworthy impact on all the considered logs.
Moreover, the qualitative analysis of a selected sample of templates (specifically
the most executed) shows how their function may be appropriately analysed and
discussed, without the need to check the thousands of corresponding queries.

Regarding the accuracy of the predicted templates in identifying a single
source for a set of queries, there is no gold standard or previous attempt to
compare with. Thus the qualitative analysis resorts to educated guesses, where
we decide if an inferred template corresponds plausibly to a single source based
on the syntactic distinctness and relationship with other templates and data
from the log. For many of the described templates, it is possible to reasonably

15 One counts the triples in which one resource is subject and the other object, the
other counts the triples in which they replace each other or have symmetric role.

16 https://doi.org/10.6084/m9.figshare.23751138

https://doi.org/10.6084/m9.figshare.23751138

How is your Knowledge Graph Used 15

infer a single origin. In terms of the usefulness of the inferred templates to
gain insights, the qualitative analysis has shown multiple ways in which the
analysis of the templates gives direct access to information that was previously
not straightforward and stimulates further study.

Finally, another finding has been that this template-based analysis paves the
way to the analysis of another level of relationships between queries, namely
when different queries are applied to the same (or related) data items as part of
a (possibly automatic) process. Evidence of such relationships has been found
in the qualitative analysis of all the considered logs.

6 Conclusions

In this work, we address the query log summarisation problem, i.e. identifying a
set of query templates (i.e. queries with placeholder meant to be replaced with
RDF terms) describing the queries of a log. We designed and implemented a
method to perform the summarisation of a query log in linear time, based on
the use of a hash table to group sets of queries that can be derived from a common
query template. The approach has been experimented with the available logs of
the LSQ dataset. The representation of the logs using templates has been shown
to be significantly more concise. A qualitative analysis performed on the most
executed templates enabled the characterisation of the log in ways that would
not have been directly possible by analysing just the single queries.

Besides further exploring possible extensions of the template-mining algo-
rithm for normalising the input log (e.g. reordering triple patterns), the analysis
of the discovered templates brought forward some interesting issues that we
consider deserving of further research.

One aspect worth investigating is the relationships between the execution
patterns of each template. In the qualitative analysis, we found groups of tem-
plates being executed by the same set of hosts, often at similar times, and many
times with the same parameters. Such analysis may, for example, allow to mine
the prototypical interactions (namely, processes) with data, beyond the single
query or template.

Moreover, many more interesting levels of abstraction are possible beyond the
query templates: e.g., a common part of the query, the usage of certain BGP, a
property, and so on. The general idea of the approach and the structure of the
algorithm can be still applied. Apart from computing these multiple levels, which
can be done by extending the presented algorithm, it is interesting to understand
if some measure may be used to select the more relevant abstractions, rather than
leaving the choice entirely to the user.

Another direction worth exploring is to assess the possible benefits of com-
bining log summarisation with strategies for bot detection (e.g. templates can
help characterise the features of queries and thus favouring the classification of
robotic queries) or for optimising the execution of a sequence of queries (once
prototypical interaction with data is delineated, one could imagine triple stores
being able to predict workload and optimise query execution).

16 L. Asprino and M. Ceriani

In this work, we mainly focussed on the most frequent queries, but, future
analyses may also investigate what insights can be extracted from the rare ones
(for example, a long tail of rare queries may indicate a high variety of clients
and data exposed by the endpoint).

Finally, the proposed method and algorithm are applicable without much
change to other query languages, thus offering an approach for the analysis of
logs of, e.g. relational databases.

Supplemental Material Statement. The dataset with the experimentation results
is publicly available (see note 16). The query logs used in the experimentation
can be downloaded from the LSQ website17. The code is available from a public
git repository (see note 10).

Acknowledgements This work was partially supported by the PNRR
project “Fostering Open Science in Social Science Research (FOSSR)” (CUP
B83C22003950001) and by the PNRR MUR project PE0000013-FAIR.

References

1. Aljaloud, S., Luczak-Rösch, M., Chown, T., Gibbins, N.: Get all, filter details-on
the use of regular expressions in sparql queries. Proceedings of the Workshop on
Usage Analysis and the Web of Data (USEWOD 2014) (2014)

2. Arias, M., Fernandez, J.D., Martinez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. Proceedings of Usage Analysis and the Web
of Data (USEWOD 2011) (2011)

3. Asprino, L., Basile, V., Ciancarini, P., Presutti, V.: Empirical analysis of foun-
dational distinctions in linked open data. In: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence and the 23rd European Confer-
ence on Artificial Intelligence (IJCAI-ECAI 2018). pp. 3962–3969 (2018). https:
//doi.org/10.24963/ijcai.2018/551

4. Asprino, L., Beek, W., Ciancarini, P., van Harmelen, F., Presutti, V.: Observing
LOD using equivalent set graphs: It is mostly flat and sparsely linked. In: Proceed-
ings of the 18th International Semantic Web Conference (ISWC 2019), Part I. pp.
57–74 (2019). https://doi.org/10.1007/978-3-030-30793-6_4

5. Asprino, L., Carriero, V.A., Presutti, V.: Extraction of common conceptual com-
ponents from multiple ontologies. In: Proceedings of the International Conference
on Knowledge Capture (K-CAP 2021). pp. 185–192 (2021). https://doi.org/10.
1145/3460210.3493542

6. Asprino, L., Ceriani, M.: How is your knowledge graph used: Content-centric
analysis of sparql query logs. In: The Semantic Web – ISWC 2023. pp. 197–
215. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/
978-3-031-47240-4_11

7. Asprino, L., Presutti, V.: Observing LOD: its knowledge domains and the varying
behavior of ontologies across them. IEEE Access 11, 21127–21143 (2023). https:
//doi.org/10.1109/ACCESS.2023.3250105

17 http://lsq.aksw.org/

https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1007/978-3-031-47240-4_11
https://doi.org/10.1007/978-3-031-47240-4_11
https://doi.org/10.1007/978-3-031-47240-4_11
https://doi.org/10.1007/978-3-031-47240-4_11
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
http://lsq.aksw.org/

How is your Knowledge Graph Used 17

8. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: Proceedings of the International Semantic
Web Conference (ISWC 2007). pp. 722–735. Springer (2007)

9. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2rdf: to-
wards a mashup to build bioinformatics knowledge systems. Journal of biomedical
informatics 41(5), 706–716 (2008)

10. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via SPARQL:
the case of wikidata. In: Proceedings of the Workshop on Linked Data on the Web
co-located with The Web Conference (LDOW@WWW 2018) (2018)

11. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of wikidata query logs.
In: Proceedings of The Web Conference (WWW 2019). pp. 127–138 (2019). https:
//doi.org/10.1145/3308558.3313472

12. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL
query logs. VLDB Journal 29(2-3), 655–679 (2020). https://doi.org/10.1007/
s00778-019-00558-9

13. Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: SPARQL query contain-
ment under SHI axioms. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI 2012) (2012)

14. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax,
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

15. Deep, S., Gruenheid, A., Koutris, P., Viglas, S., Naughton, J.F.: Comprehen-
sive and efficient workload summarization. Datenbank-Spektrum 22(3), 249–256
(2022). https://doi.org/10.1007/s13222-022-00427-w

16. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

17. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G., Jiang, S.: On the statistical
analysis of practical SPARQL queries. In: Proceedings of the 19th International
Workshop on Web and Databases (2016). https://doi.org/10.1145/2932194.
2932196

18. Harris, S., et al.: SPARQL 1.1 Query Language, http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/

19. Hartig, O.: Provenance information in the web of data. In: Proceedings of the
Workshop on Linked Data on the Web (LDOW 2009) (2009), http://ceur-ws.
org/Vol-538/ldow2009_paper18.pdf

20. Hoxha, J., Junghans, M., Agarwal, S.: Enabling semantic analysis of user browsing
patterns in the web of data. Proceedings of Usage Analysis and the Web of Data
(USEWOD 2012) (2012)

21. Huelss, J., Paulheim, H.: What SPARQL query logs tell and do not tell about
semantic relatedness in LOD - or: The unsuccessful attempt to improve the brows-
ing experience of dbpedia by exploiting query logs. In: Proceedings of ESWC
2015, Revised Selected Papers. pp. 297–308 (2015). https://doi.org/10.1007/
978-3-319-25639-9_44

22. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational
databases. VLDB Journal 17(5), 1063–1077 (2008). https://doi.org/10.1007/
s00778-007-0051-4

23. Kul, G., Luong, D., Xie, T., Coonan, P., Chandola, V., Kennedy, O., Upadhyaya,
S.J.: Summarizing large query logs in ettu. CoRR (2016), http://arxiv.org/abs/
1608.01013

24. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology, https:
//www.w3.org/TR/2013/REC-prov-o-20130430/

https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/s13222-022-00427-w
https://doi.org/10.1007/s13222-022-00427-w
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
http://arxiv.org/abs/1608.01013
http://arxiv.org/abs/1608.01013
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/

18 L. Asprino and M. Ceriani

25. Luczak-Rösch, M., Bischoff, M.: Statistical analysis of web of data usage. In: Joint
Workshop on Knowledge Evolution and Ontology Dynamics (EvoDyn2011) (2011)

26. Luczak-Rösch, M., Hollink, L., Berendt, B.: Current directions for usage analysis
and the web of data: The diverse ecosystem of web of data access mechanisms.
In: Proceedings of the 25th International Conference on World Wide Web (WWW
2016). pp. 885–887 (2016). https://doi.org/10.1145/2872518.2891068

27. Mathew, S., Petropoulos, M., Ngo, H.Q., Upadhyaya, S.J.: A data-centric approach
to insider attack detection in database systems. In: Proceedings of the 13th Inter-
national Symposium on Recent Advances in Intrusion (RAID 2010). pp. 382–401
(2010). https://doi.org/10.1007/978-3-642-15512-3_20

28. Meroño-Peñuela, A., Hoekstra, R.: grlc makes github taste like linked data apis.
In: Proocedings of ESWC 2016. pp. 342–353 (2016)

29. Microsoft: Automatic Tuning - Microsoft SQL Server, https://learn.microsoft.
com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?
view=sql-server-ver16

30. Möller, K., Hausenblas, M., Cyganiak, R., Handschuh, S.: Learning from linked
open data usage: Patterns & metrics. In: Proceedings of the Web Science Confer-
ence (2010)

31. Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web
dog food - the ESWC and ISWC metadata projects. In: Proceedings of the
6th International Semantic Web Conference and the 2nd Asian Semantic Web
Conference, ISWC-ASWC 2007. pp. 802–815 (2007). https://doi.org/10.1007/
978-3-540-76298-0_58

32. Oracle: Automatic Indexing - Oracle SQL Devel-
oper Web, https://docs.oracle.com/en/database/oracle/
sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#
GUID-8198E146-1D87-4541-8EC0-56ABBF52B438

33. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Proceed-
ings of the International Workshop on Semantic Web Information Management
(SWIM 2011) (2011). https://doi.org/10.1145/1999299.1999306

34. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In:
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (PODS 14). pp. 39–50 (2014). https://doi.org/10.
1145/2594538.2594542

35. Prud’hommeaux, E., Buil-Aranda, C.: SPARQL 1.1 Federated Query, http://www.
w3.org/TR/2013/REC-sparql11-federated-query-20130321/

36. Raghuveer, A.: Characterizing machine agent behavior through sparql query min-
ing. In: Proceedings of the Workshop on Usage Analysis and the Web of Data
(USEWOD 2012) (2012)

37. Rietveld, L., Hoekstra, R., et al.: Man vs. machine: Differences in sparql queries. In:
Proceedings of the Workshop on Usage Analysis and the Web of Data (USEWOD
2014) (2014)

38. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: Proceedings of the 14th International Semantic Web
Conference (ISWC 2015) Part II. pp. 261–269 (2015). https://doi.org/10.1007/
978-3-319-25010-6_15

39. Schoenfisch, J., Stuckenschmidt, H.: Analyzing real-world SPARQL queries and
ontology-based data access in the context of probabilistic data. International Jour-
nal of Approximate Reasoning 90, 374–388 (2017). https://doi.org/10.1016/j.
ijar.2017.08.005

https://doi.org/10.1145/2872518.2891068
https://doi.org/10.1145/2872518.2891068
https://doi.org/10.1007/978-3-642-15512-3_20
https://doi.org/10.1007/978-3-642-15512-3_20
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://doi.org/10.1145/1999299.1999306
https://doi.org/10.1145/1999299.1999306
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005

How is your Knowledge Graph Used 19

40. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.
1948.tb01338.x

41. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web
of spatial open data. Semantic Web 3(4), 333–354 (2012). https://doi.org/10.
3233/SW-2011-0052

42. Stadler, C., Saleem, M., Mehmood, Q., Buil-Aranda, C., Dumontier, M., Hogan,
A., Ngomo, A.C.N.: Lsq 2.0: A linked dataset of sparql query logs. (Preprint)
(2022), https://aidanhogan.com/docs/lsq-sparql-logs.pdf

43. Vrandečić, D.: Wikidata: A new platform for collaborative data collection. In:
Proceedings of the 21st International Conference on World Wide Web (WWW
2012). p. 1063–1064 (2012). https://doi.org/10.1145/2187980.2188242

44. Wang, J., Li, T., Wang, A., Liu, X., Chen, L., Chen, J., Liu, J., Wu, J., Li, F.,
Gao, Y.: Real-time Workload Pattern Analysis for Large-scale Cloud Databases.
arXiv e-prints arXiv:2307.02626 (Jul 2023). https://doi.org/10.48550/arXiv.
2307.02626

45. Xie, T., Chandola, V., Kennedy, O.: Query log compression for workload analytics.
VLDB Endowment 12(3), 183–196 (2018). https://doi.org/10.14778/3291264.
3291265

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://aidanhogan.com/docs/lsq-sparql-logs.pdf
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265

Appendix A

Algorithm details

This appendix contains the complete pseudo-code for the algorithm (Algo-
rithm 1) sketched in Section 4, the sketch of the proof of soundness and the
detailed complexity analysis.

Proof of the soundness of the algorithm It is worth noticing that the only opera-
tion the algorithm performs on the queries and the templates is the replacement
of RDF terms with parameters, and vice versa. Therefore, it is straightforward
to see that for each query of the log, there is always a corresponding template.

Time and space complexity Given a log l = [q1, q2, ..., qn], the input to the
algorithm is the set of the queries Q(l). Let |qi| be the size of a query qi (its
length as string in SPARQL syntax) and SIZE(Q(l)) the size of the input, such
that

SIZE(Q(l)) =
∑

qi∈Q(l)

|qi|

We assume that the operations of storing and retrieving items from a dictionary
can be done in Θ(1)18. The time complexity of generalise is Θ(|qi|) as the
main operation of the function is to parse the query, replacing each RDF term
with a parameter. In the parent function discoverTemplates the function
generalise is called once for each query in Q(l). The only other operation in
the loop is to store the result in the dictionary dict, an operation that we assumed
to cost Θ(1). The time cost of that loop as a whole is thus Θ(SIZE(Q(l))).

After the loop, dict will contain a set of templates {qt1, qt2, ..., qtm}. Let ri
be the number of parameters contained in the template qti and ni the number
of mappings in the corresponding mapping set. The time complexity of spe-
cialise on a template qti is Θ(rini). In fact, the first loop in specialise iterates
over the parameters (ri) and checks if all the mappings (ni) map the parameter
on the same constant. It hence costs Θ(rini). Then, for each pair of param-
eters, specialise checks if both parameters are always mapped to the same
RDF term. A naive implementation of this loop would cost Θ(r2i ni), because
every pair of parameters needs to be compared. But as we are just checking
for equality, we can use a dictionary to perform the comparisons, so that each
parameter can be compared with all the previously considered ones in one pass
by checking the existence of an equal sequence of values in the dictionary. As
again storing and retrieving items from a dictionary are assumed to be executed
is Θ(1), the time complexity of this loop is Θ(rini) too. In the second loop of

18 A time of Θ(1) in the average case can be achieved using a hash table.

How is your Knowledge Graph Used 21

Algorithm 1 Template mining algorithm
1: function discoverTemplates(querySet)
2: for all query ∈ querySet do
3: (template,mapping)←generalise(query);
4: if template /∈ dict then
5: dict [template]← {mapping};
6: else
7: dict [template]← dict [template] ∪ {mapping};
8: end if
9: end for

10: output ← ∅;
11: for all template ∈ keys of dict do
12: mappingSet ← dict [template];
13: (template ′,mappingSet ′)←

specialise(template,mappingSet);
14: output ← output ∪ (template ′,mappingSet ′);
15: end for
16: return output ;
17: end function
18:
19: function generalise(query)
20: template ← query ;
21: mapping ← {};
22: for all RDFTerm ∈ query do
23: param ← create a new parameter;
24: template ← replace RDFTerm with param in template;
25: mapping [param]← RDFTerm;
26: end for
27: return (template,mapping);
28: end function
29:
30: function specialise(template,mappingSet)
31: for all p ∈ parameters of template do
32: if ∃k s.t. ∀m ∈ mappingSet .m[p] = k then
33: template ← replace p with k in template;
34: mappingSet ← mappingSet excluding p;
35: end if
36: end for
37: for all p, p′ ∈ parameters of template (with p ̸= p′) do
38: if ∀m ∈ mappingSet ,m[p] = m[p′] then
39: template ← template with p′ replaced by p;
40: mappingSet ← mappingSet excluding p’;
41: end if
42: end for
43: return (template,mappingSet);
44: end function

22 L. Asprino and M. Ceriani

discoverTemplates, the function specialise is called once for each one of the
templates {qt1, qt2, ..., qtm}, the global cost being thus Θ(

∑m
i=1 rini). Considering

that ri < |qti | and, given that the generalise do not increase the size of the query
when it replaces the RDF terms, the cost can be written as O(

∑m
i=1

∑
j qj),

where qj is every query modelled by the template qti . Finally, as by construction
each query is associated only to one template, the time complexity of the whole
algorithm is Θ(SIZE(Q(l))), i.e. linear in respect of the input size.

It is worth noticing that the main data structure used by the algorithm is the
dictionary for storing the templates, hence, the space complexity is Θ(

∑m
i=1 rini)

that in the worst case (if no pair of queries can be modelled by a common
template, ending up thus all in separate entries of the dictionary) is linear in the
input size. In practice, experimentation shows that the number of templates is
much smaller than the number of queries so the actual used space is much less.

Appendix B

Additional Experimental Details

This appendix extends the discussion of the experimentation presented in Sec-
tion 5. Table 2 is a richer version of Table 1, in which statistics of the specific
datasets composing Bio2RDF are shown. The following sections contain, for
each dataset in LSQ, a thorough analysis of the available data and the obtained
results.

1 Bio2RDF

Data from Bio2RDF endpoints consist of one log for each endpoint. The logs
encompass data in the time interval from the 5th of May of 2013 to the 28th of
September of 2014 19.

The number of query executions (column Execs of Table 1) for each of the logs
varies quite a lot, from 66K in the smallest log (KEGG) to 7.7M in the largest one
(Taxonomy). The number of unique queries performed (column Queries of the
table) is fairly smaller for all the Bio2RDF endpoints, from around three times
smaller for BioModels (435K unique queries against 1.24M executions) to around
22 times smaller for Taxonomy (355K unique queries against 7.7M executions).
As a whole, the Bio2RDF logs contain around 34M query executions but “only”
around 1.9 M globally unique queries, with a considerable overlap of queries
among endpoints. If the ∼1.9M queries were evenly distributed, the entropy of
the queries (column H(Q)) would have been log(∼ 1.9M) =∼ 20.86. The value is
15.22, much lower, testifying that the distribution is very skewed. It should also
be noted that the number of clients sending queries to these endpoints (column
Hosts of the table) in that period is remarkably small. They are 2,306 in total,
with many of the endpoints being used by less than one hundred clients. The
global average number of query executions per host is ∼15K. This probably at
least partially explains the high repetition of queries and the skewness of their
distribution, as the usage is dominated by few clients which probably perform
repetitive tasks.

1.1 Results

Regarding Bio2RDF, the templates generated (column Templ.s) are globally
∼12K, more than two orders (base 10) of magnitude smaller than the number
of queries, which corresponds in base 2 to 7.27 orders of magnitude (column
19 Most of the Bio2RDF logs cover the entire period of time, while some of them cover

just a portion, possibly due to unavailability of those datasets

24 L. Asprino and M. Ceriani

Dataset Execs Hosts Queries H(Q) Templ.s H(T) ∆H

Bio2RDF 33 829 184 2 306 1 899 027 15.22 12 296 3.73 11.49
Affymetrix 1 232 713 400 311 096 10.46 777 2.39 8.07
BioModels 1 239 915 183 435 232 14.31 517 2.34 11.97
BioPortal 1 337 805 60 89 664 12.80 198 1.57 11.22
CTD 942 021 285 287 296 12.30 1 143 2.22 10.08
dbSNP 794 460 32 269 498 15.41 192 1.50 13.91
DrugBank 1 616 082 999 379 234 13.66 3 873 4.43 9.23
GenAge 589 410 34 265 067 16.10 215 1.14 14.96
GenDR 691 486 33 270 697 15.60 216 1.80 13.79
GO 1 842 035 237 121 542 13.74 2 360 2.34 11.41
GOA 3548 166 217 343 836 14.36 612 2.49 11.87
HGNC 1532 705 345 364 961 11.78 808 3.00 8.77
NCBI Homologene 1 246 306 897 321 061 10.54 836 2.41 8.13
iRefIndex 1 562 102 80 309 777 13.74 552 2.34 11.40
KEGG 66 832 205 19 871 13.11 474 3.86 9.25
LinkedSPL 337 001 19 204 112 16.99 117 0.21 16.78
MGI 1 319 576 270 319 627 10.97 702 2.47 8.51
NCBI Gene 770 716 38 216 832 15.79 375 1.27 14.51
OMIM 1510 163 403 335 541 11.64 2 579 2.97 8.67
PharmGKB 94 542 63 24 000 12.51 154 3.34 9.17
SABIORK 925 409 51 274 098 11.26 313 1.65 9.61
SGD 974 412 309 318 641 15.01 972 2.93 12.08
SIDER 599 914 55 277 766 16.10 455 1.39 14.71
Taxonomy 7 701 880 89 354 582 11.37 409 1.01 10.35
WormBase 1 353 533 37 498 170 17.62 284 3.28 14.33

DBpedia 6 999 815 37 056 4 257 903 21.16 17 715 5.58 15.59
DBpedia-2010 518 717 1 649 358 955 17.99 2 223 5.66 12.33
DBpedia-2015/6 6 481 098 35 407 3 903 734 21.01 15 808 5.21 15.80

Wikidata 3 298 254 - 844 260 12.26 167 578 7.47 4.80
LinkedGeoData 501 197 25 431 173 043 14.24 2 748 4.78 9.46
SWDF 1 415 568 921 101 422 14.54 1 826 1.03 13.51

Table 2: Statistics on the dataset (extended version).

log2
|Q|
|T |). The entropy calculated on the template distribution (column H(T)) is

3.73. The information gain measured as difference in entropy amounts thus to
11.49 bits (column ∆H). Looking at specific Bio2RDF endpoints, the entropy
reduction is noticeable across all of them, ranging from 8.07 bits (for Affymetrix)
to 16.78 bits (for LinkedSPL).

A qualitative analysis of the most frequently executed templates shows that
few of them account for most of the executions. Table 3 shows the ten most
executed templates. For shortness of presentation the templates have been rep-
resented through functional prototype-like notation. As an example and for its
relevance, the template triples(subject) is shown in its entirety in Query B.5.
From a semantic point of view, it is a fairly general CONSTRUCT query. Nev-

How is your Knowledge Graph Used 25

Template Execs Queries EPs Hosts
triples(subject) 9 229 696 500 455 22/24 3
objects(subject, property) 7 948 291 55 535 17/24 13
describe(resource) 5 808 471 162 21/24 76
ceProteins(geneSymReg) 1 229 140 27 199 GOA 7
genesSubjectOf(property, object) 1 156 637 27 203 5/24 7
processes(gene) 1 121 007 4 454 GOA 7
directCommonSuperClasses(class1, class2) 839 519 16 357 BioPortal 1
subjectsPredicates(object) 663 193 14 450 9/24 8
interactions(protein) 609 345 7 965 iRefIndex 7
directSuperClasses(class) 358 907 130 BioPortal 1

Table 3: Bio2RDF: most frequently executed templates.

ertheless, its syntax is distinct enough to conjecture, considering also its promi-
nence and uniqueness (no other similar possible CONSTRUCT queries are found
with high numbers of executions), that corresponds to a single query-source. Fur-
thermore, this template is generated non only for the whole Bio2RDF, but also
for most of endpoints taken separately.

Template B.5:
CONSTRUCT

{
?s ?p ?o .

}
WHERE

{ ?s ?p ?o
FILTER (?s = $_1)

}

The second most executed template, objects(subject, property), is fully
shown in Query B.6. This template is a very general one as well, this time
also syntactically. Moreover, considering each endpoint at a time, in most of
the cases more specific templates are recognised rather than this one. So this
template probably does not correspond to a single query-source, but it is
rather a commonly used pattern. Similar considerations can be drawn about
subjectsPredicates(object), a similarly generic template (the eighth most ex-
ecuted) which in a way performs the matching the other way around. While
objects(subject, property) has been executed on 17 endpoints ∼8 million times,
subjectsPredicates(object) has been executed only on nine endpoints and
roughly an order of magnitude less often.

Template B.6:
SELECT ?o
WHERE

{ $_1
$_2 ?o

}

26 L. Asprino and M. Ceriani

The third most executed template is a simple DESCRIBE of a single re-
source. This is also a candidate for convergence of multiple sources. Further
analysis shows that most of the executions (∼5.3K) belong to a specific value for
the parameter, namely <http://localhost/ping>, so that peculiar DESCRIBE
should be considered on its own and there are good chances that comes from a
single query-source.

Among the other templates, three of them, ceProteins(geneSymReg), pro-
cesses(gene), and interaction(protein) are highly specific templates found
only in the logs of specific endpoints: the first one, found in GOA, look for pro-
teins of a species of nematode (Caenorhabditis elegans), using a regex over the
gene id (i.e. geneSymReg); the second one, also used querying GOA, lists cellular
processes associated to a specific gene; the last one, used in iRefIndex, looks for
the proteins interacting with a given one and the associated resources.

Another one, genesSubjOf(property,object), consists of a single triple pat-
tern, as it was the case for objects(subject, property). This time the predicate
and object are parametric and the subject is the variable. Interestingly, the name
given to the variable used for the subject is less generic: ?gene. Still, the tem-
plate is probably a case of convergence given that the label gene is arguably
common in this domain and that, as in the case of objects(subject, property),
more specific templates are recognised in place of this one in the endpoints.

The templates directSuperClasses(class) and directCommonSuper-
Classes(class1,class2), finally, are found in BioPortal and list all the direct
super classes of either just class or both class1 and class2. While the intent of
these templates is not specific to the domain or endpoint, the fact that they
occur only in one endpoint suggest the queries come from a single query-source.

2 DBpedia

LSQ contains two DBpedia query logs: (i) a log (indicated as 2010) of the queries
continuously collected from the 30th April 2010 to the 20th July 2010; (ii) a log
(indicated as 2015/6) which is the result of the composition of 13 one-day logs
collected between the 25th of October 2015 and the 11th of April 2016. The
number of query executions (log entries) in the first dataset is ∼519K, while in
the second one is ∼6.48M even if the latter covers a smaller amount of time (13
days instead of 81 days). This fact testifies a sharp increase in usage of DBpedia,
from ∼6.4K query executions per day in 2010 to ∼500K in 2015/2016. The
number of hosts increases significatively too, from ∼1.6K to ∼35K, showing much
broader usage20. The number of unique queries in both datasets is comparable to
the number of executions, respectively ∼359K and ∼3.9M, showing high variety.
The query variety is confirmed by the entropy values, which are close to the
maximum values, i.e. log2(|Q|), for both the datasets as well as for them as a
whole.
20 It should be noted that the hosts from 2010 and the ones from 2015/6 are anonymised

in different ways, so there is no overlap between the two sets. The total number shown
for hosts is thus simply the sum between the corresponding values of each dataset.

How is your Knowledge Graph Used 27

2.1 Results

The templates identified in the two logs are respectively ∼2.2K and ∼16K. The
summarisation through templates is thus able to simplify the dataset by a sig-
nificant order of magnitude (7.91 in base 2, considering the whole dataset). The
gain in terms of entropy is higher (15.59) showing that the process is able to
merge the most significant (by number of executions) queries. It should any-
way be noted the entropy of the template distribution (5.58), while much lower
than the one of the query distribution, is still higher than in the Bio2RDF case,
showing more diversity, in accordance with the much higher number of hosts and
broader range of usage of the DBpedia knowledge graph.

Furthermore, it is worth noticing that, while there is a significant difference in
the query entropy from the data of 2010 (17.99) to the ones of 2015/6 (21.01), in
line with a ten-fold increase in both executions and unique queries, the respective
entropies measured on templates distribution are much closer, actually sightly
decreasing from 2010 (5.66) to 2015/6 (5.21). This is interesting because it shows
that the template diversity remains stable, while the number and diversity of
specific queries increase roughly as the volume of the executions. In our opinion
this case also manifests the importance of using the entropy as an index of
diversity, rather than just counting the total number templates (which is instead
quite different between the two datasets, ∼2.2K against ∼16K).

Template Execs Queries Hosts Period
airportsForCity(cityLabel, lang.) 1 384 760 378 390 12 012 all
describe(resource) 1 289 555 1 074 265 8 856 all
cityInfo(cityLabel, language) 624 194 79 878 7 534 2015/6
objects(subject, predicate) 376 786 363 682 5 480 all
countLinksBetween(res1, res2) 181 823 169 632 1 129 only 2015-12-29
countCommonLinks(res1, res2) 181 227 169 008 1 135 only 2015-12-29
objectsAsTypes(subj, pred) 115 918 102 612 1 529 all
personAndTypes(wikiPageID) 83 082 81 128 313 only 2016-02-11
labelAndLocation(poi) 81 285 63 559 432 all
searchByLabel(string) 70 109 68 345 341 only 2015-11-23

Table 4: DBpedia: most frequently executed templates.

Table 4 shows the signature of the ten most executed templates21, considering
the DBpedia logs as a whole. Two of them, airportsForCity(cityLabel, lan-
guage) and cityInfo(cityLabel, language), are highly specific, returning respec-
tively a list of airports and general information about a city with a given name.
The parameter language is used to select the language used for the returned

21 The names of the templates and their parameters were assigned by us, while the
actual body of the templates can be found as supplemental material (see title note
and note 16), namely in dbpedia.csv inside templatesAsCSV.zip

28 L. Asprino and M. Ceriani

labels. Albeit being specific, they are both executed by a significant number of
hosts (respectively ∼12K and ∼7.5K) and for a broad period.

The templates describe(resource), objects(subject, predicate), and ob-
jectsAsTypes(subject, predicate), on the other hand, are simple queries that
can be conjectured to be widely used when querying SPARQL endpoints. The
number of hosts and their recurrence over a large period of time testify indeed
the broad use of these templates.

The templates countLinksBetween(res1, res2) and countCommon-
Links(res1, res2), finally, are non-trivial, albeit the purpose is generic. They
both take two resources res1 and res2 as parameters and count respectively the
triples between the two and the triples in which they replace each other or have
a symmetric role. Given the complexity, they are probably single query-source
templates. Moreover, the similar number of corresponding queries and execu-
tions hints at the fact that they are executed on an almost completely overlap-
ping collection of pairs of resources. The fact that they are executed both only
on a specific day (among the ones available in the dataset), further suggests a
relationship between them.

The last three templates of this list, finally, are halfway in terms of specificity,
since they solve common use cases but they are not as generic as the describe()
or objects(). The template personAndTypes(wikiPageID) return humans
(and their associated types) corresponding to a certain Wikipedia page, while
labelAndLocation(poi) gathers the label and geographic coordinates of a
resource, and searchByLabel(string) looks for resources whose label contains
a given string, using for that purpose a SPARQL syntax specific to OpenLink
Virtuoso22. The template labelAndLocation() is used in the whole available
period, while the other two are just used in one specific day each.

3 Wikidata

The Wikidata data come from a filtered release of the log from the 11th of June
2017 to the 25th of March 2018. In the original release, the providers distinguish
between queries probably issued by an automated process, called robotic traf-
fic, and those which are not, called organic traffic. The LSQ dataset contains
just the organic part. Identification of the clients is not available in this case.
Furthermore, the Wikidata maintainers performed a process of anonymisation
that includes rewriting the queries so that the variables have normalised names,
rather than the ones originally used.

The dataset contains ∼3.3M query executions of 844K queries, putting its
query diversity halfway between Bio2RDF and DBpedia. Nevertheless, the en-
tropy value is comparatively low, similar to the values for Bio2RDF, showing
that the query distribution is very skewed. It should be noted that the anonymi-

22 As other triple stores, OpenLink Virtuoso defines a set of “magic properties”, which
can be used as a way to execute specific functions inside queries. In this case, the
magic property bif:contains is used for full-text search.

How is your Knowledge Graph Used 29

sation process may have an impact, by unifying syntactically different queries
through the normalisation of the variable names.

3.1 Results

Also for Wikidata logs, the representation with templates simplifies significa-
tively the dataset. The templates are ∼168K for ∼844K unique queries and the
difference in entropy amounts to 4.80 bits. The gain is lower than for the other
datasets, in part because of the high repetition of queries in the log and con-
sequent already low entropy of the query distribution, in part possibly because
this is a pre-filtered log where only the organic queries have been picked.

Template Execs Queries
closestCityAndAirport(location) 776 647 202
searchHumans(name) 465 719 10 535
commonSuperClassAndDistance(class1, class2) 107 161 76 886
poisInArea(corSW, corNE, langs) 62 089 2 659
subjects(property, object) 53 546 17 979
distinctSubjects(property, object) 48 825 1 659
qualifiedStatements(property, object) 47 303 10 859
existsTripleWith(property, object) 46 557 27 103
objectsFromSubject(property, object, otherProperty) 46 193 21 287
subjectsObjects(property, object) 43 547 30 948

Table 5: Wikidata: most frequently executed templates.

Table 5 lists the ten most executed templates in the Wikidata log.
Three of them, closestCityAndAirport(location), searchHumans(name),
and poisInArea(cornerSW,cornerNE,language), are quite specific, respectively
looking for the city (with an airport) closest to location, listing humans with a
certain name, and returning all the points of interest (POI) in a specified area.

On the other hand, the template commonSuperClassAndDis-
tance(class1,class2) is generic and similar in purpose to directCom-
monSuperClass() in Bio2RDF log. In this case, instead of just listing the
direct super classes of both, the full subclass hierarchy going up is considered,
picking the closest common super class and measuring the distance from one
class to the other. Albeit it would be possible to write it in standard SPARQL,
the query uses GAS API, an extension available on Blazegraph, the triple store
used by Wikidata, probably in order to achieve greater efficiency.

The other six templates among the most executed are also functionally
generic. Interestingly they are all constructed in a similar way: given a property
and a object they identify each resource that is subject of a statement including
property as predicate and object as object. While subjects and distinctSub-
jects directly return that set of resources, one with repetitions and the other
without, the templates objectsFromSubject and subjectsObjects further

30 L. Asprino and M. Ceriani

explore the graph from that set of resources, in a case traversing anotherProp-
erty in the other the same property already used to define the set. The template
qualifiedStatements(property,object) is peculiar because, albeit content-wise
generic, is specific to the Wikidata model as it follows the idiosyncratic way of
performing the reification of statements in Wikidata: there are multiple IRIs
associated with a single property, depending on the way it its used; in this tem-
plate for each subject and property identified as in the previous cases, one of the
available statement qualifiers (“properties” of the statement) is gathered. The
simplest of this group of templates is existsTripleWith, which just checks for
the existence of at least a triple with property as predicate and object as object.
It is remarkable for being, among the most used templates of all the endpoints,
the only one modelling ASK queries.

Albeit not among the most executed templates, a significant number of tem-
plates found in Wikidata (1049) have placeholders used in VALUES clauses. Tem-
plate B.7 is the most executed among them, with 26443 executions and 21772
different instances. Given a set of Twitter accounts specified by the respective
Twitter username, returns IRIs of people and organisations operating those (the
Wikidata property P2002 associates some resource with a corresponding Twitter
username).

Template B.7:
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wikibase: <http :// wikiba.se/ontology#>
SELECT ?var1 ?var2
WHERE

{ ?var1 wdt:P2002 ?var2 ;
wikibase:sitelinks ?var3

VALUES ?var2 $_1
}

ORDER BY ASC(?var3)

4 LinkedGeoData

The LinkedGeoData log included in LSQ covers a year, precisely the period from
the 22nd of November 2015 to the 20th of November 2016.

It contains ∼501K executions of ∼173K unique queries, a proportion similar
to the Wikidata endpoint, but with a comparatively more uniform distribution.
In respect to the other logs, the one from LinkedGeoData contains a small num-
ber of executions, but interestingly it was queried by a non-negligible number of
hosts (∼25K).

4.1 Results

The summarisation is able to reduce the ∼173K queries to ∼2.7K templates,
with a difference in entropy that amounts to 9.46.

How is your Knowledge Graph Used 31

Template Execs Queries Hosts
distinctObjectsOpt(subject, predicate) 110 650 4 367 2
closePois(latitude, longitude) 80 633 1 568 22776
predicatesObjectsOpt(subject) 40 243 22 432 1
subjectsPredicatesObjects(limit, offset) 36 228 21 545 6
commonSubclasses(class1, class2, class3) 34 412 34 412 1
commonSubclasses(class1, class2) 16 627 13 944 2
roisAtPosition(latitude, longitude) 13 309 549 1
predicatesObjects(subject) 11 078 5 701 22
allClasses(offset) 8 801 1 144 1
countFeatures(property) 8 786 8 786 1
Table 6: LinkedGeoData: most frequently executed templates.

The templates with most executions are shown in Table 6. They are all quite
generic in purpose, but most of them are quite specific in the way they are writ-
ten. Specifically, distinctObjectsOpt(subject, predicate) and predicatesOb-
jectsOpt(subject) are both composed of single triple patterns, but curiously
embedded inside a redundant OPTIONAL clause23. The template predicate-
sObjects(subject) is the non redundant version of predicatesObjectsOpt.

Perhaps unsurprisingly, given the content of LinkedGeoData, two of the most
used templates perform geospatial queries: closePois(latitude,longitude) lists
the POIs close to (strictly less than 2 km) the specified location, while roisAt-
Position(latitude,longitude) lists the regions of interest which include the spec-
ified location. Both of them use OpenLink Virtuoso geospatial extensions.

Other two templates, of the form commonSubclasses(class1, class2, ...),
list all the classes for which it exists at least an instance that has also types
class1, class2, ... For each such class the number of instances is given. These
two templates differ just for a line (there is one more in the one with three
parameters). Furthermore, among the templates, a similar one with just one
parameter can be found. These three templates are thus probably specific cases
of a more general single query-source template supporting a variable number of
parameters.

The template subjectsPredicatesObjects(limit, offset) is composed of
the simplest triple pattern, with variables ?s, ?p, and ?o, modified with para-
metric LIMIT and OFFSET clauses. Being a pretty common query (e.g., to start
exploring an unknown dataset), there are no grounds, in this case, to consider
this a single query-source template. A similarly simple pattern is used by all-
Classes(offset) to get the classes in the dataset. It is more specific as the LIMIT
clause has a fixed value, ten thousand, while the offset varies.

23 The pattern obtained by embedding another pattern in an OPTIONAL clause (with-
out any preceding pattern outside) is basically equivalent to the original one. Tech-
nically, it differs just in the case in which the inner pattern does not match, which
would lead to an empty solution sequence in the original one versus a solution com-
posed by one empty mapping using the OPTIONAL.

32 L. Asprino and M. Ceriani

Finally, countFeatures(property) was probably meant to count geograph-
ical features reachable through a property. The interesting fact about this tem-
plate is that, even if it was executed almost nine thousands times, it certainly
does not work as intended. The variable used in the COUNT is not defined in
the WHERE clause, so the result is always zero.

5 Semantic Web Dog Food

SWDF data contain six months of log, from the 15th of May to the 12th of
November 2014.

The number of clients querying the service in that period is quite small (921),
which probably explains a proportion between query executions (∼1.42M) and
unique queries (∼101K) similar to the Bio2RDF case.

5.1 Results

The Semantic Web Dog Food (SWDF) log is characterised by being used by
a relatively small set of hosts. The inferred templates are ∼1.8K, from 101K
queries. The variation in entropy in bits is 13.51. Even more than the difference,
it is quite impressive that the entropy after summarisation amounts to just 1.03
bits.

Template Execs Queries Hosts
describe(resource) 1 278 419 26 535 10
propertiesAndValues(resource) 17 283 17 283 2
authorsAbstractKeywords(article) 9 702 4 885 1
info(person) 6 988 6 267 1
affiliationsAtEvents(employee) 6 974 6 267 1
rolesAtEvents(person) 6 974 6 267 1
publicationsAtEvents(person) 6 974 6 267 1
authorList(article) 5 234 4 863 1
metadata(conferenceArticle) 5 233 4 862 1
subjectPredicatesObjects(limit) 4 999 13 18
metadata(organization) 3 162 2 866 1
membersAtEvents(organization) 3 161 2 866 1

Table 7: SWDF: most frequently executed templates.

The explanation of this extreme value can be found through qualitative anal-
ysis of the most executed templates (in Table 7 are listed the ones with more
than 1K executions): the most executed template, a simple DESCRIBE of a
resource, is responsible for ∼1.3K executions over ∼1.4K, ∼90.3 % of them. As
this template, discussed also for Bio2RDF, is the simplest form of DESCRIBE
could very well come from different sources. Still, the proportion of executions

How is your Knowledge Graph Used 33

suggest there is something specific to SWDF, either for a particular usefulness of
the DESCRIBE on this dataset or because of some piece of software generating
a large number of DESCRIBE queries.

The distribution of the executions among the other templates is more uni-
form. The second most executed template is propertiesAndValues(resource),
a simple triple pattern analogous to templates found for other endpoints. An-
other generic template found is subjectsPredicatesObjects(limit), similar
to the one found in LinkedGeoData, but without the offset parameter. These are
common queries and thus quite probably cases of convergence.

The other templates with a high number of executions are very specific and
retrieve information typical of the SWDF dataset, as articles, researchers, events,
and affiliations. By looking at the number of queries and executions of these
templates is possible to see that are groups of templates that have equal or
very close numbers. Furthermore, inside each of these groups the input type is
the same: four return information about a researcher and are executed 6982± 6
times; two give information about an article and are executed 5233±1 times; two
look for information about an organisation and are executed 3161 ± 1 times24.
This suggests they are executed on the same data and are probably part of the
same process.

24 While we in general discussed in each case the ten most used templates, in this case
we discussed the top twelve to better explore these relationships.

Appendix C

Full Code of the Most Executed Templates

This appendix contains, for convenience, the full code of each of the templates
that were discussed in the paper. Please note that, as previously mentioned,
the full dataset of extracted templates is publicly available online in multiple
formats.

It is also worth recalling that the function prototype style label adopted
to identify each template (e.g., cityInfo(cityLabel, language)) has been given
based on our interpretation of the template and it is not a product of the al-
gorithm. The code of each template is instead shown exactly as elicited by the
algorithm. That is why in the code the template parameters have generic la-
bels (e.g., $__PARAM_0, $__PARAM_1, ...). The association with the names given to the
parameters in the template label should be straightforward.

1 Bio2RDF

Template C.8: triples(subject)
PREFIX bio2rdf: <http :// bio2rdf.org/>
CONSTRUCT

{
?s ?p ?o .

}
WHERE

{ ?s ?p ?o
FILTER (?s = $__PARAM_0)

}

Template C.9: objects(subject, property)
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX bio2rdf: <http :// bio2rdf.org/>
PREFIX hgnc_voc: <http :// bio2rdf.org/hgnc_vocabulary:>
SELECT ?o
WHERE

{ $__PARAM_0
$__PARAM_1 ?o

}

Template C.10: describe(resource)
DESCRIBE $__PARAM_0

Template C.11: ceProteins(geneSymReg)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX bio2rdf: <http :// bio2rdf.org/>

How is your Knowledge Graph Used 35

SELECT *
WHERE

{ ?protein bio2rdf:goa_vocabulary:gene_symbol ?goasymbol ;
bio2rdf:goa_vocabulary:taxid bio2rdf:taxon :6239

FILTER regex (?goasymbol , $__PARAM_0)
}

Template C.12: genesSubjectOf(property, object)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX bio2rdf: <http :// bio2rdf.org/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX vocab: <http :// bio2rdf.org/ctd_vocabulary:>
SELECT *
WHERE

{ ?gene $__PARAM_0 $__PARAM_1 }

Template C.13: processes(gene)
PREFIX bio2rdf: <http :// bio2rdf.org/>
SELECT *
WHERE

{ $__PARAM_0
bio2rdf:goa_vocabulary:process ?goTerm

}

Template C.14: directCommonSuperClasses(class1,class2)
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX bio2rdf: <http :// bio2rdf.org/>
SELECT ?higher
WHERE

{ $__PARAM_0
rdfs:subClassOf ?higher .

$__PARAM_1
rdfs:subClassOf ?higher

}

Template C.15: subjectsPredicates(object)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT ?S ?P
WHERE

{ ?S ?P $__PARAM_0 }

Template C.16: interactions(protein)
PREFIX bio2rdf: <http :// bio2rdf.org/>
SELECT *
WHERE

{ { ?interaction bio2rdf:irefindex_vocabulary:interactor_a $__PARAM_0
;

bio2rdf:irefindex_vocabulary:interactor_b ?otherProtein ;
bio2rdf:irefindex_vocabulary:number -supporting -articles ?

articles ;
bio2rdf:irefindex_vocabulary:method ?method

}
UNION

{ ?interaction2
bio2rdf:irefindex_vocabulary:interactor_a ?otherProtein ;
bio2rdf:irefindex_vocabulary:interactor_b $__PARAM_0 ;

36 L. Asprino and M. Ceriani

bio2rdf:irefindex_vocabulary:number -supporting -articles ?
articles ;

bio2rdf:irefindex_vocabulary:method ?method
}

}

Template C.17: directSuperClasses(class)
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX bio2rdf: <http :// bio2rdf.org/>
SELECT ?higher
WHERE

{ $__PARAM_0
rdfs:subClassOf ?higher

}

2 DBpedia

Template C.18: airportsForCity(cityLabel, lang)
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX dbprop: <http :// dbpedia.org/property/>
SELECT *
WHERE

{ ?city rdf:type dbpo:Place ;
rdfs:label $__PARAM_0 .

?airport rdf:type dbpo:Airport
{ ?airport dbpo:city ?city }

UNION
{ ?airport dbpo:location ?city }

UNION
{ ?airport dbprop:cityServed ?city }

UNION
{ ?airport dbpo:city ?city }
{ ?airport dbprop:iata ?iata }

UNION
{ ?airport dbpo:iataLocationIdentifier ?iata }

OPTIONAL
{ ?airport foaf:homepage ?airport_home }

OPTIONAL
{ ?airport rdfs:label ?name }

OPTIONAL
{ ?airport dbprop:nativename ?airport_name }

FILTER ((! bound (?name)) || langMatches(lang(?name), $__PARAM_1))
}

Template C.19: describe(resource)
DESCRIBE $__PARAM_0

Template C.20: cityInfo(cityLabel, language)
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX gsp: <http :// www.opengis.net/ont/geosparql#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

How is your Knowledge Graph Used 37

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX dbprop: <http :// dbpedia.org/property/>
SELECT *
WHERE

{ { ?city rdfs:label $__PARAM_0 }
UNION

{ ?alias dbprop:redirect ?city ;
rdfs:label $__PARAM_0

}
UNION

{ ?alias dbprop:disambiguates ?city ;
rdfs:label $__PARAM_0

}
OPTIONAL

{ ?city dbpo:abstract ?abstract }
OPTIONAL

{ ?city gsp:lat ?latitude ;
gsp:long ?longitude

}
OPTIONAL

{ ?city foaf:depiction ?image }
OPTIONAL

{ ?city rdfs:label ?name }
OPTIONAL

{ ?city foaf:homepage ?home }
OPTIONAL

{ ?city dbpo:populationTotal ?population }
OPTIONAL

{ ?city dbpo:thumbnail ?thumbnail }
FILTER langMatches(lang(? abstract), $__PARAM_1)

}

Template C.21: objects(subject, predicate)
PREFIX dbpr: <http :// dbpedia.org/resource/>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX dbprop: <http :// dbpedia.org/property/>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT *
WHERE

{ $__PARAM_0
$__PARAM_1 ?o

}

Template C.22: countLinksBetween(res1, res2)
PREFIX dbpr: <http :// dbpedia.org/resource/>
SELECT DISTINCT (COUNT (?p) AS ?count)
WHERE

{ { $__PARAM_0
?p $__PARAM_1

}
UNION

{ $__PARAM_1
?p $__PARAM_0

}
}

Template C.23: countCommonLinks(res1, res2)

38 L. Asprino and M. Ceriani

PREFIX dbpr: <http :// dbpedia.org/resource/>
SELECT DISTINCT (COUNT (?p) AS ?count)
WHERE

{ { ?o ?p $__PARAM_0 ;
?p $__PARAM_1

}
UNION

{ ?o ?p $__PARAM_0 .
$__PARAM_1

?p ?o
}

UNION
{ $__PARAM_0

?p ?o .
?o ?p $__PARAM_1

}
UNION

{ $__PARAM_0
?p ?o .

$__PARAM_1
?p ?o

}
}

Template C.24: objectsAsTypes(subj, pred)
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX dbpr: <http :// dbpedia.org/resource/>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX planet: <http :// dbpedia.org/>
PREFIX url: <http :// schema.org/>
PREFIX dul: <http :// www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
SELECT ?type
WHERE

{ $__PARAM_0
$__PARAM_1 ?type

}

Template C.25: personAndTypes(wikiPageID)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT ?person ?type
WHERE

{ ?person dbpo:wikiPageID $__PARAM_0 ;
rdf:type ?type

}

Template C.26: labelAndLocation(poi)
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos#>
PREFIX dbpr: <http :// dbpedia.org/resource/>
SELECT ?label ?lat ?long
FROM <http :// dbpedia.org >
WHERE

{ $__PARAM_0
rdfs:label ?label

OPTIONAL
{ $__PARAM_0

pos:lat ?lat ;
pos:long ?long

}
}

How is your Knowledge Graph Used 39

Template C.27: searchByLabel(string)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
SELECT DISTINCT ?x
WHERE

{ ?x rdfs:label ?name
FILTER <bif:contains >(?name , $__PARAM_0)

}

3 Wikidata

Template C.28: closestCityAndAirport(location)
PREFIX bd: <http :// www.bigdata.com/rdf#>
PREFIX gsp: <http :// www.opengis.net/ont/geosparql#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wikibase: <http :// wikiba.se/ontology#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX wde: <http :// www.wikidata.org/entity/>
SELECT DISTINCT ?var1 ?var1Label ?var2 ?var2Label ?var3 ?var4
WHERE

{ ?var2 wdt:P31/(wdt:P279)* wde:Q515 .
?var1 wdt:P31 wde:Q644371 ;

?var5 ?var2 ;
wdt:P238 ?var3

SERVICE wikibase:around
{ ?var2 wdt:P625 ?var6 .

bd:serviceParam
wikibase:center $__PARAM_0 ;
wikibase:radius ""200"" ;
wikibase:distance ?var7

}
SERVICE wikibase:label

{ bd:serviceParam
wikibase:language ""en""

}
OPTIONAL

{ ?var2 wdt:P625 ?var4 }
}

ORDER BY ASC(?var7)
LIMIT 1

Template C.29: searchHumans(name)
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
SELECT DISTINCT ?var1
WHERE

{ ?var1 rdfs:label $__PARAM_0 ;
wdt:P31 wde:Q5

}

Template C.30: commonSuperClassAndDistance(class1,class2)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
SELECT ?var1 ((?var2 + ?var3) AS ?var4)

40 L. Asprino and M. Ceriani

WHERE
{ SERVICE <http ://www.bigdata.com/rdf/gas#service >

{ <http ://www.bigdata.com/rdf/gas#program >
<http ://www.bigdata.com/rdf/gas#gasClass > ""com.bigdata.

rdf.graph.analytics.SSSP"" ;
<http ://www.bigdata.com/rdf/gas#in > $__PARAM_0 ;
<http ://www.bigdata.com/rdf/gas#traversalDirection > ""

Forward "" ;
<http ://www.bigdata.com/rdf/gas#out > ?var1 ;
<http ://www.bigdata.com/rdf/gas#out1 > ?var2 ;
<http ://www.bigdata.com/rdf/gas#maxIterations > 10 ;
<http ://www.bigdata.com/rdf/gas#linkType > wdt:P279

}
SERVICE <http :// www.bigdata.com/rdf/gas#service >

{ <http ://www.bigdata.com/rdf/gas#program >
<http ://www.bigdata.com/rdf/gas#gasClass > ""com.bigdata.

rdf.graph.analytics.SSSP"" ;
<http ://www.bigdata.com/rdf/gas#in > $__PARAM_1 ;
<http ://www.bigdata.com/rdf/gas#traversalDirection > ""

Forward "" ;
<http ://www.bigdata.com/rdf/gas#out > ?var1 ;
<http ://www.bigdata.com/rdf/gas#out1 > ?var3 ;
<http ://www.bigdata.com/rdf/gas#maxIterations > 10 ;
<http ://www.bigdata.com/rdf/gas#linkType > wdt:P279

}
}

ORDER BY ASC(?var4)
LIMIT 1

Template C.31: poisInArea(corSW,corNE,langs)
PREFIX bd: <http :// www.bigdata.com/rdf#>
PREFIX gsp: <http :// www.opengis.net/ont/geosparql#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wikibase: <http :// wikiba.se/ontology#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX url: <http :// schema.org/>
SELECT ?var1 ?var1Label ?var2 ?var3 ?var4 ?var5 ?var6 ?var7
WHERE

{ SERVICE wikibase:box
{ ?var1 wdt:P625 ?var2 .

bd:serviceParam
wikibase:cornerSouthWest $__PARAM_0 ;
wikibase:cornerNorthEast $__PARAM_1

}
OPTIONAL

{ ?var1 wdt:P18 ?var3 }
OPTIONAL

{ ?var1 wdt:P373 ?var6 }
OPTIONAL

{ ?var1 wdt:P969 ?var7 }
SERVICE wikibase:label

{ bd:serviceParam
wikibase:language $__PARAM_2 .

?var1 url:description ?var5 ;
rdfs:label ?var1Label

}
}

LIMIT 3000

Template C.32: subjects(property,object)
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

How is your Knowledge Graph Used 41

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX orth: <http :// purl.org/net/orth#>
PREFIX wikibase: <http :// wikiba.se/ontology#>
PREFIX url: <http :// schema.org/>
PREFIX umbel: <http :// umbel.org/umbel#>
PREFIX openlinks: <http ://www.openlinksw.com/schemas/virtrdf#>
PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>
PREFIX vcard2006: <http ://www.w3.org /2006/ vcard/ns#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX prov: <http ://www.w3.org/ns/prov#>
PREFIX dbpr: <http :// dbpedia.org/resource/>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX dbprop: <http :// dbpedia.org/property/>
PREFIX dby: <http :// dbpedia.org/class/yago/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX wdv: <http :// www.wikidata.org/value/>
PREFIX gsp: <http :// www.opengis.net/ont/geosparql#>
PREFIX freebase: <http ://rdf.freebase.com/ns/>
SELECT ?var1
WHERE

{ ?var1 $__PARAM_0 $__PARAM_1 }

Template C.33: distinctSubjects(property,object)
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX wikibase: <http :// wikiba.se/ontology#>
PREFIX freebase: <http ://rdf.freebase.com/ns/>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX dcat: <http ://www.w3.org/ns/dcat#>
PREFIX url: <http :// schema.org/>
PREFIX wp: <http :// vocabularies.wikipathways.org/wp#>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
SELECT DISTINCT ?var1
WHERE

{ ?var1 $__PARAM_0 $__PARAM_1 }

Template C.34: qualifiedStatements(property,object)
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX wikibase: <http :// wikiba.se/ontology#>
SELECT ?var1 ?var2 (SAMPLE (?var3) AS ?var4)
WHERE

{ { SELECT DISTINCT ?var1 ?var2
WHERE

{ ?var2 $__PARAM_0 $__PARAM_1 .
?var1 $__PARAM_2 ?var2

}
LIMIT 101

}
OPTIONAL

{ ?var2 ?var3 ?var5 .
?var6 wikibase:qualifier ?var3

}
}

GROUP BY ?var1 ?var2

Template C.35: existsTripleWith(property,object)

42 L. Asprino and M. Ceriani

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wde: <http :// www.wikidata.org/entity/>
PREFIX space: <http :// purl.org/net/schemas/space/>
ASK
WHERE

{ ?var1 $__PARAM_0 $__PARAM_1 }

Template C.36: objectsFromSubject(property,object,otherProperty)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wde: <http :// www.wikidata.org/entity/>
SELECT ?var1
WHERE

{ ?var2 $__PARAM_0 $__PARAM_1
OPTIONAL

{ ?var2 $__PARAM_2 ?var1 }
}

Template C.37: subjectsObjects(property,object)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX bd: <http :// www.bigdata.com/rdf#>
PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX url: <http :// schema.org/>
PREFIX wikibase: <http :// wikiba.se/ontology#>
SELECT ?var1 ?var2 ?var3
WHERE

{ { ?var1 $__PARAM_0 $__PARAM_1 }
?var2 url:about ?var1

{ ?var2 url:inLanguage ""en"" }
UNION

{ ?var2 url:inLanguage ""de"" }
?var1 $__PARAM_0 ?var3
SERVICE wikibase:label

{ bd:serviceParam
wikibase:language ""en""

}
}

4 LinkedGeoData

Template C.38: distinctObjectsOpt(subject, predicate)
PREFIX lgd: <http :// linkedgeodata.org/triplify/>
PREFIX lgv: <http :// linkedgeodata.org/ontology/>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX ngeo: <http :// geovocab.org/geometry#>
PREFIX pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
SELECT DISTINCT ?v0
WHERE

{ OPTIONAL
{ $__PARAM_0

$__PARAM_1 ?v0
}

How is your Knowledge Graph Used 43

}
OFFSET 0
LIMIT 1000

Template C.39: closePois(latitude,longitude)
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
SELECT DISTINCT ?uri ?label
WHERE

{ ?uri <http :// geovocab.org/geometry#geometry >/<http ://www.opengis.net/ont
/geosparql#asWKT > ?pgv .

?uri rdfs:label ?label
FILTER (<bif:st_distance >(?pgv , <bif:st_point >($__PARAM_0 , $__PARAM_1))

< 2)
}

LIMIT 100

Template C.40: predicatesObjectsOpt(subject)
PREFIX lgd: <http :// linkedgeodata.org/triplify/>
SELECT ?p ?o
WHERE

{ OPTIONAL
{ $__PARAM_0

?p ?o
}

}

Template C.41: subjectsPredicatesObjects(limit, offset)

SELECT *
WHERE

{ ?s ?p ?o }
OFFSET $__PARAM_0
LIMIT $__PARAM_1

Template C.42: commonSubclassesAndInstanceCount(class1, class2,
class3)
PREFIX lgv: <http :// linkedgeodata.org/ontology/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX lgdm: <http :// linkedgeodata.org/meta/>
PREFIX spatial: <http :// geovocab.org/spatial#>
SELECT ?c (COUNT(DISTINCT ?s) AS ?count)
WHERE

{ ?s rdf:type $__PARAM_0 ;
rdf:type $__PARAM_1 ;
rdf:type $__PARAM_2 ;
rdf:type ?c

}
GROUP BY ?c

Template C.43: commonSubclassesAndInstanceCount(class1, class2)
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX lgv: <http :// linkedgeodata.org/ontology/>
PREFIX spatial: <http :// geovocab.org/spatial#>
PREFIX lgdm: <http :// linkedgeodata.org/meta/>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

44 L. Asprino and M. Ceriani

SELECT ?c (COUNT(DISTINCT ?s) AS ?count)
WHERE

{ ?s rdf:type $__PARAM_0 ;
rdf:type $__PARAM_1 ;
rdf:type ?c

}
GROUP BY ?c

Template C.44: roisAtPosition(latitude, longitude)
PREFIX ngeo: <http :// geovocab.org/geometry#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX gsp: <http :// www.opengis.net/ont/geosparql#>
SELECT DISTINCT ?class ?label ?s
WHERE

{ ?s rdf:type ?class ;
rdfs:label ?label ;
ngeo:geometry ?geom .

?geom gsp:asWKT ?g
FILTER <bif:st_intersects >(?g, <bif:st_point >($__PARAM_0 , $__PARAM_1),

1.0E-6)
FILTER NOT EXISTS { ?x rdfs:subClassOf ?class

FILTER (?x != ?class)
}

}

Template C.45: predicatesObjects(subject)
PREFIX lgd: <http :// linkedgeodata.org/triplify/>
SELECT ?p ?o
WHERE

{ $__PARAM_0
?p ?o

}

Template C.46: allClasses(offset)
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT ?Concept
WHERE

{ ?s rdf:type ?Concept }
OFFSET $__PARAM_0
LIMIT 10000

Template C.47: countFeatures(property)
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX lgv: <http :// linkedgeodata.org/ontology/>
PREFIX openlinks: <http ://www.openlinksw.com/schemas/virtrdf#>
PREFIX sd: <http :// www.w3.org/ns/sparql -service -description#>
SELECT (COUNT(?p) AS ?no)
WHERE

{ ?s $__PARAM_0 ?o .
?o rdf:type lgv:Feature

}
GROUP BY ?p

How is your Knowledge Graph Used 45

5 Semantic Web Dog Food

Template C.48: describe(resource)
DESCRIBE $__PARAM_0

Template C.49: propertiesAndValues(resource)
PREFIX swperson: <http :// data.semanticweb.org/person/>
PREFIX dbpr: <http :// dbpedia.org/resource/>
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
PREFIX wn: <http :// xmlns.com/wordnet /1.6/>
PREFIX rdfdf: <http ://www.openlinksw.com/virtrdf -data -formats#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX openlinks: <http ://www.openlinksw.com/schemas/virtrdf#>
PREFIX ical: <http ://www.w3.org /2002/12/ cal/ical#>
PREFIX planet: <http :// dbpedia.org/>
SELECT ?property ?value
WHERE

{ $__PARAM_0
?property ?value

}

Template C.50: authorsAbstractKeywords(article)
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX swrc: <http :// swrc.ontoware.org/ontology#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
PREFIX dce: <http :// purl.org/dc/elements /1.1/>
SELECT DISTINCT ?abstract ?keyword ?author_name
WHERE

{ { $__PARAM_0
swrc:author ?author

}
UNION

{ $__PARAM_0
foaf:maker ?author

}
?author foaf:name ?author_name
OPTIONAL

{ $__PARAM_0
swrc:abstract ?abstract

}
OPTIONAL

{ { $__PARAM_0
swrc:keywords ?keyword

}
UNION

{ $__PARAM_0
dce:subject ?keyword

}
UNION

{ $__PARAM_0
swc:hasTopic ?topic .

?topic rdfs:label ?keyword
}

}
}

Template C.51: info(person)
PREFIX swperson: <http :// data.semanticweb.org/person/>

46 L. Asprino and M. Ceriani

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ?name ?homepage ?mbox_sha1sum ?page ?sameAs ?seeAlso
WHERE

{ $__PARAM_0
rdf:type foaf:Person

{ $__PARAM_0
foaf:name ?name

}
UNION

{ $__PARAM_0
rdfs:label ?name

}
OPTIONAL

{ $__PARAM_0
foaf:mbox_sha1sum ?mbox_sha1sum

}
OPTIONAL

{ $__PARAM_0
foaf:homepage ?homepage

}
OPTIONAL

{ $__PARAM_0
foaf:page ?page

}
OPTIONAL

{ $__PARAM_0
owl:sameAs ?sameAs

}
OPTIONAL

{ $__PARAM_0
rdfs:seeAlso ?seeAlso

}
}

Template C.52: affiliationsAtEvents(employee)
PREFIX swperson: <http :// data.semanticweb.org/person/>
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX swrc: <http :// swrc.ontoware.org/ontology#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
SELECT DISTINCT ?affiliation_url ?affiliation_name ?event_uri ?

event_acronym ?prefLabel
WHERE

{ GRAPH ?g
{ $__PARAM_0

swrc:affiliation ?affiliation_url
}

?affiliation_url
foaf:name ?affiliation_name .

?event_uri swc:completeGraph ?g ;
swc:hasAcronym ?event_acronym

OPTIONAL
{ ?affiliation_url

skos:prefLabel ?prefLabel
}

}
ORDER BY ?event_acronym

Template C.53: rolesAtEvents(person)
PREFIX swperson: <http :// data.semanticweb.org/person/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

How is your Knowledge Graph Used 47

PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
SELECT DISTINCT ?event_uri ?event_acronym ?role_uri ?role_label
WHERE

{ GRAPH ?g
{ { $__PARAM_0

swc:holdsRole ?role_uri
}

UNION
{ ?role_uri swc:heldBy $__PARAM_0 }

?role_uri rdfs:label ?role_label
}

?event_uri swc:completeGraph ?g ;
swc:hasAcronym ?event_acronym

}
ORDER BY ?event_acronym

Template C.54: publicationsAtEvents(person)
PREFIX swperson: <http :// data.semanticweb.org/person/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
SELECT DISTINCT ?publication_url ?publication_name ?event_uri ?

event_acronym
WHERE

{ GRAPH ?g
{ { $__PARAM_0

foaf:made ?publication_url
}

UNION
{ ?publication_url

foaf:maker $__PARAM_0
}

UNION
{ ?publication_url

dct:creator $__PARAM_0
}
{ ?publication_url

dct:title ?publication_name
}

UNION
{ ?publication_url

rdfs:label ?publication_name
}

}
?event_uri swc:completeGraph ?g ;

swc:hasAcronym ?event_acronym
}

ORDER BY ?event_acronym

Template C.55: authorList(article)
PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX bibo: <http :// purl.org/ontology/bibo/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX swrcext: <http :// www.cs.vu.nl/~ mcaklein/onto/swrc_ext /2005/05#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ?pred ?author_url ?author_name ?author_pref_label
WHERE

{ GRAPH ?graph
{ { $__PARAM_0

bibo:authorList ?authorList
}

UNION
{ $__PARAM_0

48 L. Asprino and M. Ceriani

swrcext:authorList ?authorList
}

?authorList ?pred ?author_url
{ ?author_url foaf:name ?author_name }

UNION
{ ?author_url rdfs:label ?author_name }

OPTIONAL
{ ?author_url skos:prefLabel ?author_pref_label }

}
}

ORDER BY ?pred

Template C.56: metadata(conferenceArticle)
PREFIX swrc: <http :// swrc.ontoware.org/ontology#>
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX dce: <http :// purl.org/dc/elements /1.1/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ?name ?abstract ?webpage ?sameAs ?seeAlso ?event ?

conference_uri ?conference_name ?conference_acronym ?keyword
WHERE

{ GRAPH ?graph
{ { $__PARAM_0

dce:title ?name
}

UNION
{ $__PARAM_0

dct:title ?name
}

UNION
{ $__PARAM_0

rdfs:label ?name
}

OPTIONAL
{ $__PARAM_0

swrc:abstract ?abstract
}

OPTIONAL
{ $__PARAM_0

swrc:url ?webpage
}

OPTIONAL
{ $__PARAM_0

rdfs:seeAlso ?seeAlso
}

OPTIONAL
{ $__PARAM_0

owl:sameAs ?sameAs
}

OPTIONAL
{ $__PARAM_0

swc:relatedToEvent ?event
}

}
OPTIONAL

{ { $__PARAM_0
swrc:keywords ?keyword

}
UNION

{ $__PARAM_0
dce:subject ?keyword

}
UNION

{ { $__PARAM_0

How is your Knowledge Graph Used 49

swc:hasTopic ?topic
}

UNION
{ $__PARAM_0

foaf:topic ?topic
}

?topic rdfs:label ?keyword
}

}
?conference_uri

swc:completeGraph ?graph ;
rdfs:label ?conference_name ;
swc:hasAcronym ?conference_acronym

}

Template C.57: subjectPredicatesObjects(limit)

SELECT *
WHERE

{ ?s ?p ?o }
LIMIT $__PARAM_0

Template C.58: metadata(organization)
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX swperson: <http :// data.semanticweb.org/person/>
SELECT DISTINCT ?name ?homepage ?page ?sameAs ?seeAlso ?latitude ?longitude
WHERE

{ { $__PARAM_0
foaf:name ?name

}
UNION

{ $__PARAM_0
rdfs:label ?name

}
OPTIONAL

{ $__PARAM_0
foaf:page ?page

}
OPTIONAL

{ $__PARAM_0
owl:sameAs ?sameAs

}
OPTIONAL

{ $__PARAM_0
rdfs:seeAlso ?seeAlso

}
OPTIONAL

{ $__PARAM_0
foaf:homepage ?homepage

}
OPTIONAL

{ $__PARAM_0
foaf:based_near ?location .

?location pos:lat ?latitude ;
pos:long ?longitude

}
}

Template C.59: membersAtEvents(organization)

50 L. Asprino and M. Ceriani

PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX swrc: <http :// swrc.ontoware.org/ontology#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX swc: <http :// data.semanticweb.org/ns/swc/ontology#>
PREFIX swperson: <http :// data.semanticweb.org/person/>
SELECT DISTINCT ?member_url ?member_name ?event_uri ?event_acronym ?

prefLabel
WHERE

{ GRAPH ?g
{ { $__PARAM_0

foaf:member ?member_url
}

UNION
{ ?member_url swrc:affiliation $__PARAM_0 }

}
{ ?member_url foaf:name ?member_name }

UNION
{ ?member_url rdfs:label ?member_name }

?event_uri swc:completeGraph ?g ;
swc:hasAcronym ?event_acronym

OPTIONAL
{ ?member_url skos:prefLabel ?prefLabel }

}
ORDER BY ?member_url ?event_acronym

	How is your Knowledge Graph Used:Content-Centric Analysis of SPARQL Query Logs
	Algorithm details
	Additional Experimental Details
	Full Code of the Most Executed Templates

