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Knowledge-Defined Edge Computing Networks
Assisted Long-term Optimization of Computation

Offloading and Resource Allocation Strategy
Kaiqi Yang, Xingwei Wang∗, Qiang He, Liang Zhao, Member, IEEE, Yufei Liu, Daniele Tarchi, Senior

Member, IEEE

Abstract—With the proliferation of devices connected to the
Internet of Things (IoT), the complexity of network management
has increased. To intelligently manage large-scale networks,
we propose a Knowledge-Defined Edge Computing Networks
(KDECN) architecture. Edge Nodes (ENs) deployed in the
KDECN architecture are responsible for collecting and prepro-
cessing the relevant information uploaded by User Devices (UDs),
and provide computation resources for UDs. Futhermore, since
multiple UDs share system computation resources, one computing
decision will affect the subsequent decision-making of other UDs.
Thus, accurately predicting the demands for UD task requests
is a key challenge to maximize long-term execution utility. To
this end, we deploy the LSTM-based Task Request Demand
Prediction (TRDP) method on the management plane of KDECN
architecture to predict the task request quantity of UDs in each
future time slot. In order to maximize long-term execution utility
of the system, we propose a Deep Reinforcement Learning (DRL)-
based Long-term Computation Offloading and computation Re-
source Allocation (L-CORA) algorithm. Specifically, the proposed
L-CORA algorithm makes computing decisions based on the
prediction of the offloading task quantity and the personalized
demands of UDs to ensure the long-term quality of computing
service. Extensive experiments with Shanghai real-world datasets
to prove that the KDECN-based L-CORA algorithm effectively
improves the average utility of the system.

Index Terms—Computation offloading, knowledge-defined net-
working, mobile edge computing, deep reinforcement learning.

I. INTRODUCTION

IN recent years, with the continuous development of the In-
ternet of Things (IoT) [1]–[3], a variety of applications have

emerged to provide users with services in industrial, military,
entertainment and other fields [4]–[7]. Network applications
bring convenience to people’s life, which subsequently places
a heavy burden on User Devices (UDs). These applications
are usually time-sensitive and computation-complex, and are
limited by maximum delay tolerance. Therefore, the limited
computation resources of UDs often struggle to meet the
computing requirements of the applications, which leads to the
fact that the Quality of Services (QoS) cannot be guaranteed
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[8]. Computation offloading is one of the technologies to
address the issues stated above.

Computation offloading is the process of sending compu-
tation tasks to other devices with powerful computing power
via wireless connections to perform the tasks instead of the
requesting devices. Mobile Edge Computing (MEC) takes ad-
vantage of its closer proximity to UDs, enabling faster service
response for computation offloading [9]–[12]. Moreover, with
the continuous development of wireless networks, the prospect
of computation offloading is quite optimistic. Nevertheless,
it is one-sided to solely consider a single UD or a specific
region for the computation offloading and resource allocation
decision-making [13]–[15]. Thus, the decision-making should
consider the impact of a UD decision on the status of other
UDs, which needs global information to support the decision-
making. In addition, there are conflicts between the goals of
different stakeholders (i.e., service providers, users, etc.) in
the network, a network architecture is needed to support the
mediation of these conflicts [16].

Knowledge-Defined Networking (KDN) [17] is a new
networking paradigm based on Software Defined Network
(SDN) [18], Knowledge Plane (KP) [19] and network analysis
[20]. The KP provides services and recommendations to
other elements of the system by creating, coordinating, and
maintaining high-level views, and utilizing machine learn-
ing (ML) techniques. It is continuously trained through the
global view and network analysis provided by the control
and management plane, and then acquires knowledge stored
in the knowledge base. After that, according to the learned
knowledge, a reasonable decision or recommendation scheme
is formulated on account of the requirements of the system
[21]. Furthermore, the KP iteratively optimizes its decision
models based on system feedback, so that it can reconcile
conflicts caused by differences in UDs individual demands
and operator objectives, and then optimize the QoS of the
network [22]–[24]. KDN divides the system into four planes:
data plane, control plane, management plane and KP. The
layered architecture of KDN decouples each function and
completes their work in a distributed manner, making the
system control and management more efficient. However, the
powerful function of the KDN relies on the availability of a
significant amount of UD data, and all UDs upload their own
information to the control and management plane, which may
cause severe interference, information redundancy and waste
of network resources. Therefore, a more efficient computation
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offloading and resource allocation optimization architecture is
needed to solve these issues.

In summary, there are some key challenges in optimizing
computation offloading and resource allocation strategies. One
major challenge lies in the dynamic and complex nature of
large-scale networks, rendering traditional network manage-
ment systems inadequate for adapting to the increasingly
complexity of the network. Secondly, the centralized network
architecture relies on real-time collection of UDs information
for dynamic network management. However, the real-time
uploading of relevant information by UDs often results in
higher energy consumption and severe signal interference.
Moreover, the information uploaded by UDs may have the
problems of information redundancy and unreliability, result-
ing in low efficiency of information uploading and reduced
accuracy of subsequent analysis. Another challenge is that
the system computation resources are shared among all UDs,
any computing decision made by one UD will have a certain
impact on the subsequent UDs’ decisions. Therefore, it is a
key challenge to jointly optimize the computation offloading
and resource allocation decisions of large-scale UDs to max-
imize long-term utility of the system. In short, an intelligent
network architecture that optimizes long-term execution utility
is required to solve the issues caused by the above challenges.

Consequently, inspired by the KDN architecture, we pro-
pose a new network architecture Knowledge-Defined Edge
Computing Networks (KDECN), which can collect informa-
tion, self-learn and make decisions or recommendations for
large-scale network systems. The Edge Nodes (ENs) deployed
in KDECN upload the collected and pre-processed information
to the control and management plane to obtain a global view
and analyze the UD requirements for KP training and learning.
Moreover, KP needs the deployment of powerful ML algo-
rithm to optimize long-term computing decisions for UDs in
large-scale networks. In this paper, we propose a Long Short-
Term Memory (LSTM)-based Task Request Demand Predic-
tion (TRDP) method deployed on the management plane,
consider the effects of spatial-temporal and continuity factors
on task requests to predict the task request quantity of UDs
in each future time slot. Afterwards, in order to achieve the
purpose of maximizing long-term average execution utility of
the system, we deploy the Long-term Computation Offloading
and computation Resource Allocation (L-CORA) algorithm on
KP to optimize the long-term computing decision.

Specifically, the advantages of building the KDECN ar-
chitecture are as follows: Firstly, the deployment of ENs
on the data plane effectively alleviates the pressure of UDs
transmitting data, removes redundant and untrusted informa-
tion, achieves system data interconnection, and improves the
efficiency and accuracy data collection; Secondly, the manage-
ment plane analyzes and predicts the long-term task request
demands of UDs, which can assist KP in optimizing long-
term computing decisions in large-scale networks; Thirdly, the
KP optimizes computing decisions from the perspective of
operators based on UD demand-related data and predictions
provided by the control and management plane, which can
better reconcile goal conflicts between UDs and operators.

Specially, our contributions can be summarized as follows:

• We propose a new network architecture (KDECN). The
KDECN architecture considers deploying ENs on the
data plane to collect UD data, provide computation re-
sources and preprocess the data, thereby reducing data
redundancy and improving data validity. As a result, the
accuracy of the system data has been improved, and
the energy consumption and interference of the UD data
transmission have been reduced.

• LSTM-based TRDP method is proposed and deployed in
the management plane. The TRDP method is to predict
the future task request quantity with spatial-temporal and
continuous characteristics, which is necessary to support
the long-term computing decision-making of the KP.

• The DRL-based L-CORA algorithm is proposed. The
future demand of UDs is innovatively considered as an
influencing factor of the current decision, to maximize the
average execution utility of global UDs over a long period
of time and consider the influence between decisions. In
addition, the personalized needs of UDs are also taken
into account in long-term computing decision-making to
better mediate the conflict between different stakeholders
in the system.

• Experimental Verification. We validate our proposed
KDECN architecture and the L-CORA algorithm by
using the realworld datasets of base station telecom in
Shanghai, China. Extensive simulations also verify that
the long-term execution utility in large-scale networks has
been significantly improved.

The remainder of this article is organized as follows. In
Section II, we present the related work. Next, in Section III,
we formulate the system model and the optimization problem.
Then, Section IV introduces our proposed L-CORA algorithm
in detail. The evaluation results are shown in Section V.
Finally, the conclusion is drawn in Section VI.

II. RELATED WORK

Future 6G wireless communication network will have in-
telligent and automatic features, which requires a network
architecture with intelligent analysis and learning ability to
replace network managers for network self-management and
self-repair [32]. D. Clark et al. put forward the concept of KP
[19], which has attracted wide attention. KP is a new network
architecture based on ML and cognition technology, which
brings great advantages to network management and operation.
However, ML deployed on the KP requires a large amount
of data to support learning and training, and it is difficult to
provide management and control for the complex distributed
network with only a partial view. Therefore, Albert et al.
combined SDN, network telemetry and KP to propose a new
paradigm of KDN [17]. Alejandra et al. proposed an intelligent
system for effectively identifying heavy-hitters based on KDN.
The system allows the use of ML integrated behavior models
to detect traffic patterns in the network, and reduces the
incidence of network congestion based on traffic thresholds
[33]. In addition, SDN can provide global view and network
programmability function [34], which provides the foundation
for KDN paradigm. The KP adopts ML technology to convert
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TABLE I
COMPARISON WITH EXISTING WORK

Reference Computing resource Optimization objective System architecture Predictive offloading Proposed solution
[25] Fog computing power consumption Multitiered fog computing ✔ Lyapunov optimization

[26] Edge computing System latency Edge cloud-empowered self-dirving ✔ DDPG

[27] Edge cloud Long-term cost Trusted cooperative offloading ✗ Lyapunov optimization

[28] Vehicular edge computing Utility of vehicles Vehicular edge computing ✗ Double deep Q-network

[29] Mobile edge computing Average long-term cost MEC system ✗ Temporal attentional deterministic policy gradient

[30] Mobile edge computing Energy consumption and transmission delay heterogeneous vehicular network ✗ DDPG

[31] Edge computing Computing utility Edge computing ✗ Game theory and actor-critic network

Our paper Edge computing Long-term average execution utility KDECN ✔ LSTM-based and DDPG-based methods

the collected data into knowledge, and uses the knowledge
to enable intelligent self-control and management capabilities
of the network. Daniela M et al. innovatively incorporated
KP to the SDN-based routing method and designed a routing
decision optimization using reinforcement learning based on
link state information [35]. In terms of network configuration,
KDN has the advantage of providing closed-loop network
management to solve the complicated management problems
caused by the surge in the number of connected devices.
The author Careglio et al. are committed to architecting a
converged 5G-enabled infrastructure [36], which relies on ML
technology in KDN architecture to complete automatic de-
ployment, operation, monitoring and network troubleshooting,
and realize intelligent network closed-loop management.

Furthermore, the deployment of KDN in optimizing re-
source management is mainly to provide decision-making
model and reasoning process for the system. Since compu-
tation tasks and traffic in a data center network can be highly
dynamic, accurate knowledge of tasks and traffic is required to
make network orchestration more effective. Therefore, Lu et
al. proposed knowledge-defined network choreography [37],
carried out AI-assisted analysis through rich global view and
telemetry information provided by KDN controller, and made
more efficient network choreography decisions through deep
learning of abstract knowledge. Rafiq et al. proposed an
autonomous driving system based on KDN to achieve optimal
path selection for deploying service function chaining and
reactive traffic routing between edge clouds [38]. Herrera et al.
proposed that the utilization of the KDN architecture can en-
hance the control and management of network resources, and
identify video streaming services when data traffic increases,
thus ensuring network performance [39].

However, there are few studies that make current decisions
based on the future task request demands of UDs, which is
conducive to maximizing long-term execution utility of the
system and increasing resource utilization. Therefore, in the
dynamic time-varying network system, it becomes extremely
important to have global information and accurately predict the
task requests and resource requirements of UDs. The former
can be realized by deploying KDN network architecture, while
the latter can be realized by predictive offloading. Gao et
al. proposed dynamic offloading and resource allocation with
traffic prediction in the multi-layer fog computing system. By
predicting queues and arrival queues, the Lyapunov optimiza-
tion problem was adopted to minimize the average energy

consumption of all queues in the system [25]. As providing
computation offloading and content caching services for au-
tonomous vehicles, Tian et al. proposed to jointly optimize
offloading and caching decisions on account of predicting
future content popularity changing over time [26]. Li et al.
adopted delayed online learning technology in MEC, and took
the delay prediction as the input of queue-based offloading
control strategy, thus reducing system execution cost [27].

In the large-scale access network, the resources and states
in the system are time-varying, the traditional methods are
difficult to solve such complicated problems. Deep Rein-
forcement Learning (DRL) is a naturally inspired approach
to intelligent cognition and decision-making that is close to
the human mind [28], [40]. Chen et al. adopted DRL to
solve the joint optimization problem of dynamic computation
offloading and resource allocation in MEC system [29], and
proposed a temporal attentional deterministic policy gradient
to tackle decision-making issue. Zhou et al. proposed to jointly
optimize computation offloading and resource allocation in a
multi-user dynamic MEC system to minimize system energy
consumption by considering delay constraints and uncertain
resource demands of heterogeneous computation tasks [41].
In the vehicular network, in order to tradeoff between the
cost of energy consumption and data transmission delay, an
adaptive computation offloading method based on DRL is
proposed to solve the continuous action space problem [30].
Zhan et al. designed a decision-making method based on game
theory in the scenario where users share their information, and
proposed a DRL-based decentralized approach without prior
knowledge to learn the optimal offloading policy in the case
of no information sharing [31].

Different from these works, we propose a KDECN architec-
ture and deploy ENs to optimize the UD information collection
process and provide computation resources to the system.
In order to maximize long-term average execution utility of
the system, a DRL-based L-CORA algorithm is proposed
in this paper. In addition, the system computation resources
are shared among the whole UDs, a computing decision
made by UD will have a certain impact on the subsequent
UDs’ decisions. It is necessary to accurately predict the task
request demands of UDs in the future period, so a proposed
LSTM-based TRDP method is deployed on the management
plane. Considering the mixing continuous and discrete actions,
we resort to a Deep Deterministic Policy Gradient (DDPG)-
based algorithm to solve this problem. Table I shows a brief
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Fig. 1. System Model

TABLE II
NOTATIONS

Notations Description

M Number of ENs

N Number of UDs

rn,m The wireless transmission rate between UD n and EN m

rwired The transmission rate between ENs through optical fiber links

Cn Requested CPU

Dn Task data size

Tmax
n The upper limit of task delay

FCPU
n Computation resources of UD n

F
ENcom

n
n Computation resources allocated to user n by ENcom

n

F
ENexe

n
n Computation resources allocated to user n by ENexe

n

Fmax
EN The maximum available computation resources of ENs

eCPU
n Energy consumption per CPU cycle

etran
n Energy consumption of transmitting unit data

pEN Computation resource price per unit

α/β/γ Weights of execution time/ energy consumption/ price

comparison of some existing works.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model of KDECN, and
Fig. 1 illustrates the network architecture of the system.
The KDECN architecture consists of four planes: data plane,
control plane, management plane and KP. Since the KDECN
architecture, communication and computation models are the
key factors of computation offloading, we will introduce the
three model in the following. In addition, the main parameters
of this paper are shown in Table II.

A. KDECN Architecture

The data plane consists of the UDs, the network forwarding
hardware devices (i.e., the forwarding device in the network

communication link, which is omitted in Fig. 1) and the
ENs. We set up a set M = {1, 2, 3, ...,m} to represent the
ENs with a certain computation power deployed near the
micro base stations, and N = {1, 2, 3, ..., n} to represent the
UDs. With closer proximity to the UDs, ENs can provide
UDs with computation offloading services and faster service
response. Additionally, the relevant information of UDs is
collected by the EN that chooses to provide services, and then
the collected information will be preprocessed. Information
preprocessing ensures the authenticity and validity of data and
avoids unnecessary waste of resources caused by information
redundancy.

The control plane deploys several controllers, including the
UD information storage module, the EN control module, and
the long-term decision configuration control module. The main
function of the control plane is to update the matching rules
and transformation rules with the data plane. The UD informa-
tion storage module stores the basic information of all UDs in
the system sent by ENs (i.e., UD location, network topology,
computation power, etc.) and forms a complete global view.
The EN control module stores the information related to ENs
(i.e., node location, available computation resource, regions,
waiting queues, etc.). The long-term decision configuration
control module is designed to convert the long-term decision
made by the KP into imperative language to program the ENs
of the data plane through the south interface, so that the ENs
can understand the computation decision made by the KP.

The management plane contains the requirement analysis
module and the network operation logs. The requirement
analysis module collects the information related to the UD
requirements provided by ENs in the data plane (application
type, data size, request frequency, request time, continuous
time of task request type, etc.) and the global view provided
by the control plane. Furthermore, the LSTM-based TRDP
method is used to predict the requirements of UDs for network
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applications due to the continuity of the task types requested
by the UD. The importance of requirements analysis lies in
providing raw data for training and critical network analysis
for the KP, as well as reducing the complexity of knowledge
creation. The network operation logs store historical data such
as network operation status, network events and the long-term
decisions adopted by UDs. The purpose of network operation
logs is to provide the necessary data support for the smooth
operation of the network and to promote the progress of
learning model.

The KP consists of DRL module, long-term decision-
making module and knowledge base. The core function of KP
is to provide necessary management suggestions or decisions
for the system through sufficient view and analysis of the net-
work system provided by the control and management plane.
In addition, the process of knowledge generation is obtained by
continuous training and learning through DRL module, and the
generated knowledge is stored in the knowledge base. When
the decision-making encounters similar states and events, the
knowledge learned in the knowledge base can be adopted to
develop excellent computing decisions. In the KDECN archi-
tecture, the KP formulates reasonable computation offloading
and computation resource allocation strategies for global UDs
rather than individual UDs by considering the impact of one
UD decision on subsequent decisions.

B. Communication Model

In this subsection, Analytic Hierarchy Process (AHP) [42]
is firstly introduced to select the most appropriate device
for sending relevant information and offloading task of UD
n among the ENs capable of establishing communication
links (EN com

n ). In addition, AHP can be used to elect the
most suitable EN in the region to perform the offloading
computation task of UD n (ENexe

n ). Incidentally, the EN com
n

and ENexe
n elected by AHP can be the same device.

AHP is a kind of hierarchical weight analysis method to
measure which EN can provide better service for UDs. AHP
divides decision-related elements into three levels: objective
level, criterion level and alternative level. Ultimately, AHP
determines the priority of ENs selection according to the
weight coefficient of each influencing factor in offloading
the computation task, and selects the service node with the
highest priority. According to the status of the UD and the
requirements of the request task type, this paper takes the
communication distance, communication interference and the
available computation resources as the evaluation indexes of
ENs. UDs pay different attention to evaluation indicators due
to different types of computation tasks. Accordingly, in order
to find the optimal service node, it is necessary to determine
the selected priority of the service node according to the
weight of each evaluation index of the task. Subsequently,
the process of selecting service node EN by AHP method is
introduced.

1) Establishment of AHP model: We describe the problem
of electing optimal ENs as a three-level architecture model,
with all candidate ENs as alternatives at the bottom; In the
middle is the evaluation criterion level, which is the evaluation

TABLE III
AVERAGE RANDOM CONSISTENCY INDEX RI

h 1 2 3 4 5 6 ...

RI 0 0 0.58 0.90 1.12 1.24 ...

factor of EN; The top level is the objective level which is UD’s
choice of the candidate EN.

2) Establish judgment matrix: Two judgment matrices need
to be established, respectively: a) the judgment matrix of the
evaluation criteria Y = yi,j is to compare the criteria with
each other, that is, to judge the importance of criteria I to
criteria J to the objective level; b) the judgment matrix of
alternative nodes Z = zi,j , is to compare two alternative
nodes and judge the importance of alternative node I to node
J to the same judgment criterion. Importance indicators are
generally measured on a scale of 1-9 to judge the degree
of importance. Nevertheless, due to the subjectivity of the
judgment matrix, it may lead to inconsistency and large errors.
Therefore, consistency checking is very important in AHP
method. The consistency ratio CR can be used to determine
whether the matrix has errors, which can be expressed as

CI =
λmax − h

h− 1
, (1)

CR =
CI

RI
, (2)

where λmax is the largest eigenvalue of the judgment matrix,
h is the number of evaluation indexes, that is, the order of
the judgment matrix. Additionally, RI is the average random
consistency index, whose value depends on the number of
evaluation indexes, as shown in Table III. When CR < 0.1, the
judgment matrix is considered to pass the consistency check.
Otherwise, adjust the matrix until it is consistent.

3) Optimal EN selection: Finally, the weight vector is
obtained by calculating the maximum eigenvalue and its
corresponding eigenvalue vector. According to these weight
vectors, the priority ranking of service nodes and the selection
scheme of optimal service EN are obtained.

Next, two types of communication models in the system
are introduced. One is the communication between UDs and
ENs by establishing wireless links; The other is optical fiber
link communication between ENs. The data transmission rate
of offloading computation tasks between the UD n and the
selected EN m is expressed as follows

rn,m = Wlog2(1 +
BnHn,m

N0 +
∑

i∈N,i̸=n BnHi,m
), (3)

where W is the channel bandwidth; Bn is the transmission
power of the UD, it is assumed that the transmission power
of UDs is the same; N0 is the background noise power;
Hn,m is the channel gain between the UD n and the EN
m;

∑
i∈N,i̸=n BnHi,m represents the channel gain between

UDs excluding UD n send data to EN m via wireless channel
simultaneously. From Eq.(3), we can draw the conclusion
that if the more other devices send data to the same target
device EN m through the wireless channel at the same time,
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which will cause severe interference and the reduction of
transmission rate of UD n. In addition, we consider that ENs
communicate with each other through optical fiber links, which
can maintain stable and fast data transmission even if it is
transmitted over long distances. The interference of optical
fiber transmission is not considered in this paper, and the
transmission rate is rwired.

C. Computation Model

In this subsection, we will introduce the computation
model. In our scenario, UD n will generate the computation
task In = (Cn, Dn, T

max
n ), In ∈ I that needs to be processed

in real-time. Cn is the number of Central Processing Unit
(CPU) cycles required for performing computation task
In; Dn is the data size of offloading computation task In;
And Tmax

n denotes the maximum tolerance delay for task
completion. If the task is not completed within Tmax

n , the
task is judged to have failed. In addition, we assume that
the number of CPU cycles required to execute a computation
task is proportional to the data size of offloading computation
task. In our scenario, UDs can execute computation tasks
locally, or choose to offload computation tasks to ENs to
perform computation tasks instead of themselves. Since
computation tasks executed locally by UD can reduce the
system resource load, we consider that computation tasks
executed locally if the time of tasks executed locally can meet
the maximum tolerable delay. The AHP method mentioned
above can select the most appropriate EN com

n to collect
the information related to UD offloading, and can also
provide UDs with computation resources. However, there
may be a long computation queue of EN com

n selected by
UDs, and it may not be the optimal computation decision
for the EN com

n to execute the computation task In. Hence,
EN com

n can forward the computation task In to the relatively
idle ENexe

n to perform the computation task instead of the
UD n. We define K = kn ∈

{
klocaln , k

ENcom
n

n , k
ENexe

n
n

}
to

be the execution scheme choice of UD n. Here, the set
{local, EN com

n , ENexe
n } indicates that computation tasks are

executed at local, EN com
n or by EN com

n relays computation
tasks to ENexe

n through optcal fiber links. If kn = kϑn = 1,
it indicates that UD n chooses ϑ to perform the computation
task In, and klocaln + k

ENcom
n

n + k
ENexe

n
n ≤ 1, that is, UD can

only select one device to execute computation task. Next, we
will focus on the time, energy consumption, and the price of
renting computation resources of each strategy.

1) Local Execution: In the situation, if UD n can execute
computation task In locally to meet the delay tolerance
constraint, the UD will choose to execute task locally, and
klocaln = 1. Therefore, the execution time and energy con-
sumption to execute the computation task In of UD n locally
are respectively calculated as

TLoc
n = Cn/F

CPU
n , (4)

ELoc
n = Cn × eCPU

n , (5)

U local
n = αln

[
1 + (Tmax

n − TLoc
n )+

]
− βELoc

n , (6)

where the local execution time depends on the computation
resources of UD n (FCPU

n ) and the energy consumption
hinge on the energy consumption per CPU cycle (eCPU

n ).
In addition, Eq.(6) is the utility function of UD n executing
the computation task In locally, where (χ)+ = max {0, χ},
which means that the satisfaction of the execution time is kept
non-negative; α and β are the utility weights of execution
time and energy consumption, which are used to measure the
importance of different cost factors.

2) Computation Offloading: In the circumstance, as the
execution time for UD n to perform the computation task
In locally exceeds the maximum tolerable delay, consider
offloading the task to other devices over a wireless connection.
Furthermore, each EN has set up a First-Come-First-Serve
waiting queue to temporarily store computation tasks for sub-
sequent offloads. After the EN com

n receives the computation
task In offloaded by UD n, it executes the task locally
or forwards to ENexe

n through optical fiber link according
the task execution decision. Similar to [43] and [44], we
assume that the transmission delay of the computation result
is ignored, since the data size is small enough.
a) EN com

n performs the computation task:
In this case, EN com

n allocates computation resources to
UD n to perform the task In. The execution time of the
computation task In depends on the waiting time for the
computing queue of EN com

n (T
ENcom

n

Wait ), the rate of transmit-
ting the computation task over wireless link, and the amount
of computation resource allocated (F

ENcom
n

n ). The energy
consumption of computation task In performed by EN com

n

is decided by the energy consumption of transmitting data
of unit size (etrann ). Moreover, UDs need to pay EN com

n

for providing computation resources, which depends on the
price per unit of computation resources (pEN ). Therefore,
the execution time, energy consumption and price of EN com

n

to perform the computation task In instead of UD n can be
expressed as

T
ENcom

n
n = T

ENcom
n

Wait +
Dn

rn,m
+

Cn

F
ENcom

n
n

, (7)

E
ENcom

n
n = Dn × etrann , (8)

P
ENcom

n
n = F

ENcom
n

n × pEN , (9)

and

UENcom

n = αln
[
1 + (Tmax

n − T
ENcom

n
n )+

]
− βE

ENcom
n

n

−γPENcom
n

n ,
(10)

where Eq.(10) is the utility function as EN com
n performs the

computation task In, and α, β and γ are the weight coefficients
of execution time, energy consumption and price, respectively.
These coefficients are utilized to fine-tune the significance
of each parameter in the utility function according to UD
preferences. For instance, as the weight assigned to execution
time is higher, a shorter execution time is considered a more
favorable computing decision.
b) ENexe

n performs the computation task:
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In this case, EN com
n forwards the computation task to the

optimal ENexe
n , and ENexe

n executes the computation task In
of UD n. Accordingly, the costs and utility function of ENexe

n

to perform the computation task In is given as

T
ENexe

n
n = T

ENexe
n

Wait +
Dn

rn,m
+

Dn

rwired
+

Cn

F
ENexe

n
n

, (11)

E
ENexe

n
n = Dn × etrann , (12)

P
ENexe

n
n = F

ENexe
n

n × pEN , (13)

and

UENexe

n = αln
[
1 + (Tmax

n − T
ENexe

n
n )+

]
− βE

ENexe
n

n

−γPENexe
n

n .
(14)

Consequently, the execution utility of computation task In
(Un) is given as

Un = klocaln ×U local
n +k

ENcom
n

n ×UENcom

n +k
ENexe

n
n ×UENexe

n .
(15)

D. Problem Formulation

The long-term computing decision-making aims at making
optimal computation offloading and resource allocation strate-
gies for global UDs with the goal of maximizing average
execution utility over a period of time T . The long-term
computing decision-making better considers the impact of one
decision-making on other decisions in the future. Therefore,
the long-term decision may not be a decision to maximize
the current utility for a single UD in the short-term, it is
a necessary solution for the long-term stable operation and
reasonable utilization of resources of the whole system. Then,
the problem of long-term decision-making can be formulated
as

max
K,F

1

N

∑N
i

∑T
t=1Un (16)

s.t.C1 : FCPU
n ≥ 0,∀n ∈ N,

C2 : 0 ≤ F
ENcom

n
n ≤ Fmax

EN ,∀n ∈ N,

C3 : 0 ≤ F
ENexe

n
n ≤ Fmax

EN ,∀n ∈ N,

C4 :
∑N

j=1F
ENcom

n
j ≤ Fmax

EN ,∀j ∈ N,

C5 :
∑N

j=1F
ENexe

n
j ≤ Fmax

EN ,∀j ∈ N,

C6 : klocaln + k
ENcom

n
n + k

ENexe
n

n ≤ 1,∀n ∈ N,
C7 : kxn = {0, 1} , kxn ∈ K,n ∈ N, x ∈

{local, EN com
n , ENexe

n } ,
C8 : klocaln TLoc

n +k
ENcom

n
n T

ENcom
n

n +k
ENexe

n
n T

ENexe
n

n ≤ Tmax
n .

C1 indicates that the local computation resources of UD are
non-negative. C2 and C3 are the constraints of computation
resources allocated by EN com

n and ENexe
n to UD n. C4

and C5 are the constraints of total computation resources for
EN com

n and ENexe
n , respectively. C6 and C7 indicate that the

computation task of UD can only be executed on one device.
And C8 is the time-delay constraint of the computation task.

Note that, K and F are decision variables related to UD
n. To solve the problem stated in Eq.(16), it is necessary
to find the optimal results for the offloading decision vector
K = kϑn, n ∈ N in each time slot, the computation resource

allocation vector F =
{
Fϑ
n |n ∈ N

}
to maximize the average

execution utility of the system. Specifically, the offloading
decision variable K is a binary variable, and the computation
resource allocation vector F is dynamically changing. It
requires formulating large-scale global decisions for compu-
tation offloading and resource allocation based on the current
state of the network. Furthermore, since current computing
decisions affect the formulation of future UD computation
task decisions, it is essential to make informed decisions for
the current task by considering the predicted task request
demands of future UDs. Therefore, the objective function is a
mixed integer nonlinear problem and is undoubtedly NP-hard
[45]. The feasible set of the problem is not convex, and the
complexity exhibits exponential growth with the number of
UDs. Due to the limitations of traditional methods in adapting
to dynamically changing systems and formulating intelligent
decisions for computation offloading and resource allocation,
we propose an approach based on reinforcement learning to
address the aforementioned problem.

IV. LONG-TERM COMPUTATION OFFLOADING AND
COMPUTATION RESOURCE ALLOCATION

In order to maximize the utility of multi-UD task execution
over a long period of time, accurate UD demand analysis
is necessary to support optimized long-term computation
offloading and resource allocation decisions. Therefore, the
LSTM-based TRDP method is deployed on the management
plane of the KDECN architecture to provide the necessary
demand analysis for KP learning and training. The predicted
UD request task type reflects the UD preference and the
characteristics of continuous task requests. The details of the
method to predict the UD demand are elaborated below.

A. LSTM-Based TRDP Method

The content or application with high popularity in a region
is most likely to be requested. Hence, most existing work
assumes that the popularity of content generally follows Zipf
distribution [46]. Considering the dynamic resource require-
ments, the probability of the UD request application type is
time-varying, a pure distribution will not always be realized.
Moreover, requests for the same type of application tend
to be continuous for a certain amount of time, e.g., game-
type applications often require long-term continuous requests.
Therefore, it is a challenge to accurately predict the UD
tasks request quantity in each future time slot and maximize
long-term execution utility by optimizing the computation
offloading and resource allocation strategies.

For this reason, we proposed a TRDP method on account of
spatial-temporal and task request continuity deployed on the
management plane. LSTM relies on the cyclically connected
subnet to achieve long time dependence, which contains
functional modules of the memory unit and gate. The gate
control mechanism controls the flow of information between
the input, output and the cell memory. LSTM processes the
input sequence by adding new information to the memory and
controlling the state of information memory, the abandoned
state of the old information, and the available state of the
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Fig. 2. Long-term computation offloading and computation resource alloca-
tion decision-making process.

current information, thus realizing the prediction that depends
on the time-series. Since the UD request task type has the
characteristics of continuity, the TRDP method is designed
based on LSTM model to train and predict the future UD
request task quantity.

Additionally, in order to capture the distribution of requests
in different regions, the whole area is divided into several
equally sized grids based on functional areas such as industrial,
residential, office, and comprehensive regions. We define ωg

x(t)
to be the count of the request task type x generated by the
UDs at time slot t in region g. Moreover, in order to reflect
the impact of different tasks on request continuity, we set up a
counter to measure the number of time slots for consecutively
selecting the same type of task. Since the continuous request
time of a task type has an upper limit, the probability of
continuously requesting the same task will gradually decrease
with the increase of time. The history request task record and
related feature data are fed into the LSTM model for training.
With a lot of training, the task request probability pgx(t) of
task type x in the region g in time slot t can be calculated
and updated according to the task type selected by UDs in a
future time slot. The calculation of pgx(t) can be defined as

pgx(t) =
ωg
x(t)∑X

i=1ω
g
i (t)

,∀k ∈ K. (17)

Therefore, the request probability of all task types in the time
slot t of different regions g can be expressed as follows:

P (t) =
{
p11, . . . , p

1
X , p21, . . . , p

2
X , . . . , pg1, . . . , p

g
X

}
. (18)

We consider adopting the predicted task quantity expec-
tation of the UDs to reflect the impact of the task quantity
requested by the UDs in future time slots on the current
offloading decision-making. The expectation of requested task

type x generated from UDs in the region g at time slot t,
which is given as

En(t) =
∑N

n pgx(t)C
x
n. (19)

Afterwards, according to the predicted expectation of task
request quantity, an online computation offloading and compu-
tation resource allocation algorithm is proposed to maximize
the average execution utility of UDs over a period of time
and improve the QoS of task execution in the system. The
long-term computation offloading and computation resource
allocation decision-making process is shown in Fig. 2. Then,
the developed optimization problem is modeled as a Markov
Decision Process (MDP), and the components are defined
for the state in combination with the predicted request task
quantity expectation and UD personalization demands.

B. DRL-based Long-term Computing Decision-making

Since the Eq.(16) is NP-hard, it is difficult to effectively
maximize long-term average execution utility of the system
based on traditional methods such as game theory. Nowa-
days, DRL has increasingly become a promising method and
is widely adopted in various scenarios to tackle problems.
specifically, DRL can solves problems in a human-like way by
combining the perception of deep learning and the decision-
making power of reinforcement learning.

Inspired by the powerful decision-making capacity of DRL,
we deploy the DRL module on KP to make long-term decision.
According to the global views and UD demand analysis
provided by the control and management planes, the DRL
module gets the optimal policy after a lot of training and
stores it in the knowledge base, then the policy is continuously
updated to adapt to the dynamic changes of the system.
Next, we approximate the optimization problem as MDP, and
define the predicted task request quantity expectation and the
personalized demands of UDs as the components of state to
maximize long-term execution utility.

Firstly, the states, actions and rewards are defined in detail.
a) States: The state space reflects the observed network

environment. In our system, two types of parameters are
mainly considered, which related to the utility of task
execution and the computation resource allocation. The
state space st can be expressed as:

st =
{
Hn,m(t), Zn(t), En(t), σn(t), T

wait
m (t), Fm(t)

}
,

(20)
where Hn,m(t) represents the signal to noise of wireless
communication between UD n and EN m, which can
establish a wireless link; Zn(t) indicates the task type
requested by UD n; En(t) represents the expectation of
task quantity predicted by LSTM-based TRDP method,
so as to reflect the demand for resources of UDs in
the future; σn(t) represents the personalized demand of
different cost weights by UDs; Twait

m (t) is the waiting
time for queue release of EN m at the time t; And Fm(t)
is the available computation resource of EN m.

b) Actions: According to the observed state of the environ-
ment, the agent selects EN com

n or ENexe
n elected by
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AHP method to perform the computation task offloaded
by UD n and how many computation resources should
be allocated to UDs. Hence, the action space at is given
by

at = {kn,m(t), fn,m(t)} , (21)

where kn,m(t) is the binary discrete action indicating
whether EN com

n or ENexe
n is selected by UD n as the

device to perform the offloading computation task; And
fn,m(t) is the computation resources that EN m allocates
to UDs, which is a continuous variable.

c) Rewards: In the long-term decision-making problem, the
goal is to maximize the average execution utility of the
whole system over a long period of time. The long-term
reward space can be expressed as Rt =

∑T
t γ

tr(st, at).
Here, γ ∈ [0, 1] is the discount factor; r(st, at) is the
immediate reward obtained by the agent taking action at
and it defined as

r(st, at) =


punishment, if Tn > Tmax

n ,
0, if Tn < Tmax

n , t < T,
1
A

∑T
t Un, if Tn < Tmax

n , t = T,

(22)

where A is the number of the tasks requested by the UDs
in time slot T . In order to make the agent better achieve
the system goal, we define that when the execution time
of the task is greater than the maximum tolerable delay,
the agent will get a punishment. Moreover, under the
above condition, the immediate reward of the last time
slot in an episode is the average utility of the tasks, while
the other time slots are 0. The purpose of the immediate
reward is to maximize the average utility of the system,
not to maximize individual benefits. After UDs have taken
actions during the time slot T , the agent calculates the
average utility based on the utility function and begins
the next episode.

According to the expectation of the requested task quantity
in a long period time T predicted by LSTM-based TRDP
method and the individual demands of the UDs, the DRL
method is adopted to obtain the optimal solution. In this
paper, considering the existence of discrete and continuous
mixed action space, the DDPG algorithm is selected. DDPG
algorithm is a model-free and similar to actor-critic frame-
work, that can tackle the continuous actions by the policy
gradient method. Furthermore, DDPG is divided into two
major networks: policy network and value network, which
is an extension of DQN, including actor, critic and replay
buffer. The Actor network learns to output a deterministic
action based on the current state, rather than a probability
distribution over actions, to enable learning in continuous
action spaces. Consequently, in order to maximize the reward
and obtain the optimal solution, we designed a DDPG-based
L-CORA algorithm. The details of the DDPG-based algorithm
are introduced as follows.

The information of the environment is observed by the
agent, including the UD demand analysis and prediction data
of the management plane, the status and available computation
resources of the ENs and UDs provided by the control plane.
After that, the actor network maps the current state to the

action through the exploration policy, and selects the action
at by adding noise to obtain better exploration performance
of the behavior state, which expressed as

at = µ(st | θµ) +Nt, (23)

where µ(st | θµ) represents the policy explored by actor,
and Nt is the random noise. After the action at is obtained
according to the policy, the feedback reward can be calculated
from the environment, and the next state st+1 is updated.
The four-tuple transitions are then stored in the replay buffer.
When the length of experience tuples reaches the limit, a
minibatch is randomly sampled for training to update network
parameters. Afterwards, critic network updates the neural
network parameter θQ by reducing the loss function, which
is given by

L = E
[
(yt −Q(st, at | θQ))2

]
, (24)

where Q(st, at | θQ) is the actor value function, which
represents the score for the policy. Each long time period is
a training episode, and the target value yt of the training Q

′

and µ
′

of the target critic network is represented as

yt = r(st, at) + γQ
′
(st+1, µ

′
(st+1 | θµ

′

) | θQ
′

). (25)

Then according to the Q(st, at | θQ) and the replay buffer
tuples, the primary actor network parameter θµ updates by
using policy gradient. The policy gradient is expressed as

∇θµJ =
1

N

∑T
t ∇aQ(s, a | θQ) |s=st,a=µ(st) ∇θµµ(s | θµ) |st .

(26)
In each iteration, the parameters of the target neural network

are updated by soft update scheme, which is presented as

θµ
′

= ωθµ + (1− ω)θµ
′

, (27)

θQ
′

= ωθQ + (1− ω)θQ
′

, (28)

where ω is the update coefficient.
In our scenario, we first judge whether the execution time

of the local computation task executed by UD meets the
maximum tolerable delay constraint. If so, the computing
task is executed locally; Otherwise, L-CORA is executed to
formulate the optimal computation offloading and resource
allocation policy. The process of L-CORA algorithm is shown
in Algorithm 1. The L-CORA algorithm starts by initializing
four networks and a replay buffer. Next, according to the
LSTM-based TRDP method, the predicted task quantity of
UDs in each future time slots are obtained. As a parameter
in the state space, the task quantity expectation of the future
time slot affects the current computation decision-making and
ensures the maximization of the long-term average execution
utility. For each episode, the agent selects an action in each
time slot t, and the immediate reward and next state are
obtained. Afterwards, the four-tuple transition is stored in the
replay buffer. As the network parameters are to be updated, the
transitions are sampled from the buffer for training. Ultimately,
the critic and actor networks, and the corresponding target
networks are updated successively, each episode is cycled
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Algorithm 1: Long-term Computation Offloading and
computation Resource Allocation (L-CORA) Algo-
rithm

1 Initialize replay memory;
2 Initialize actor network µ(s|θµ) and critic network

Q(s, a|θµ) with coefficients θµ and θµ;
3 Initialize target networks µ

′
and Q

′
with coefficients

θµ
′

← θµ and θQ
′

← θQ;
4 for episode=1,M do
5 Receive the system initial observation state s;
6 for t=1,T do
7 Predict the task type of UDs in future T ;
8 Compute the expectation of the future task

quantity of UDs in region g;
9 Collect the state s;

10 Select action at according to the current policy
µ(s|θµ) and exploration noise;

11 Obtain the observe reward r(st, at) and new
stat St+1;

12 Store the transitions (st, at, r(st, at), st+1) into
replay buffer;

13 Sample a random N transitions from the replay
buffer;

14 Calculate the yt by Eq.(25);
15 Update critic parameter θQ to minimize the

loss function by Eq.(24);
16 Update the actor policy µ(s|θµ) by Eq.(26);
17 Update the target networks by Eq.(27) and

Eq.(28);
18 end
19 end

until the algorithm ends. After the algorithm is completed,
the optimized computation offloading and resource allocation
policy obtained from training is stored in the knowledge base.
Since the system is dynamic, Algorithm 1 needs to be executed
repeatedly at certain intervals to update the computing policy.

C. Complexity Analysis

The complexity of the proposed LSTM-based TRDP
method and L-CORA algorithm is based on the computational
complexity of neural networks. For the LSTM-based TRDP
method, the complexity of LSTM per time step depends on
the computational complexity of the input gate, output gate,
forget gate, and cell update, set Fi is the input dimension
and Fo is the output dimension. Additionally, there is a dense
layer after the LSTM with a complexity of O(Foq), where
q is the number of neurons in dense layer. Therefore, the
time complexity of the LSTM-based TRDP method can be
represented as O(4(FiFo+F 2

o +Fo)+Foq). For the L-CORA
algorithm, let I represent the number of multiplications in the
propagation and backpropagation in neural networks by DRL
agent, and M represent the number of episodes. Each episode
executes T time steps. Within one episode, the LSTM-based
TRDP method is executed to predict the future request task

TABLE IV
EXPERIMENTAL EVALUATION

Simulation Parameter Value
Computation cycles for tasks [200,2250] Megacycles [47]
Data size for tasks [300,1500] K bytes [47]
Upper limit of time delay tolerance [0.8,1.0] s
Wireless channel bandwidth 20 MHz [43]
Maximum available computation resource of ENs 30 GHz
The computation resource price coefficient of EN 0.03 $/GHz [12]
Local computing energy per cycle 0.8 ∗ 10−13J/cycle

Transmission energy consumption per byte 0.8 ∗ 10−9J/byte

quantity of UDs. Therefore, the complexity of L-CORA is
O(IMT (4(FiFo + F 2

o + Fo) + Foq)).

V. NUMERICAL RESULTS

A. Configuration

In this section, the performance of L-CORA algorithm
under the KDECN architecture is evaluated. The performance
evaluation of L-CORA algorithm is based on the telecom real-
world datasets in Shanghai, China, inspired by [26] using real-
world datasets to simulate the distribution of ENs with latitude
from 30.912831 to 30.815709, and longitude from 121.141435
to 121.37282. In the simulation, the channel bandwidth of
wireless communication is set as W = 20MHz; The back-
ground noise is set to N0 = −100dB; The transmission rate
of the optical fiber link is rwired = 50Mb/s; And the wireless
transmission power of the UD is 100mWatts, the computing
power of the UD is [0.5, 1]GHz. Since the local computing
capacity may not guarantee that the task execution time is
less than the maximum delay tolerance, the computation task
can be offloaded to the EN selected by the AHP method. For
the LSTM-based TRDP method, we constructed two hidden
layers with 32 and 16 LSTM cells, respectively, and set a
dense layer as the output layer. The DDPG-based L-CORA
algorithm, we consider a fully connected network with one
input layer, two hidden layers and one output layer, where the
hidden layers have 400 and 300 hidden neurons. Moreover, we
train the minibatch with the size of 256, the replay buffer with
the size of 106, and the discount factor γ is set as 0.99. The
simulation parameters of this article are shown in Table IV
by considering the experimental parameters of related work
[12], [47]. Moreover, The simulations are implemented in
TensorFlow 1.2.0 with Python 3.6.

B. Performance

In order to verify our LSTM-based TRDP method, we
compared it with three other commonly used baseline models,
including the Depth Neural Network (DNN) model, the time
learning model 1-D convolution and the Gate Recurrent Unit
(GRU). Fig. 3 illustrates the prediction error comparison
on other baseline models with different batch sizes under
the Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) evaluation indexes. It can be observed that our
proposed TRDP method outperforms the other three baseline
models in terms of RMSE and MAE index. In general, training
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(a) (b)

Fig. 3. Prediction error with different batch size.

efficiency can be improved by increasing batch size. However,
when the batch size is 32, the error of the TRDP method is
the smallest, and the performance is reduced at larger batch
sizes. Although the other three baseline models can capture the
spatial-temporal features of data, their performance is inferior
to that of the TRDP method in the analysis of large-scale and
time-dependent scenarios. The LSTM-based TRDP method
solves long-term dependence of spatial-temporal correlation
and task demand, and has high performance in analyzing long-
term task request demand of large-scale UDs.

Then, we evaluate L-CORA algorithm performance. Specif-
ically, we evaluate the performance of the algorithm using
metrics of the system’s average execution utility, execution
time, success rate and reward. In addition, we compared with
three other baselines, as follows:

• Short-term decision (Short-term) [12]: Short-term
decision-making is to make computation offloading and
resource allocation decisions with the goal of maximizing
the execution utility of the current computation task.
Short-term decision describes the computing decision-
making problem as a computation offloading strategy
game, and constructs partial Lagrange function and
bisection method to make computation resource
allocation scheme.

• DQN-based Algorithm (DQN) [30]: A DQN-based com-
putation offloading and resource allocation algorithm
has been implemented. Since the action space of DQN
is discrete, we quantify the continuous action in the
simulation environment and approximate replace the real
value with a finite number of discrete values. Thus we
allocated computation resources from the action space
into 10 levels in the simulation environment.

• No prediction DDPG (NDDPG) [43]: In order to ver-
ify the influence of task request demand prediction on
computation offloading and resource allocation scheme
formulation, we simulate computation offloading and
resource allocation algorithms without predicting UD
request demand.

Firstly, Fig. 4 shows the convergence performance of our
proposed algorithm under different learning rates. In the L-
CORA algorithm, the actor network selects the action ac-
cording to the policy, and the critic network evaluates the
performance of the action. The learning rate of the actor and
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Fig. 4. Convergence performance of L-CORA at different learning rates.
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Fig. 5. Average execution utility versus the number of UDs in one region.

critic network will affect the convergence performance and
convergence speed. Intuitively, when the episode is from 0 to
120, the average execution utility of the system rises rapidly.
As the episode exceeds 120, the curve tends to stabilize.
From Fig. 4, it can be observed that when the learning rate
is lower, the convergence performance will be better, but at
the same time, the convergence speed will be slower. As the
learning rate is 10−7, the convergence performance is better,
and the slow convergence speed will also lead to reduced
algorithm performance. Therefore, the learning rate of 10−5

is a relatively optimal choice.
Fig. 5 illustrates a comparison of the average execution

utility of the system with different numbers of UDs within
a single functional region. We conducted computing perfor-
mance evaluations for 40 to 100 UDs in one functional region,
with 5 ENs deployed in this region. Since L-CORA is based
on UD task request demand prediction, and aims to maximize
long-term average execution utility of the system to develop
computation offloading and resource allocation schemes, it
shows excellent performance as the number of UDs increases.
With the increase of the number of UDs, the average execution
utility of our proposed L-CORA is increased from 2.7% to
35.6% compared with other baselines.

As shown in Fig. 6, the performance of task execution
in the system as the number of large-scale UDs changes
across regions. We primarily evaluate the performance of
the L-CORA algorithm by comparing it with other baseline
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Fig. 6. Average execution utility, execution time and success rate of large-scale UDs.
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Fig. 7. Average execution utility with different number of ENs, offload task sizes and task CPU cycles.

models in terms of average execution utility, average execution
time, and average task execution success rate. We set the
number of UDs ranging from 50 to 500 and deployed 24
ENs in the system, which consists of multiple functional
regions. It can be observed from the figure that although the
increase of the number of UDs will have a certain impact
on system computing performance, the L-CORA algorithm
can still maximize long-term average execution utility and
reduce the task execution time. Due to the limited action space
of DQN algorithm, it is difficult to explore better strategies
in joint optimization of computation offloading and compu-
tation resource allocation. In addition, short-term decision-
making aims at maximizing the current decision utility, and
traditional algorithms are adopted to allocate computation
resources, which cannot make decisions to optimize the long-
term system performance. Moreover, compared to NDDPG,
L-CORA achieves better performance by considering the influ-
ence between UD decisions. The numerical results show that
compared with other baselines, the average execution utility
of the proposed L-CORA improves from 6.8% to 26.5%, the
average execution time is reduced by 4.94% to 41.98%, and
the average task execution success rate is increased by 1.04%.

In addition, Fig. 7 (a) shows the influence of the number
of EN in the region on the average execution utility of the
system. We conducted experiments by fixing the number of
UDs at 100 within a single functional region and varying the
deployment of ENs from 5 to 17. It can be observed that
with the increase of the number of EN, the average execution

utility of the system shows an upward trend. This is because
the increase in the number of EN will increase the computation
resources provided by the region for UD to reduce the task
execution time. We set that there are 100 UDs in this region,
as the number of EN is 5, L-CORA increases by 13% to
16% compared with other algorithms; When the number of
EN is 17, the average execution utility of our algorithm
L-CORA is 9.4% to 16.6% higher than other algorithms.
The experimental results show that our proposed algorithms
can formulate excellent long-term computation offloading and
resource allocation schemes to maximize the execution utility
of the system in the case of changing available computation
resources.

In Fig. 7 (b) and 7 (c), we examine the impact of of-
floaded data size and the number of CPU cycles changed
simultaneously on the system average execution utility in
the four models. In the simulation, we set a fixed number
of 100 UDs and deployed 8 ENs within a single functional
area, and we varied the offloaded data size and the number
of CPU processing cycles respectively. It can be observed
in Fig. 7 (b) that the increase of data quantity affects the
network transmission delay and energy consumption, thus
reducing the execution utility of computation offloading. The
L-CORA algorithm makes current computing decisions based
on the future task requests of UDs, which enables the system
to explore better performance to the maximum extent, thus
ensuring the QoS of the system. The numerical results show
that the average execution utility of L-CORA increases by
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63.6% compared with other algorithms. Fig. 7 (c) illustrates
that with the change of the number of CPU cycles required to
perform tasks, it can be observed that the average execution
utility of the system presents a downward trend. The reason
is that the increase of task size affects the execution time of
the task, and the proposed L-CORA algorithm can reasonably
allocate computation resources for UDs under different task
sizes, thus ensuring the system service performance. The data
shows that the average execution utility of our proposed L-
CORA is increased by 7.3% compared with other algorithms.

VI. CONCLUSION

In this paper, we innovatively propose the KDECN architec-
ture to better provide computing services for large-scale IoT
UDs. In addition, considering that the making of a computation
decision has a certain impact on the making of subsequent
computation offloading decisions, we propose LSTM-based
TRDP method deployed on the management plane. TRDP
method can predict and calculate the expectation of requested
task quantity in each future time slot, which can provide
the KP with necessary UD data analysis and prediction. In
order to maximize long-term average execution utility of
the system, we propose the L-CORA algorithm deployed
on KP. L-CORA algorithm considers the future task request
and personalized demand for task execution cost of UDs to
formulate the optimal computation offloading and computation
resource allocation scheme. Our proposed KDECN architec-
ture and L-CORA algorithm can solve the complex problem
of large-scale UD computation decision-making, and better
mediate the target conflict between UDs and operators in the
system. Numerical results show that our proposed L-CORA
can effectively improve the average execution utility of the
system.
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