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Abstract: The charged forms of π–conjugated chromophores are relevant in the field of organic
electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in
organic batteries. In this context, intramolecular reorganization energy plays an important role in
controlling material efficiency. In this work, we investigate how the diradical character influences the
reorganization energies of holes and electrons by considering a library of diradicaloid chromophores.
We determine the reorganization energies with the four-point adiabatic potential method using
quantum–chemical calculations at density functional theory (DFT) level. To assess the role of diradical
character, we compare the results obtained, assuming both closed-shell and open-shell representations
of the neutral species. The study shows how the diradical character impacts the geometrical and
electronic structure of neutral species, which in turn control the magnitude of reorganization energies
for both charge carriers. Based on computed geometries of neutral and charged species, we propose
a simple scheme to rationalize the small, computed reorganization energies for both n-type and
p-type charge transport. The study is supplemented with the calculation of intermolecular electronic
couplings governing charge transport for selected diradicals, further supporting the ambipolar
character of the investigated diradicals.

Keywords: DFT; diradical character; closed-shell; open-shell; conjugated diradicals; reorganization
energy; charge transport; ambipolar transport; amphoteric behavior; broken symmetry orbitals

1. Introduction

π–conjugated chromophores are active components of optoelectronic devices [1–6]
and energy storage substrates [7–14]. Both uses of organic semiconductors benefit from
suitable redox properties since oxidation and reduction are correlated with the injection
of holes into the highest occupied molecular orbital (HOMO) level and electrons into
the lowest unoccupied molecular orbital (LUMO) level. Therefore, designing organic
molecules with both redox properties (donor and acceptor abilities) is important to obtain
novel ambipolar semiconductors that are of great interest due to the rapidly increasing
demand for renewable energy. In this regard, to realize efficient ambipolar semiconductors,
a relatively low band gap is desirable. This is a property that can be achieved exploiting not
only with donor-acceptor polymers [15–17], but also with less common π–electron systems,
such as antiaromatic compounds, radicals, and diradicals [18]. π–conjugated diradicals,
thanks to their small HOMO–LUMO (H–L) gap, display absorption in the near infrared
region, amphoteric electrochemical redox behaviour [19–24], and favourable p-type and
n-type conduction. Such intrinsic electronic properties of organic semiconductors featuring
unpaired electrons are, therefore, promising for advanced applications in optoelectronics,
spintronics, and organic batteries [7,8].
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Conjugated diradicals suffer from high reactivity, but significant efforts and recent
protection strategies have contributed to design a large number of stable diradicals featur-
ing an open-shell singlet ground state, different conjugated cores, and varying diradical
character [20,25–40]. In parallel to the research committed to their chemical stabilization,
there has been a widespread effort to rationalize the distinctive properties of diradicals
from a theoretical point of view, including their linear and non-linear optical properties
and their application in singlet fission processes [41–47].

Recently, diradicaloids displaying a balanced ambipolar carrier transport character
with hole/electron carrier mobilities of the order of ca. 10−3 cm2V−1 s−1, and even higher,
have been reported [20,21,23,48–53]. In most cases, the relatively low measured charge
transport mobilities were ascribed to the introduction of bulky substituents, which are
required to improve stability but detrimental for an effective molecular π–π packing and
charge transport [20]. Several additional examples of OFETs based on diradicaloids have
been reported, showing unipolar or unbalanced conduction [54–64].

The appearance of ambipolar behavior is influenced by a variety of factors. Effi-
cient carrier injection from the electrodes must occur [65], but the ordered arrangement
of molecules in the condensed phase and a reduction of grain boundaries [66] are also
important to maximize the electronic couplings that govern charge transfer. In addition, the
tuning of intra-molecular properties by chemical design and substitution is fundamental
to optimize key parameters, such as electrode level alignment and intra-molecular reorga-
nization energy. The latter plays an important role in material efficacy for optoelectronic
and electrical devices, such as organic light emitting diodes (OLEDs) [67,68] and organic
field-effect transistors (OFETs) [69–71]. By reference to the semiclassical Marcus theory, a
small reorganization energy favors the inter-molecular charge hopping rate [72–74]. In the
field of lighting materials, strategies to reduce the reorganization energy by innovative
molecular designs have been the focus of recent studies [75]. Here, we discuss how reorga-
nization energy is naturally reduced in diradicals thanks to their open-shell (OS) nature,
and how the diradical character favors ambipolar conductance.

In recent investigations on two classes of conjugated diradicals, difluorenoheterole
compounds [49] and indaceno derivatives [64], we showed that the partial OS nature gen-
erates a pseudo-hole and pseudo-electron character in the neutral forms of these systems
that, upon charging, provide similar conditions for the stabilization and transport of holes
and electrons, resulting in amphoteric redox behavior and ambipolar conductance. Such
behavior was shown to be assisted by rather small computed intramolecular reorganization
energies. Here, we extend the study and consider an additional library of recently syn-
thesized conjugated diradicals shown in the bottom part of Figure 1: NZ, 2TIO, QDTBDT,
TPQ, EsQn, Ph2–IDPL, and BISPHE [22,26,33,47,48,76], some of which were previously
investigated in the context of another distinctive character of conjugated diradicaloids,
the appearance of a low-lying excited state featuring a doubly excited H,H→L,L orbital
nature [46,47,77–79]. The entire set of diradicaloids is considered for the investigation of
the relationship between intra-molecular reorganization energy, diradical character, and
potential ambipolar electrical behavior. Based on the extended set of investigated diradicals,
a simple two-dimensional representation of the PES of neutral and charged species is sug-
gested to rationalize the reduced reorganization energies. The study is supplemented with
the calculation of inter-molecular electronic couplings for selected diradicaloids, further
supporting their propensity to ambipolar transport.
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Figure 1. Structural formula of the conjugated diradicals (a) DFFu, DFTh, DFThSO2,DFPy, FF, DIAn, 
BT-DIAn, A/S-IDBT, and A/S-IIDBT, considered also in previous studies [49,64], and (b) NZ, TPQ, 
BISPHE, Ph2–IDPL, EsQn, QDTBDT, and 2TIO, whose intramolecular reorganization energies are 
investigated in this work for the first time. 
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closed-shell (CS) systems and = 1 for pure diradicals. From the computational point of 
view, such multiple resonance structures imply a significant contribution of static electron 
correlations, which is commonly introduced by the use of density functional theory (DFT) 

Figure 1. Structural formula of the conjugated diradicals (a) DFFu, DFTh, DFThSO2,DFPy, FF, DIAn,
BT-DIAn, A/S-IDBT, and A/S-IIDBT, considered also in previous studies [49,64], and (b) NZ, TPQ,
BISPHE, Ph2–IDPL, EsQn, QDTBDT, and 2TIO, whose intramolecular reorganization energies are
investigated in this work for the first time.

2. Results and Discussion

Quantum chemical calculations have been carried out to rationalize the connections
between diradical character and ambipolar charge transport. In the framework of the
non-adiabatic hopping model, the relevant charge-transfer event is localized on a molecular
pair (dimer) formed by two neighboring molecules. A widely employed expression for the
charge transfer rate constant is the Marcus equation [73,80]:

keT =
2π

} Vij
2 1√

4πλkBT
e(−

(∆G0+λ)
2

4λkBT ) (1)

where λ is the intramolecular reorganization energy (neglecting external contributions to
reorganization energies that are negligible in this context [81,82]), Vij are the intermolecular
electronic couplings related with the through space overlap between the electronic wave-
functions of the two molecules forming the dimer, and ∆G0 is the driving force, which is
zero for the self-exchange process of charge transfer between two identical molecules, in
the absence of applied electric fields. Although the applicability of the hopping model is re-
stricted to situations in which the coupling is smaller than the reorganization energy [83–86],
it is clear that small reorganization energies favor charge mobilities.

Conjugated diradicaloids are OS systems, generally characterized by a singlet ground
state due to double-spin polarization [87], and are easily represented as hybrids between
quinoidal and biradical resonance structures. The contribution of each form in the ground
state is described by the diradical character index (y0), which is = 0 for pure closed-shell
(CS) systems and = 1 for pure diradicals. From the computational point of view, such multi-
ple resonance structures imply a significant contribution of static electron correlation, which
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is commonly introduced by the use of density functional theory (DFT) in its unrestricted
formulation (UDFT). At this level of theory, the OS character implies broken symmetry (BS)
molecular orbitals describing the localization of the unpaired electrons on opposite sides of
the molecular backbone. In the following, we also label BS the correspondingly optimized
geometries, as opposed to the CS label indicating molecular geometries optimized with the
restricted DFT (RDFT) formulation.

To determine intramolecular reorganization energies λ, we investigated computation-
ally neutral and charged species and used the four-point adiabatic potential method [88].
In addition to the BS description of the neutral species, we also determined the neutral CS
ground state structures. While CS geometries for the neutral species are not sufficiently
accurate for medium–large diradical character, they provide limiting reference values that
can be compared with those obtained employing the more realistic BS geometries for the
neutral compounds. Thus, a comparison between the description at CS and BS levels offers
the key to understand how the diradical character influences the electronic structure and
the molecular geometries, as well as how these control the intramolecular reorganization
energies. In the following, we first assess how the diradical character impacts the elec-
tronic structure by correlating H/L gaps and orbital localizations with the diradical index
y0. Second, we show how the effect of orbital mixing determines the atomic structure of
neutral diradical molecules. Finally, we discuss the computed trends in intra-molecular
reorganization energies.

2.1. Frontier Orbital Energies, Diradical Character, Orbital Mixing

Diradical molecules display a decreasing H/L gap with increasing diradical index y0
(the latter computed at unrestricted Hartree Fock (UHF) level (yPUHF

0 )), as shown by the
good linear dependence in Figure 2. Such decreasing H/L gap implies an increased role
of static electron correlation and double-spin polarization effects that can be accounted
for by determining the more stable BS geometries. The increased stabilization of the BS
geometry, in a conjugated chromophore displaying a medium-to-large diradical character,
is accompanied by an increased localization of the BS frontier orbitals driven by mixing
CS frontier molecular orbitals [89]. Such mixing can thus be appreciated by expanding
BS molecular orbitals as linear combinations of the CS counterparts, a procedure that we
applied to the library of investigated molecules (Table S1).
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Such BS orbital localization and mixing is displayed, as an example, in Figure 3 for
DFFu, where the linear combinations of CS orbitals, generating the BS orbitals, are also
collected. As shown by the shape of BS-occupied orbitals and numerically demonstrated
by the linear combination coefficients Hα and Hβ, which contain a significant contribution
(0.43) of the unoccupied LCS orbital. Mixing becomes larger, as expected, for larger diradical
character (Table S1). This can be appreciated in Figure 4, where the contribution of the
LCS to the Hα shows a general increase with the diradical index yPUHF

0 , accompanied by a
similar decrease of the contribution of the LCS to the Lα, as shown in Figure S1.
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0 , for the library of investigated
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Note that orbital mixing crucially promotes the CS-to-BS geometry change, with
the latter acquiring features consistent with the depletion of the HCS and concomitant
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occupation of the LCS. For most conjugated diradicals, such a geometry change leads
to a loss of quinoidal character and a recovery of aromaticity, which is exemplified in
Figure 5 for 2TIO. The backbone bond lengths computed for the CS and BS geometries
are depicted with green and red lines, respectively, together with those computed for
the two charge carriers, namely the reduced and oxidized forms (yellow and blue lines,
respectively). The BS neutral structure is characterized by a remarkably reduced quinoidal
pattern, and the computed geometry change moves in the same direction of the geometries
of charged species. Notably, both charged forms show remarkable deviations from the CS
geometry (green) that can be rationalized by considering the density distribution of the
orbital, from which the electron has been removed or to which the electron has been added.
Specifically, the HCS, also shown in Figure 5b, shows a density distribution that clearly
reinforces a quinoidal geometry. Thus, removing one electron from such an orbital weakens
the quinoidal structure and moves the geometry of the cation toward a more aromatic
character. Similarly, the LCS displays a density distribution strongly favoring an aromaticity
recovery, which is demonstrated by the change in bond length alternation along the central
conjugation pattern of the anionic structure. In this specific case, the bond lengths of the
neutral BS geometry are very similar to those of the cation. The above discussed orbital
mixing occurring at UDFT level for the neutral species provides the explanation, since
the partial depletion of the HCS in the BS-occupied molecular orbitals, causing a CS-to-BS
geometry change that moves in the same direction of the formation of the cation. Thus,
the exact geometry acquired by the neutral diradical depends on the magnitude of orbital
mixing and can be tuned by the specific shape of the HCS/LCS frontier orbitals.
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neutral BS (red), cation (blue), and anion (yellow) species (from RB3LYP/6-311G* and UB3LYP/6-
311G* calculations). (b). Frontier CS molecular orbitals; (c). Numbering of selected skeleton bonds.

2.2. Reorganization Energies from CS and BS Structures of the Neutral Species

The increased diradical character is reflected in a neutral BS structure consistent with
the electron depletion of the HCS and filling of the LCS, namely a geometry acquiring
simultaneously a pseudo-hole and pseudo-electron character. Thus, the impact of diradical
character can be assessed by comparing the computed λ by either assuming the CS potential
energy surface (PES) of the neutral species (not including the contribution of diradical
character), hereafter labelled λCS, or employing the BS PES (including the contribution of
the diradical character) to obtain λBS. The calculations show that both sets of computed λ
generally decrease for larger diradical character with a similar dependence on y0 shown
for hole and electron charge carriers (see Figure 6a–d and Table S2).
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Notably, the use of CS structures leads, on average, to a two-fold increase of the
computed λCS (in some cases even more) compared to the λBS. Compare, for instance, the
trend observed in Figure 6a,b for electron transport, which shows that the interpolated
reorganization energy expected for a diradical character of ca. 0.5 is slightly larger than
0.25 eV, when the CS neutral geometry is adopted to evaluate λ and drops to ca. 0.15 eV for
the BS geometry. Similarly, for hole charge transport (Figure 6c,d), the interpolated value
for y0 = 0.5 is slightly smaller than 0.25 eV using the neutral CS geometry, and it decreases
to ca. 0.13 eV when the BS neutral structure is used to evaluate the reorganization energy.

These trends reveal the preferential condition for charge transport of the BS diradical
structure compared to the CS, a fact that can be easily rationalized by considering the
simplified two-dimensional scheme shown in Figure 7. The two panels show the effect,
promoted by the geometry change of the neutral species (when moving from the reference
CS to the more realistic BS computed geometry), on the magnitude of reorganization
energies. The scheme assumes that the geometries of the neutral (CS and BS) and charged
species lay along a common nuclear displacement, bringing the molecular structure from
fully quinoidal to fully aromatic. This is a reasonable assumption since the CS-to-BS
geometry changes, as well as those induced by the redox processes, are determined by
the nature of the same set of frontier molecular orbitals, H and L. Thus, the minima
of the BS PES and those of the charged species will be found displaced toward more
aromatic character. The magnitude of the displacement for the BS geometry depends
on the diradical character: the larger the y0, the larger the depletion of the HCS and
concomitant increase of the LCS contribution, reinforcing aromaticity recovery. Thus, for
a small–medium diradical character, the minimum of the BS neutral structure is likely
to be displaced toward the geometry of the charged species, but it still keeps a certain
quinoidal character. This corresponds to Figure 7a. For larger diradical characters, the
minimum of the BS structure is energetically more stable and geometrically more displaced
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toward the aromatic structure, such that it may overcome the minimum of the charged
species along the nuclear displacement coordinate, as shown in Figure 7b. In both cases,
the reorganization energy, indicated in Figure 7 by the sum of the two contributions λBS

1
and λBS

2 , is reduced compared to the sum of λCS
1 and λCS

2 .
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Figure 7. Schematic representation of how the diradical character and the consequent geometry
change from CS-to-BS neutral structures impact the intramolecular reorganization energy: (a) Situ-
ation for small–medium diradical character: the PES of the BS structure is displaced toward more
aromatic structures, but by a smaller amount compared to the charged species; (b) Situation for
medium–large diradical character: the PES of the BS structure is displaced toward a more aromatic
structure by a slightly larger amount compare to the charged species. In both cases, a decrease of the
reorganization energy is expected with respect to the quinoidal CS structure. The color codes used
for the four points required for the evaluation of the reorganization energy are: red = energy of the
neutral species at its optimized geometry; yellow = energy of the neutral species at the geometry of the
charged species; green = energy of the charged species at its optimized geometry; and blue = energy
of the charged species at the geometry optimized for the neutral. Open triangles refer to points on
the PES required for the calculation of λCS, while filled circles refer to points on the PES required for
the calculation of λBS.

The overall remarkable result emerging for the library of diradicals is that the com-
puted λBS values have magnitudes around 0.1 eV, which are comparable with the best
organic semiconductors, such as pentacene for hole transport [74]. Furthermore, the re-
organization energy values are of the same magnitude for holes and electrons, which is
a fundamental condition for ambipolar character. Clearly, ambipolar charge transport is
crucially determined not only by small reorganization energies, but it also requires favor-
able level alignment and significant electronic couplings. Notably, in previous work, we
showed that this latter condition is also satisfied in difluoreno–heteroles [49]. Here, we
supplement the investigation of the intramolecular parameters by computing electronic
couplings for two additional diradicals included in the library, whose crystal structures
are available.

2.3. Electronic Couplings and Favorable Charge Transfer Paths

Vapour-deposited films of DIAn [20] and thin-films made by the diradical hydrocar-
bon with two phenalenyl radical moieties Ph2–IDPL displayed well-balanced ambipolar
transport [21]. Both show small and substantially similar reorganization energies for n- and
p-type conduction. To get further insight on their propensity to ambipolar conduction, we
determined the most relevant charge transfer paths by inspecting the crystal of DIAn [20]
and Ph2–IDPL [48] and evaluated the corresponding electronic couplings as outlined in
Section 3.
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In both cases, transport through the red channels shown in Figure 8a,b overcomes all
the remaining pathways, as demonstrated by the largest calculated Vij values, clearly due to
more efficient orbital overlap and shorter intermolecular distances. It should be noted that
the interplanar distance in Ph2–IDPL is extremely reduced compared to most π–π stacked
crystalline structures, which explains the huge computed Vij values in such case. However,
the relevant point here is that electronic coupling values for hole and electron transport
turned out to be rather similar, supporting similar transport mobilities for the two charge
carrier types. Compared to the ideal crystal expectations, the reported experimental
mobilities are reduced by the effective film structure in which molecular organization can
be somewhat different from the crystal structure. Furthermore, additional morphological
issues, such as grain size boundaries and defects, also contribute to reduced mobilities.
Nevertheless, it is noteworthy that the combination of intra-molecular parameters such as
reorganization energy and intermolecular electronic interactions concur to promote similar
n-type and p-type transport efficiency.
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Figure 8. Selected cluster from the X-ray structure of (a) DIAn and (b) Ph2–IDPL corresponding to the
most relevant paths for charge transport. Dimers are formed between the blue central molecule and
the colored neighbors. Note that the same color indicates identical charge pathways. B3LYP/6-31G*
computed electronic couplings, Vij, are also reported.

3. Computational Methods

We performed gas–phase quantum chemical calculations in order to investigate elec-
tronic structures of the diradicals forming the library. Geometry optimization and frequency
analysis for 2TIO, ESQ2, ESQ3, ESQ4, QDTBDT, NZ, TPQ, Ph2–IDPL, and BISPHE in the
neutral singlet, and charged states were performed at the RB3LYP and UB3LYP levels,
respectively, using the 6–311G* basis set. To obtain the BS wavefunctions, the “stable=opt”
keyword was used. Specific procedures have been proposed to remove the spin contam-
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ination resulting from unrestricted level calculations [90,91] and to improve predicted
energies of open-shell species. However, the calculation of reorganization energies required
the determination of BS-optimized geometries, for which corrective schemes for energy
gradients and Hessians are not available. Equilibrium structures of neutral and charged
species of difluorenoheteroles [49], indenofluorene [92], and its larger congeners based on
fluorenofluorene [93] (FF) and diindenoanthracene [94] (DIAn) derivatives were taken from
previous investigations [49,64]. Quantum chemical calculations were performed with the
Gaussian16 suite of programs [95].

The diradical descriptor y0 was computed in the spin-unrestricted single-determinant
formalism with the spin-projection scheme as [42,89,96]:

yPUnrestricted
0 = 1− 2T0

1 + T2
0

(2)

with T0 calculated as:

T0 =
nHONO − nLUNO

2
(3)

and n is the occupation number of the frontier natural orbitals (NO). NO occupation
numbers were determined at UHF level and, accordingly, the y0 parameter is indicated as
yPUHF

0 . Note that the value of the diradical index depends strongly on the level of theory
(DFT, UHF) [45]. Thus, while all other molecular properties were evaluated at the DFT level,
the y0 was computed at UHF level since this is the reference method generally employed.

The intramolecular reorganization energy λ was computed with the four-point adi-
abatic potential method, which is based on the evaluation of two energy values on the
potential energy surface of neutral and charged states [72,88,97]. More precisely, the reor-
ganization energy is the sum of two contributions (Figure 9): the first (λ1) is computed
as the difference between the energies of the charged species computed at the geometry
of the neutral EC(N) and at its optimized geometry EC(C). The second contribution (λ2)
is determined as the difference between the energy of the neutral species at the equilib-
rium geometry of the charged EN(C) and the energy calculated at its optimized geometry
EN(N). To assess the effect of increased diradical character, we determined two sets of
reorganization parameters, either using the CS or BS neutral ground state geometries for
all molecules displaying a lower energy BS structure.
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Figure 9. Schematic representation of the potential energy curves of neutral and charged species
involved in the charge transfer process and indication of the two contributions λ1 and λ2 to the
total intramolecular reorganization energy λ. The color codes used for the four points required to
evaluate the reorganization energy are: red = energy of the neutral species at its optimized geometry;
yellow: energy of the neutral species at the geometry of the charged species; green = energy of the
charged species at its optimized geometry; and blue = energy of the charged species at the geometry
optimized for the neutral.
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To quantify the spin polarization effects in diradical species, we determined the
changes between the set of BS molecular orbitals with respect to the CS counterparts. Such
orbital mixing between BS and CS neutral structures was obtained by determining the
linear combinations of CS orbitals that represent BS orbitals [89].

In the framework of the dimer approach and one-electron approximation, the inter-
molecular electronic coupling (Vij = 〈φi

∣∣Ĥ∣∣φj 〉, where φi and φj are the highest occupied
(HOMO) and lowest unoccupied molecular orbitals (LUMO), respectively, of the monomers
forming the dimer) can be obtained with a fragment orbital approach, as reported in previ-
ous studies [98–103]. The electronic couplings were calculated at the crystalline geometries
of the investigated systems [20,48], using the B3LYP functional and the 6-31G* basis set.

4. Conclusions

In this study, we focused on a specific class of organic semiconductors made by
conjugated diradical molecules, and we explored the relationship between the diradical
character and the magnitude of intramolecular reorganization energy, one of the relevant
parameters governing charge transport but also influencing charging and discharging
processes in batteries. More specifically, we investigated computationally the propensity
to balanced p-type and n-type transport properties for a library of organic molecules
characterized by varying diradical character.

Based on the comparison between CS and BS geometries of the neutral species, we
showed how the localized electron pair in the latter promotes a geometry change in
the same direction of the charged species. Such reduced geometry difference between
neutral and charged species can be rationalized by simple electronic structure arguments,
considering that the BS structure results from the mixing of HCS and LCS orbitals, that is,
from the partial depletion of the occupied HCS and partial filling of the LCS, similarly to
the process occurring when charged species are generated. Thus, the diradical character
imparts a degree of electron confinement that gives rise to the simultaneous generation of
pseudo-hole and pseudo-electron character in the neutral species.

We showed that the magnitude of such BS geometry displacement in the direction of
a more aromatic structure is more significant for larger diradical character and controls
the decrease of reorganization energies for both types of charge carriers. More important,
we found that the computed λBS are comparable to those of best-performing organic
semiconductors and display well-balanced values for hole and electron transport.

These trends for neutral and charged species suggested a simple two-dimensional
representation of the PES of neutral and charged species accounting for the reduced
reorganization energies, which we believe can serve as a guide to design more efficient
ambipolar organic semiconductors based on diradicaloid chromophores.

The propensity to ambipolar conduction was further demonstrated by the similar val-
ues of computed electronic couplings for hole and electron transport of DIAn and Ph2-IDPL,
two members of the library of diradicals whose ambipolarity was proved experimentally
in previous studies [20,21].

Thus, this study sheds light on the impact of diradical character in determining low
reorganization energies, which combined with optimal molecular packing and significant
electronic couplings of similar magnitude for both charge carriers, making conjugated
diradicals promising ambipolar semiconductors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124642/s1; Figure S1: Contribution of the LCS to the
Lα BS orbitals as a function of the computed diradical index yPUHF

0 for the library of investigated
diradicals; Table S1: Diradical characters and the linear combinations of HOMO and LUMO of
the open-shell broken-symmetry (BS) structure for the library of investigated molecules; Table S2:
Diradical characters and reorganization energies of the investigated library of diradicals.
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