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Abstract 

Human motion tracking is an important task for many medical applications. Marker-based optoelectronic 

systems are considered the gold standard in human motion tracking. However, their use is not always feasible 

in clinics and industrial environments. On the other hand, marker-less sensors became valuable, as they are 

inexpensive, noninvasive and easy to use. However, their accuracy can depend on sensor positioning, light 

conditions and body occlusions. In this study, following previous works on the feasibility of marker-less 

systems for human motion monitoring, we investigate the performance of the Microsoft Azure Kinect sensor 

in computing kinematic and dynamic measurements of static postures and dynamic movements. According to 

our knowledge, it is the first time that this sensor is compared with a Vicon marker-based system to assess the 

best camera positioning while observing the upper body part movements of people performing several tasks. 

Twenty-five healthy volunteers were monitored to evaluate the effects of the several testing conditions, namely 

the Azure Kinect positions, the light conditions, and lower limbs occlusions, on the tracking accuracy of 

kinematic, dynamic, and motor control parameters. From the statistical analysis of the performed 

measurements, the camera in the frontal position was the most reliable, the lighting conditions had almost no 

effects on the tracking accuracy, while the lower limbs occlusion worsened the accuracy of the upper limbs. 

The assessment of human static postures and dynamic movements based on experimental data proves the 

feasibility of applying the Azure Kinect to the biomechanical monitoring of human motion in several fields. 

Keywords: Azure Kinect, biomechanics, human tracking, kinematics, upper limb, Vicon. 

1. Introduction 

Human motion tracking is a valuable instrument, typically employed in laboratory or clinical environments 

[1], for studying the kinematics of movements and detecting motor and neurological impairments. The most 
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used techniques to track human motion are marker-based optoelectronic systems, based on a set of infrared 

cameras that record the position of retro-reflective markers placed on the anatomical landmarks. The 3D 

positions of the markers are reconstructed and are used to derive kinematic variables, including human joint 

angular motion. Due to high accuracy, marker-based systems are considered the gold standard for motion 

tracking. However, these camera systems are expensive; they require dedicated areas, a long preparation time 

and large set-ups in motion tracking laboratories [2]. Therefore, their use is usually not feasible in small clinics 

or home rehabilitation, as they require specific setups and procedures [3]. Moreover, the use of markers placed 

on the body of the operator is generally not feasible, when monitoring movement in real world scenarios. 

Despite these limitations, the use of tracking devices has been fostered in the industrial environment to predict 

human intention in collaborative tasks [4], to evaluate the ergonomics [5] and to assess fatigue of the workers 

[6]. In fact, with the introduction of collaborative robots (cobots) in manufacturing processes, the use of human 

motion tracking systems in industrial environments is increasing for evaluating the level of collaboration, 

interaction with the device, fatigue and psychological state of the worker. With this aim, several recent research 

projects were launched that monitor kinematic parameters [7–11]. Due to their high precision, marker-based 

systems are also employed as gold standard methods for benchmarking sensors [12]. In the last decade, inertial 

sensors and marker-less motion capture systems have been considered promising alternatives for recording 

human motion tracking [13]. These devices are less expensive, less invasive, have a faster set-up, and have 

higher flexibility in the acquisition environment. In this framework, motion capture systems based on RGB 

and depth sensors demonstrated their feasibility for kinematic analysis in clinical and rehabilitation 

assessments [14]. New devices are continuously launched on the market with more improvements in terms of 

accuracy. One of the most used marker-less systemA popular marker-less system is the recently released Azure 

Kinect sensor (from hereon, also referred only as “Kinect”), developed by Microsoft for entertainment 

purposes, but it became really popular also in clinical context [15] with a variety of applications. Thanks to a 

combination of RGB and depth sensors, it can track human motions and reconstruct body skeletons. A set of 

tracking libraries is also provided with the Kinect sensors, but the details of employed libraries are not fully 

specified. For this reason, the accuracy and reliability of the previous generations of Kinect (V1 and V2) have 

been studied in the literature and results have been applied to different fields [16]. Postural control and balance 

were investigated by Clark and colleagues, finding excellent performance with both Kinect V1 [17] and V2 

[18]. In rehabilitation contexts, the tracking accuracy of Kinect V2 showed better results for the joints of the 

upper body than the lower body [19] and the spatiotemporal gait parameters showed excellent validity with 

respect to a maker-based system [20]. Kinect V2 was used for the evaluation of the symmetry of gait and could 

discriminate symmetrical and asymmetrical gait [21]. Moreover, Kinect V2 position data were employed as 

input for automated classification system to assess exercise movement quality [22]. However, in other studies 

the kinematic validity of lower limb [23,24] and upper limb joints [25] was poor and high errors were found 

in tracking fine movements [26] and hand motion [27]. While the first two generations of Kinect were deeply 

assessed in literature, few studies compared the tracking performance of the new Azure Kinect to 

optoelectronic systems or the previous versions of the Kinect camera. The Azure Kinect showed high reliability 
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for joint angles in gait [28] and sit-to-stand tasks [29]. Moreover, excellent agreement was found for the 

spatiotemporal gait parameters between Azure Kinect and a marker-based system [30], finding relevant 

improvements in the accuracy of spatial parameters of gait with respect to the previous version V2 [31]. 

However, the tracking accuracy of the Kinect cameras may be influenced by multiple factors. Many studies 

[32–34] found that the Kinect camera cannot accurately estimate the joint position when some body parts are 

hidden. Furthermore, the accuracy of the Kinect system is in principle sensitive to light conditions [35,36]. 

Finally, the Kinect accuracy also depends on the distance and the orientation of the camera with respect to the 

subject [37,38].  

In industrial contexts, Kinect sensors have been used to preserve human safety and to improve the efficiency 

of human-robot collaboration. Recently, they were employed for the ergonomic evaluation of workplaces, 

substituting the observational risk assessment, in order to improve working postures and decrease the risk of 

developing musculoskeletal disorders (MSD) [39]. Furthermore, the Kinect sensor was used to test the 

psychophysiological responses of operators interacting with a cobot in a virtual reality environment [40]. In a 

very recent work [41], a large set of multi-modal data were recorded with the Azure Kinect during the 

execution of industrial tasks and the data were spatio-temporally assessed for movement segmentation and 

recognition purposes.  

In all the considered contexts, several issues must be faced when dealing with a marker-less system such as 

the Azure Kinect: 

• The technologies adopted for the Kinect sensor and the algorithms used for identifying 3D positions of the 

joints are different from those employed in gold standard marker-based systems. Kinect accuracy should 

be quantified in the target scenarios.  

• The positioning of the sensor with respect to the subject must adapt to the set-up, since the environment 

might not be flexible and the light conditions may vary depending on the place where the set-up is installed 

and cannot be controlled. 

• Typical real scenarios – including telerehabilitation, robotic rehabilitation or working activities with 

industrial cobots – may be part of complex set-ups where occlusions may occur and, especially, often lower 

limbs are obstructed by tables. 

• Very few studies expanded the analysis from pure kinematic assessments to dynamic and motor control 

variables involving relevant data connected to people’s behavior, such as fatigue and effort. 

Following this rationale, the main objective of this study is the evaluation of the tracking performance of the 

Azure Kinect compared to the Vicon optoelectronic system, used as a reference gold standard. To the best of 

our knowledge, this is the first study to analyze the reliability of the Azure Kinect in the specific context of 

human monitoring in real applications, taking into consideration movements that involve mainly the upper 

limbs and derived biomechanical parameters.  

The main contributions of the work are: 

• A novel experimental campaign was conducted involving a cohort of healthy subjects. The extensive 

data collected by the optoelectronic systems and the Azure Kinect cameras are available to the scientific 
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community. 

• A complete experimental protocol of multiple static poses and dynamic tasks was defined to evaluate 

the influence of four camera positions/orientations, different light conditions, and the effects of lower 

joint occlusion on the tracking accuracy. 

• A statistical analysis evaluated the minimum target number of subjects that provide significant statistical 

power. ANOVA tests were used to identify the significant differences between the settings and between 

conditions.  

• The effects of joint tracking errors on low-level parameters (body segment lengths), on medium-level 

parameters (joint angles) and high-level parameters (motor control and dynamics, obtained with the 

biomechanical model) were analyzed with respect to a marker-based system for each of the Kinect 

camera configuration separately. 

The remaining part of this work is organized as follows. Section 2 deals with materials and methods, detailing 

the participants, the equipment, and the experimental protocol.  The data analysis with the derived measures 

evaluated, and the statistical analysis performed are described in Section 3. In Section 4, extensive results 

obtained in static and dynamic experiments are detailed, while a deep discussion is reported in Section 5. 

2. Materials and Methods 

2.1. Participants 

Participants recruited for the study were 25 young volunteers without neurological or musculoskeletal 

impairments (age: 28.5±4.9; height: 175.6±9.6 cm; weight: 69.4±10.0 kg; 18M and 7F). Ethical approval was 

granted by the referring ethical committee (Approval Prot. N. 19/20 – CE, April 20th, 2020) and the 

experimental trial was conducted in compliance with the Declaration of Helsinki [42] and its updates. Every 

participant provided written informed consent to take part in this study and to allow publication of any data 

included in this article. The participants were asked to wear very tight vests or bare-chested at the time of trial, 

to facilitate placement of the markers on the anatomical landmarks. 

2.2. Equipment 

Movements were acquired in the motion acquisition laboratory of the Italian Council of National Research 

(CNR) in Lecco, Italy. The acquisitions were made with two different systems, a marker-based and a marker-

less tracking system. The laboratory had the following equipment: 

• a Vicon Vero system (v2.2, Vicon Motion Systems Ltd., Oxford, UK), composed of ten infrared cameras. A 

set of 25 retro-reflective markers was attached to each subject to track the movement by the cameras.  

• Four Azure Kinect cameras recorded the movements from four points of view. Acquisitions were time-

synchronized by a trigger signal dispatched through an AUX cable connecting the cameras in a daisy-chain 

configuration. 

• An L-shape table. It was used for testing the occlusion condition and simulating a working surface. 

• Tripods for supporting Kinect cameras. 
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• A lux meter for measuring the light intensity. 

2.3 Experimental protocol 

2.3.1 Motor task 

The tracking capability of the devices was assessed in static postures and dynamic movements. 

a) Static postures: frontal arm, lateral arms and lateral arms with flexed elbows  

In static trials, the subject held the fixed position for 10 seconds. We selected three static postures, shown in 

Fig. 1: (i) with the right arm raised frontally, (ii) with both arms raised laterally and (iii) with both arms raised 

laterally and the elbows flexed. In posture (i), the subject stood with the right arm raised frontally at 90° with 

the palm facing downwards. In posture (ii), the subject maintained the arms raised laterally at 90° with the 

elbows extended and the palms facing downwards. In posture (iii), the subject held the arms raised laterally at 

90° with the elbows flexed at 90° and the palms facing forward.  

b) Dynamic movements: frontal reaching and lateral reaching 

Frontal reaching is a simple movement frequently used in human motion analysis. We assessed both frontal 

and lateral reaching as a motion primitive of several upper limb tasks. The subject started from the resting 

position, defined as the standing position with the arm relaxed by the side, with extended elbow and not 

elevated shoulder. For the frontal reaching, the subject was asked to raise the right arm frontally at 90°, with 

the palms facing downwards and turn back to the resting position. For the lateral reaching, the subject was 

asked to raise the right arm laterally at 90° and return to the resting position. Each movement was repeated ten 

times. A schematic illustration of the movements is presented in Fig. 1. 

2.3.2 Testing conditions 

We tested the accuracy of the Azure Kinect sensor under three conditions: acquisition from different camera 

positions, in absence and presence of occlusions, and under two light conditions. 

   a) Camera position: 

Since the camera point of view can affect the joint position estimation of the Azure Kinect, we assessed how 

the positioning of the camera influences the tracking accuracy. Four Kinect cameras were used, investigating 

four positions and orientations with respect to the subject in simultaneous acquisitions. In order to cover a wide 

field of view, the four chosen positions of the camera were: (a) in front of the subject (frontal view) at 1-meter 

height from the ground (frontal Kinect – KFront); (b) in front of the subject, from above at 1.80-meter height 

from the ground with an inclination of -22.5° (pitch) pointing downwards (frontal up Kinect – KFrontUp); (c) 

on the lateral side at 45° (yaw), from above at 1.80-meter height from the ground with an inclination -22.5° 

(pitch) pointing downwards (lateral 45° Kinect – KLat45); (d) on the lateral side (lateral view) at 90° (yaw) at 

1-meter height from the ground (lateral Kinect – KLat). The lateral side is opposite to the side on which the 

movement is executed, i.e. the left side. A schematic representation of the camera positioning is shown in Fig. 

1 from top view and lateral view. Data from each camera were analyzed independently from the others in order 

to identify the camera position with the highest accuracy.  

   b) Occlusion: 
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The tasks were performed with and without joint occlusions to quantify the inaccuracies due to partial 

occlusions. In particular, we were interested in quantifying whether the occlusion of the lower limbs affects 

performance with respect to non-obstructed conditions and to the gold standard marker-based system, on both 

the static postures and the dynamic movements. 

   c) Light condition: 

Light exposure influences the tracking accuracy of the Kinect and also the performance of the gold standard 

device. In order to standardize light conditions, tests were performed using artificial light, with no light from 

the outside. Two light conditions were assessed: illuminance was 268.76±23.3 Lux in the ‘light’ condition and 

18.2±6.1 Lux in the ‘no light’ condition. The four combinations of occlusion and light intensity are shown in 

Fig. 1. 
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Fig. 1. Motor tasks and testing conditions. In the first panel, static postures used to assess the tracking 

capability of the devices are shown: (i) static frontal posture, (ii) static lateral posture and (iii) static elbow 

flexed postures. In the second panel, the resting position and the maximum extension of the arm are depicted 

for both dynamic movements (frontal reaching on the left, lateral reaching on the right). In the third panel, a 

schematic representation of the nominal positioning of the Azure Kinect cameras from the top and lateral 

Static lateral posture Static elbow flexed postureStatic frontal posture

 rontal reaching Lateral reaching

      :  rontal Kinect
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    : Lateral Kinect
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views are shown with measures in cm. In the last panel, the four combinations of light and occlusion conditions 

are illustrated. 

2.3.3 Acquisition 

Markers were attached to the subject on anatomical landmarks corresponding to the Vicon Upper limb model 

requirements (7th cervical vertebra, Right back, 10th thoracic vertebra, Clavicle, Sternum, Left shoulder, Left 

upper arm marker A, Left upper arm marker B, Left upper arm marker C, Left elbow, Left medial epicondyle, 

Left forearm, Left wrist marker A, Left wrist marker B, Left finger, Right shoulder, Right upper arm marker 

A, Right upper arm marker B, Right upper arm marker C, Right elbow, Right medial epicondyle, Right 

forearm, Right wrist marker A, Right wrist marker B, Right finger). For details, please refer to the Vicon guide 

[43]. The acquisitions were recorded with the Vicon and Azure Kinect systems simultaneously: the Vicon 

system started recording before the Azure Kinect; in contrast, at the end of the acquisition, the Azure Kinect 

stopped recording before Vicon. The static posture was held for 10 seconds while dynamic tasks were repeated 

ten times with a 1-second pause between repetitions. Moreover, each acquisition was performed twice to have 

backups where needed.  

The data acquired by the Vicon were elaborated in the Vicon Nexus software to track and label the markers: 

the output obtained was the 3D coordinates of markers and joint center positions sampled at 100Hz. The 

acquisition from the Azure Kinect cameras was elaborated with the Microsoft Azure Body Tracking SDK 

(v1.1.1): the output was the 3D positions of 32 joints and quaternions indicating segment orientation sampled 

at 30Hz. 

2.4 Temporal synchronization between systems 

Since the Vicon system and the Azure Kinect cameras were not temporally synchronized, movement onset and 

offset were identified in the data from each system, and the corresponding phases were aligned with a post-

processing procedure [29,44] in MATLAB® R2021a (MathWorks, Natick, USA). To identify the steps of the 

dynamic movements, we chose the articular angle that was the most representative of the movement (i.e., the 

one that had a wider range of motion and clear onset/offset points). For the frontal reaching, the shoulder 

flexion angle was used; the shoulder abduction angle was employed for the lateral reaching. The time series 

of the angle were filtered with a 4th-order Butterworth low pass filter at a cut-off frequency of 3Hz and the first 

derivative (angular velocity) was computed with the aim of identifying the phases of the movement. Therefore, 

the onset and offset of each movement were identified as the start and end points where the shoulder angular 

velocity was over a threshold equal to 1% of its absolute maximum value. 

3. Data Analysis 

For data analysis, the raw data obtained from both systems were filtered with a 4th-order Butterworth low pass 

filter at a cut-off frequency = 5 Hz in order to remove noise artifacts. Therefore, since the acquisition systems 

have different sampling rates (100 Hz for the Vicon system and 30 Hz for the Kinect), the Azure Kinect data 

were up-sampled to 100 Hz with a shape-preserving piecewise cubic interpolation [45] to allow data comparison 
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from the two systems with a procedure already adopted in previous studies to compare marker-based and Kinect 

system [31,38]. Afterwards, the data were elaborated with a biomechanical model [46,47], which allowed the 

computation of kinematic and dynamic variables and motor control parameters. The biomechanical model takes 

as input the 3D position of markers and joint center for the Vicon system and the 3D coordinates of joints and 

the quaternions for the Kinect. Then, it reconstructs the 3D coordinate system of each segment and joint and 

computes joint angles. Joint moment and forces are computed with Newton-Euler equations. Power exerted at 

joint level and expended energy are computed with equations reported in Appendix A. For both Vicon and Kinect, 

the mass properties (mass, inertia matrix and center of mass of each segment) are the same for each subject and 

they are estimated with anthropometric tables [48], using the height and the weight of each participant. 

3.1 Outcome measures 

The parameters computed for the analysis were divided into three categories based on the level of detail they 

provide. Basic parameters were not associated with a biomechanical model and included: 

• Normalized body segment lengths (arm and forearm), as the limb length divided by the subject's height. 

Normalization is needed for reliable inter-subject comparisons. 

• Execution time, as the time needed to execute each movement. 

The limb lengths were computed as the Euclidean 3D distance between wrist and elbow for estimating the 

forearm length and between elbow and shoulder for the arm length. For the Vicon system, the joint centers of the 

shoulder, elbow and wrist estimated with the Vicon Nexus software were considered for the computation. In 

contrast, the skeleton’s shoulder, elbow and wrist joints were used for the Azure Kinect. Direct comparisons of 

Kinect joints estimation and markers or joint centers position computed with Nexus software were done in 

previous similar studies [24,26,27]. The procedure was done for both the left and the right arm.  

The kinematic parameters were computed with the biomechanical model: 

• joint angle (θ) 

− shoulder flexion angle (θflex) 

− shoulder abduction angle (θabd) 

− elbow flexion angle (θelbow) 

• minimum joint angle (θmin) 

− shoulder flexion angle (θflex,min) 

− shoulder abduction angle (θabd,min) 

• maximum joint angle (θmax) 

− shoulder flexion angle (θflex,max) 

− shoulder abduction angle (θabd,max) 

• range of motion (ROM), as the difference between the maximum and the minimum angle reached 

− shoulder flexion angle (ROMflex) 

− shoulder abduction angle (ROMabd) 

• angular velocity (ω), as the derivative of the joint angle 

− shoulder flexion angle (ωflex) 
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− shoulder abduction angle (ωabd) 

Finally, the dynamic parameters regarded motor control and dynamics, obtained with the biomechanical model 

through the Newton-Euler equations:  

• joint torque (τ) 

• peak power (pmax), as the maximum power exerted at the joint level during the movement. The computation is 

shown in (1) in Appendix A. 

• expended energy (E), as the integral of the power within movement phases. The computation is shown in (2) in 

Appendix A. 

• normalized jerk (NJ), as a measure of the movement smoothness [49], computed as in (3) in Appendix A. 

The presented parameters are graphically shown in Fig. 2. 

The joint torque, power and energy were normalized, dividing each parameter by the arm’s length and mass to 

allow inter-subject comparison, as done in previous studies [50,51]. All the dynamics parameters (e.g. inertial 

tensors) were achieved with anthropometric tables [48]. Since the static postures do not involve movement, only 

limb length and joint angles were considered. For the dynamic movement, all kinematic and dynamic measures 

were computed. The comparison between the settings was performed on the mean values of the parameters 

that were averaged across repetitions for each subject. The use of the mean value of the parameters allows to 

preserve the information about their magnitude and to be more informative than the mean errors, as already 

done in similar studies [24,32].  inally, Pearson’s correlation coefficients were used to assess the similarity of 

the time series of the shoulder angle, torque, power and energy between each Kinect setting and the Vicon 

system in the dynamic tasks. 

 

Fig. 2. Schematic representation of the parameters assessed for the Kinect-Vicon comparison. Parameters of 
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energy E and normalized jerk NJ are reported in the lower panel. 

3.2 Statistical analyses 

For the definition of the sample size, a priori power computation was performed in GPower 3.1.9.7 software 

(Heinrich Heine University, Dusseldorf, Germany) [52]. Considering a statistical power of 0.80 and a 

significance level equal to 0.05, the minimum target number of subjects to be enrolled is 13 when we 

hypothesize a large effect size (0.45). In contrast, 25 subjects are needed to achieve statistical power higher 

than 0.80 with a medium effect size (0.32).  

All data distributions were tested for normality through the Kolmogorov-Smirnov test. 1-way ANOVA tests 

were used to assess differences between each Azure Kinect setting and the Vicon. The ANOVA tests were 

performed to evaluate the effect of light, comparing each parameter of the “light” condition with the 

corresponding one of the “no light” condition of each setting. The same tests were performed to evaluate the 

effect of occlusion, comparing each parameter of the “no occlusion” condition with the corresponding one of 

the “occlusion” condition of each system. The alpha level of significance was set at  .   in all the tests. In the 

results section, the results of the tests between each Kinect and Vicon are identified with * (*p<0.05, **p<0.01, 

***p<0.001); the tests comparing the occlusion condition are indicated with ‡ (‡p<0.05, ‡‡p<0.01, ‡‡‡p<0.001); 

the tests comparing the light condition are indicated with ^ (^p<0.05, ^^p<0.01, ^^^p<0.001). 

4. Results 

The repeatability of all the parameters of the Vicon data was tested among the conditions to state whether it 

could be a standard, without statistical differences among the trials (i.e., in all conditions, the performed 

movements were the same). Since this condition was met, the parameters computed from Kinect data could be 

compared to the Vicon. 

4.1 Static measures 

4.1.1 Static frontal posture 

This section reports biomechanical results from the subjects performing a static frontal posture. First, the 

results on the normalized limb lengths and, then, the results on the articular angles are shown. 

a) Limb lengths 

The normalized lengths of the arm and forearm of both the right and left sides are shown (mean and standard 

deviation) for all the acquisition settings and in each testing condition in Fig. 3. The Kinect sensors 

significantly underestimated the limb lengths with respect to the Vicon system in all the conditions (p<0.001). 

Moreover, the limb lengths of the KLat were significantly lower than the other Kinects (p<0.001) in all the 

conditions, while the limb lengths of K ront were higher than K rontUp and KLat4  in the “occlusion” 

conditions. The light condition did not significantly affect the results (p>0.37), while the occlusion condition 
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affected the results of all the Kinect settings.  

b) Articular angles 

Fig. 3 presents the means and standard deviations of the shoulder and elbow flexion angles in each testing 

condition. The Kinect cameras significantly underestimated the shoulder flexion angle (p<0.001) and 

overestimated the elbow flexion angle (p<0.001) with respect to the Vicon system in all the conditions. KFront 

gave the best results in both shoulder and elbow angles, showing significantly higher abduction angles and 

lower elbow flexion angles with respect to KFrontUp, KLat45 and KLat. The light condition did not 

significantly affect the results (p>0.28), while the occlusion condition affected only KLat45 (p<0.05) in both 

shoulder and elbow flexion angles. 

 

Fig. 3. Static frontal posture – Normalized limb lengths and angles. Means and standard deviations of the 

normalized lengths of the left arm (first column), left forearm (second column), right arm (third column) and 

right forearm (fourth column) are reported in the left panel. Means and standard deviations of the shoulder 

flexion angle and elbow flexion angle are reported in the right panel. The conditions (light/no light, 

occlusion/no occlusion) are reported in the rows. Settings are represented in different colors: KFront in red, 

KFrontUp in blue, KLat45 in green, KLat in orange and Vicon in black. Results of statistical analysis are 

reported with * for setting, ‡ for occlusion and ^ for light. 

 

4.1.2 Static lateral posture 

In this section, the results of the static lateral posture are reported. First, the results on the normalized limb lengths 

are presented and, then, the results on the articular angles are shown. 

  .  .2   .  .2   .  .2   .  .2       
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a) Limb lengths 

 ig. 4 shows the means and standard deviations of the right and left sides’ arm and forearm normalized lengths 

for all the settings and in all the testing conditions. The Kinect cameras significantly underestimated the 

normalized limb lengths with respect to the Vicon system in all the conditions (p<0.001). Moreover, the 

normalized limb lengths of the KLat were significantly lower than the other Kinect settings (p< .   ) in the “no 

occlusion” conditions. The light condition did not significantly affect the results (p>0.26), while the occlusion 

condition affected the results of all the Kinects. 

b) Articular angles 

Fig. 4 also presents the means and standard deviations of the shoulder abduction angle and elbow flexion angle 

under each testing condition. The Kinect cameras significantly underestimated the shoulder abduction angle 

and overestimated the elbow flexion angle with respect to the Vicon system in all conditions. KFront and 

KFrontUp gave the best results in both shoulder and elbow angles, showing significantly higher abduction 

angles and lower elbow flexion angles with respect to KLat45 and KLat. The light condition did not 

significantly affect the results (p>0.13), while the occlusion condition affected only KFrontUp (p<0.001) in 

both shoulder abduction and elbow flexion angles. 

 

Fig. 4. Static lateral posture – Normalized limb lengths and angles. Means and standard deviations of the 

normalized lengths of the left arm (first column), left forearm (second column), right arm (third column) and 

right forearm (fourth column) are reported in the left panel. Means and standard deviations of the shoulder 

abduction angle and elbow flexion angle are reported in the right panel. The conditions (light/no light, 

occlusion/no occlusion) are reported in the rows. Settings are represented in different colors: KFront in red, 

KFrontUp in blue, KLat45 in green, KLat in orange and Vicon in black. Results of statistical analysis are 

                                                                         

Static lateral posture

normalized limb lengths angles
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reported with * for setting, ‡ for occlusion and ^ for light. 

4.1.3 Static elbow flexed posture 

This section presents the analysis of static elbow flexed, reporting the results on the normalized limb lengths 

and, then, the results on the articular angles. 

a) Limb lengths 

Fig. 5 shows the means and standard deviations of the normalized lengths of the arm and forearm of both the 

right and left sides for all the settings and in all testing conditions. The Kinect cameras significantly 

underestimated the normalized limb lengths with respect to the Vicon system in all the conditions (p<0.001). 

The normalized limb lengths of the KLat were significantly lower than the other Kinects (p<0.001) in all the 

conditions. The normalized limb lengths of K ront were higher than K rontUp in the “light occlusion” 

condition (p< .  ) and in the “no light, occlusion” condition (p< .  ). The light condition did not significantly 

affect the results (p>0.50), while the occlusion condition affected the results of KFrontUp, KLat45 and KLat 

(p<0.001) and KFront (p<0.01). 

b) Articular angles 

Fig. 5 presents the means and standard deviations of the shoulder abduction angle and elbow flexion angle for 

each testing condition. KFront and KFrontUp gave the best results with respect to the Vicon system, even if 

KFront significantly underestimated the shoulder abduction in the “light, no occlusion” condition and both 

K ront and K rontUp overestimated the elbow flexion in the “no occlusion” conditions. KLat4  and KLat 

underestimated the shoulder abduction angle and overestimated the elbow flexion angle with respect to V, 

KFront and KFrontUp. The light condition did not significantly affect the results (p>0.11), while the occlusion 

condition affected the K rontUp in both shoulder abduction and elbow flexion angles under both “light” 

(p< .  ) and “no light” (p< .  ) conditions. 
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Fig. 5. Static elbow flexed posture – Normalized limb lengths and angles. Means and standard deviations of 

the normalized lengths of the left arm (first column), left forearm (second column), right arm (third column) 

and right forearm (fourth column) are reported in the left panel. Means and standard deviations of the shoulder 

abduction angle and elbow flexion angle are reported in the right panel. The conditions (light/no light, 

occlusion/no occlusion) are reported in the rows. Settings are represented in different colors: KFront in red, 

KFrontUp in blue, KLat45 in green, KLat in orange and Vicon in black. Results of statistical analysis are 

reported with * for setting, ‡ for occlusion and ^ for light. 

 

4.2 Dynamic measures 

4.2.1 Frontal reaching 

In this section, the results of the frontal reaching movement are reported. First, we reported the synthetic 

indexes and, then, the results on the time series. 

a) Synthetic indexes 

Fig. 6 shows the means and the standard deviations of the parameters computed from all the settings in each 

testing condition. In general, the execution time of the Kinects was lower than the Vicon system and the KFront 

gave the best results, with no significant differences with respect to V. The KLat, instead, gave the shortest 

execution time. KFront, KFrontUp and KLat45 significantly underestimated both the minimum and the 

maximum shoulder flexion angle, but only KFrontUp and KLat45 showed a significantly lower ROM. Instead, 

the minimum angle of KLat was higher in the “occlusion” conditions with respect to  icon system and in all 
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the conditions with respect to the other Kinects; the maximum angle and the ROM were significantly reduced 

with respect to V and the other Kinects. The peak power showed no significant differences between the settings 

in all the conditions. The shoulder energy of the Kinects, instead, was significantly lower than the Vicon system 

in all the conditions. KLat showed the worst results with respect to KFront, KFrontUp and KLat in the 

“occlusion” conditions. The normalized jerk of the  icon system was significantly lower than K ront (p< .  ) 

in all the conditions and KLat4  (p< .  ) and KLat (p< .  ) in the “no light, no occlusion” condition. The 

occlusion condition had significant effects only on the maximum shoulder angle in KLat (p<0.001), both with 

light and no light, while the light condition did not affect the results. 

 

Fig. 6. Frontal reaching – Synthetic indexes. The means and the standard deviations of all the parameters are 

reported in columns (execution time, minimum shoulder flexion angle, maximum shoulder flexion angle, 

shoulder flexion range of motion, normalized shoulder peak power, normalized shoulder energy and 

normalized jerk). The conditions (light/no light, occlusion/no occlusion) are reported in the rows. Settings are 

represented in different colors: KFront in red, KFrontUp in blue, KLat45 in green, KLat in orange and Vicon 

in black. Results of statistical analysis are reported with * for setting, ‡ for occlusion and ^ for light. 

b) Time series indexes 

Fig. 7 and Fig. 8 show the time series of shoulder flexion angle, normalized torque, normalized power and 

normalized energy over the movement phase, averaged across subjects in all four testing conditions. The 

Kinect underestimated the shoulder flexion angle, torque, power and energy in every setting with respect to 

the Vicon system. Moreover, the time series showed higher standard deviations, while the time series of the 

Vicon system had lower variability between subjects. The frontal Kinect presented the best results compared 

to the Vicon, while the lateral Kinect showed the worst results. 

The correlation coefficients between signals, comparing each Kinect to the gold standard were computed for 
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shoulder flexion angle, torque, power and energy. The shoulder angle and energy showed the highest 

correlation coefficients, while the shoulder power showed the lowest ones. KLat showed lower correlation 

coefficients of angle, torque, power and energy with respect to the other Kinects in all the testing conditions. 

KFront and KFup showed the best correlation coefficients with correlation >0.80 for angle, torque and energy 

and >0.50 for power. The correlation coefficients of KLat45 were >0.65 for angle, torque and energy and >0.40 

for power and only the correlation of the shoulder torque was lower than KFront and KFup in all the conditions. 

 

Fig. 7. Frontal reaching – Time series, no occlusion. Shoulder flexion angle, normalized torque, normalized 

power and normalized energy are reported averaged across subjects in two testing conditions (light, no 

occlusion – upper panel, no light, no occlusion – lower panel). Solid lines are the means, while the shaded 

areas are the standard deviations. Signals are from the Vicon system (black), frontal Kinect (red), frontal up 

Kinect (blue), lateral 45 Kinect (green) and lateral Kinect (orange). Correlation coefficients (mean and 

standard deviations) are reported in each graph. 
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Fig. 8. Frontal reaching – Time series, occlusion. Time series of shoulder flexion angle, normalized torque, 

normalized power and normalized energy are reported averaged across subjects in two testing conditions 

(light, occlusion – upper panel, no light, occlusion – lower panel). Solid lines are the means, while the shaded 

areas are the standard deviations. Signals are from the Vicon system (black), frontal Kinect (red), frontal up 

Kinect (blue), lateral 45 Kinect (green) and lateral Kinect (orange). Correlation coefficients (mean and 

standard deviations) are reported in each graph. 

 

4.2.2 Lateral reaching 

In this section, the results of the lateral reaching movement are presented. First, we reported the synthetic 

indexes and, then, the results on the time series. 

a) Synthetic indexes 

Fig. 9 shows the means and the standard deviations of the parameters computed from all the settings in each 
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testing condition. Since the KLat could not track the movement well, data could not be reliably segmented. 

Thus, we used the phase segmentation performed on the videos of the KLat45, which was the nearest Kinect, 

since a reference trigger signal guarantees time synchronization between KLat and KLat45.  

The KFront and KFrontUp obtained similar results in all the testing conditions, with no significant differences 

between the parameters. The execution time of KLat45 and KLat was significantly lower than V, KFront and 

K rontUp in all the conditions, except in the “no light, no occlusion” condition. The minimum abduction angle 

of all the Kinects was higher with respect to Vicon in all the conditions and the minimum angle of KLat was 

higher than the other Kinect settings, except for the “no light, no occlusion” condition. The maximum 

abduction angle of KLat45 and KLat was significantly lower V, KFront and KFrontUp in all the conditions. 

The ROM abduction angle of the Kinects was always lower than  icon, except for K ront in the “no light, no 

occlusion” condition and the ROM of KLat4  and KLat was lower than K ront and K rontUp. The peak 

power of KLat was significantly lower than all the other settings, while the peak power of V was higher than 

K ront in the “light” conditions, K rontUp in the “light, no occlusion” condition. The shoulder energy of KLat 

was lower than the other settings, while the energy of KFront, KFrontUp and KLat45 was lower than V in the 

“light” conditions. The normalized jerk of the K ront and K rontUp was higher than   in all the conditions 

except in the “no light, no occlusion” condition; the normalized jerk of KLat4  was higher than   in the “no 

light” conditions, while the normalized jerk of KLat was higher than   in all the conditions, except in the 

“light, occlusion” condition. The occlusion condition had significant effects only on the minimum shoulder 

angle in KFrontUp (p<0.05), both with light and no light, while the light condition did not affect the results. 

 

Fig. 9. Lateral reaching – Synthetic indexes. The means and the standard deviations of all the parameters are 
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reported in columns (execution time, minimum shoulder abduction angle, maximum abduction flexion angle, 

shoulder abduction range of motion, normalized shoulder peak power, normalized shoulder energy and 

normalized jerk). The conditions (light/no light, occlusion/no occlusion) are reported in the rows. Settings are 

represented in different colors: KFront in red, KFrontUp in blue, KLat45 in green, KLat in orange and Vicon 

in black. Results of statistical analysis are reported with * for setting, ‡ for occlusion and ^ for light. 

b) Time series indexes 

Fig. 10 and Fig. 11 show the time series of shoulder abduction angle, normalized torque, normalized power 

and normalized energy over the movement phase, averaged across subjects. 

The KFront and KFrontUp tracked similarly to the Vicon system, while the KLat45 showed high variability 

between subjects and high levels of noise. Instead, the KLat gave the worst results, probably because it could 

not track the skeleton with good accuracy. The correlation coefficients between signals, comparing each Kinect 

to the gold standard were computed for shoulder abduction angle, torque, power and energy were considered. 

The shoulder angle and energy showed the highest correlation coefficients, while the shoulder torque showed 

the lowest ones. The KFront presented the highest correlation coefficients: angle and energy correlations were 

>0.90, power correlations were >0.75 and torque correlations were >0.50. The correlation coefficients of 

K rontUp were similar to K ront, except for the power in the “no occlusion” conditions. K ront and 

KFrontUp showed higher correlations than KLat45 and KLat in all the conditions, while KLat45 showed 

higher correlations than KLat in all the conditions except for the energy correlations. The occlusion condition 

significantly affected only the correlation of the shoulder angle of KLat4  in the “light” condition (p< .  ). In 

contrast, the light condition had significant effects on the shoulder torque of KLat in the “no occlusion” 

condition (p<0.05). 
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Fig. 10. Lateral reaching – Time series, no occlusion. Time series of shoulder abduction angle, normalized 

torque, normalized power and normalized energy are reported averaged across subjects in two testing 

conditions (light, no occlusion – upper panel, no light, no occlusion – lower panel). Solid lines are the means, 

while the shaded areas are the standard deviations. Signals are from the Vicon system (black), frontal Kinect 

(red), frontal up Kinect (blue), lateral 45 Kinect (green) and lateral Kinect (orange). Correlation coefficients 

(mean and standard deviations) are reported in each graph. 
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Fig. 11. Lateral reaching – Time series, occlusion. Time series of shoulder abduction angle, normalized 

torque, normalized power and normalized energy are reported averaged across subjects in two testing 

conditions (light, occlusion – upper panel, no light, occlusion– lower panel). Solid lines are the means, while 

the shaded areas are the standard deviations. Signals are from the Vicon system (black), frontal Kinect (red), 

frontal up Kinect (blue), lateral 45 Kinect (green) and lateral Kinect (orange). Correlation coefficients (mean 

and standard deviations) are reported in each graph. 

5. Discussion 

This study aimed to support the use of human-centered approaches based on motion tracking to evaluate and 

monitor people during real activities by means of a marker-less motion capture system. A novel experimental 

campaign was conducted involving a cohort of healthy subjects to evaluate the tracking accuracy in multiple 
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static poses and dynamic tasks and the effects of joint tracking errors on kinematic, dynamic and motor control 

measures, depending on (i) the camera point of view, (ii) the light conditions and (iii) lower joint occlusions. 

Biomechanical parameters were computed with a biomechanical model and the analysis was conducted 

considering three static postures and two dynamic movements. Results are compared with those of the Vicon 

optoelectronic system, used as the gold standard.  

A first general consideration concerns all the measures provided by the Azure Kinect sensor. After the 

normalization of the limb lengths obtained dividing the measures by the height of each subject, the Azure 

Kinect underestimates the length estimates. When considering articular angles, the Azure Kinect 

systematically underestimates the shoulder angles, and overestimates the elbow flection angles. These results 

are in accordance with those obtained by previous works. The evaluation of the Kinect performance was 

investigated in the literature mainly on lower limbs and for estimating the spatiotemporal parameters of gait 

[53,54] and few studies regarding the upper limbs considered the old versions of the camera. Differences of 

few centimeters were found for both Kinect V1 and Kinect V2 [26]. Albert et al. in  [31] found that the 

estimation of joints provided by the Azure Kinect had an differed of nearly 2 cm for shoulder and elbow joints 

and 3 cm for the wrist with respect to marker-based tracking systems. Comparable errors in shoulder joint 

angles were found in upper limb reaching movements with the Kinect V1 [55] and Kinect V2 on both healthy 

subjects [34] and patients [56]. Moreover, other studies analyzed simple movements with the Kinect V1, 

finding an overestimation of the elbow angle [57], as in our results.  and an underestimation of the abduction 

angle of the shoulder, as in our results. Similar errors on shoulder and elbow angles were also found by Antico 

et al. [58] with the Azure Kinect in both frontal and lateral reaching movements. 

The main reason of these different estimations can be due to the way the Vicon system provides the 3D 

coordinates of the articular centers. On the contrary, the Kinects provide an estimation of the joints based on 

the RGB and depth streams, processed by the SDK body tracking.  It is actually difficult to establish the exact 

correspondence of the detected joint positions provided by the compared sensors. 

In the following parts of this section we comment and discuss the specific results obtained in the different 

testing conditions.  

5.1 Camera positioning 

In the static posture with the elbow flexed, the KFront and KFrontUp provided the most precise tracking when 

evaluating the limb lengths and the articular angles. In frontal reaching movements, the frontal Kinect always 

performed better than the other Kinects, even if it underestimated the minimum and the maximum shoulder 

angle, the expended energy and the normalized jerk. Both KFront and KFrontUp showed high correlation 

coefficients with Vicon data. The KLat had the lowest correlation with the Vicon system. In the lateral reaching 

movement, the KFront and KFrontUp showed the best results with low errors and high correlation coefficients.  

The lateral Kinect provided the worst estimation of biomechanical parameters and the higher variability 

between subjects, potentially because the lateral Kinect was in an unfavorable position. For the lateral posture 

and the lateral reaching movement in which the body occluded the arm, the lateral Kinect was unsuitable for 

motion tracking. Since the camera was positioned on the contralateral side with respect to the movement 
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execution, the arm and especially the shoulder were partially occluded also during frontal reaching task and 

static frontal posture [37]. In fact, the estimation of the shoulder was challenging and may have affected the 

results. The frontal Kinect, instead, had the best point of view for all the static postures and dynamic 

movements, showing the best results. Therefore, the most suitable position of the camera is in front of the 

subject. In this way, the camera can better capture various movements in different directions in space.  

5.2 Effects of lower limb occlusion 

The presence of lower limb occlusions influenced negatively the accuracy of the limb lengths of all the Kinects 

and the articular angles estimation only of KLat45 in the frontal posture and KFrontUp in the lateral posture 

and in the elbow flexed posture. In dynamic movements, the occlusion condition affected the minimum 

shoulder angle in KLat45 (frontal reaching) and in KFrontUp (lateral reaching) and the correlation coefficients 

of the shoulder angle of KFront (frontal reaching) and KLat45 (lateral reaching). Therefore, the best 

configuration is the one with no occlusions. In case human tracking is needed in which lower limbs are 

obstructed due to environmental encumbrances, occlusions might be tolerated or not depending on the 

applications, and their quantitative effects are provided in detail in this study. Furthermore, other camera angles 

can be considered to reduce occlusions and better capture movement features. For many assessed conditions, 

the frontal up Kinect gave similar results to the frontal camera. These results could be exploited if the set-up 

does not allow the camera to be placed frontally to the user. Other studies found that partial occlusion of body 

parts can increase the instability of the estimation of joints that are far from the occlusion with Kinect V1 [33], 

Kinect V2 [32,34] and Azure Kinect [35].  

5.3 Effects of light condition 

Interestingly, the light condition did not affect the results, except for just one case in very unfavorable tracking 

conditions (that showed low correlation of shoulder torque of KLat in the lateral reaching). The Kinect cameras 

are suitable for tracking movement in settings where the light intensity cannot be easily controlled (as long as 

the Kinect is not exposed to direct sunlight), as in rehabilitation at home, in clinical scenarios or industrial 

contexts, without altering the biomechanical assessment. In our configuration, in which the distance of the 

subject from the sensor was lower than 2 m, no significant influence of the light condition was found, in 

accordance with Romeo et al. [35], who found that light exposure could affect the tracking accuracy especially 

when the distance from the Kinect camera is higher than 2 meters. 

5.4 Feasibility of Azure Kinects in real life scenarios 

Our study included a multi-factorial assessment that considered not only a standard kinematic analysis but also 

a biomechanical assessment with dynamic and motor control parameters. In the literature, very few studies 

investigated the effect of the tracking accuracy of the V1 and V2 Kinect cameras on biomechanical parameters, 

such as joint torques [59] and normalized jerk [55]. These analyses provided a complete characterization of 

the subject, and includes parameters relevant for medium-term monitoring of subjects, including identifying 

fatigue and monitoring mental health conditions during repetitive activities and working cycles. Moreover, the 

computation of dynamic parameters allows the evaluation of the risks of musculoskeletal injuries. 

Furthermore, the wide spectrum of analyzed parameters makes the employed protocol usable for other research 
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domains and on-field applications. Indeed, biomechanical and motor control assessments are employed in 

clinical environments to evaluate neurological patients’ clinical course of pathology and the effects of 

rehabilitative therapy [60–62].  

The results found in our study demonstrate that the Azure Kinect could be acceptable in industrial applications 

for the biomechanical assessment of the worker or in clinical environments for the evaluation of motor 

performance, since the biomechanical parameters were well correlated with the gold standard measures. Azure 

Kinect cameras could also be employed for obstacle avoidance in human-robot collaboration, but the 

differences in the estimation of limb lengths and articular angles with respect to the Vicon reference should be 

considered while implementing the algorithms.  

5.5 Future works 

Our study showed that marker-less sensors are already applicable in the industrial environment for the 

biomechanical evaluation of workers [10]. Moreover, both static postures and dynamic movements were 

analyzed, with lower body joint occlusions and different lighting conditions. Our protocol includes all realistic 

environmental conditions that can usually be found in real contexts, where the occlusion regards principally 

the lower limbs and the lighting depends on artificial light. Due to the numerous combinations of different 

conditions (multiple Kinects, light, occlusion), we had to limit the number of tasks to propose a reasonable 

protocol in terms of time and number of tasks. Future applications may involve a wide variety of tasks and 

more extreme light conditions.  

Further analyses are necessary to assess the performance of the Azure Kinects for the segmentation and 

recognition of more complex movements. In this study, the experiments demonstrated that the Azure Kinects 

could be suitable for tracking movements with a large range of motion and with clear distinct phases. Further 

investigations are required for fine and small movements, as they were not correctly identified with  previous 

Kinect versions [26].  

Finally, starting from the results of this paper on the camera positioning, future works could include the data 

fusion between multiple cameras monitoring the same volume, as in  [63,64], to improve the overall tracking 

accuracy [65], or new similar devices, such as Orbbec Gemini 2, could be analyzed to evaluate the 

improvements in tracking accuracy.  

6. Conclusions 

This study provided a comprehensive analysis of the performance of the Azure Kinect camera for upper limb 

tracking, comparing a large set of kinematic and dynamic parameters on both static postures and dynamic 

movements. Moreover, we analyzed different testing conditions that could influence the accuracy of the Kinect 

camera, such as camera point of view, light intensity and presence of occlusions. Our study demonstrated that 

the frontal position is the most reliable; finds almost no difference when comparing artificial lightning with no 

lightning condition; quantifies the worsening of the performance in tracking the upper limbs when lower limbs 

are occluded. In our opinion, the main result of the proposed study is the demonstration, by statistical analyses 

and comparisons of results, that a low-cost and non-invasive sensor can be used in many medical and industrial 
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applications. Measures provided in static and dynamic tasks and in derived biomechanical measures are stable 

and reliable, entirely in line with those provided by expensive and invasive optoelectronic systems.  

Appendix A: Computation of dynamic and motor control parameters 

The power 𝑃𝑖(𝑡) exerted at the joint level was calculated as follows: 

𝑃𝑖(𝑡) = �̅�𝑖(𝑡)𝜔𝑖(𝑡) (1) 

where �̅�𝑖(𝑡) is the torque normalized to the length of the subject’s arm (La) and weight (Ma) and 𝜔𝑖(𝑡) the 

angular velocity of the joint. The peak power was taken as the maximum power 𝑃𝑀𝐴𝑋.  

The expended energy 𝐸𝑖 is the integral of the power exerted at the joint level during the execution of the task, 

computed as follows: 

𝐸𝑖 = ∫ 𝑃𝑖(𝑡)
𝑡𝑒𝑛𝑑

𝑡0
 𝑑𝑡  (2) 

Where 𝑡0 and 𝑡𝑒𝑛𝑑  are the initial and the ending time of the task, and 𝑃𝑖(𝑡) is the power time course. The 

dynamic quantities were normalized in order to allow inter-subject analysis.  

The normalized jerk NJ [49] was used to evaluate the smoothness of the movement and was computed as 

follows:  

𝑁𝐽 = √
1

2

𝑡5
𝑡𝑜𝑡

𝐿2 ∫ 𝑗2 𝑑𝑡  (3) 

where 𝑡𝑡𝑜𝑡 is the task execution time, j is the third derivative of the 3D position of the wrist and L is the length 

of the wrist trajectory during the execution of the task. 
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