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Figure S1. (a) Atomistic representation of metal bromine perovskites samples considered in this
study: 2D-like (PEA).PbBr4 (top) and MAPbBr3 (bottom). (b-c) (PEA)2PbBr4 (b) and MAPDBT3 (c)
optical images of the samples with highlighted metal contacts. Scale bars, 1 mm.
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Figure S2. PICTS data analysis layout. (a) Simulated current transients for a single defect state
with O T Qwand , p T & inthe o v ML Ot temperature range. Here ‘O is the
activation energy of the trapped charge carrier, ,, is the trapd €apture cross-section. For the
complete description of the classic PITCS parameters see refs. [1,2]. (b) Selected transients from
(a) at three different temperatures. For all three, the same rate window is selected, witho 1@ i
and 0 T®& i. The corresponding 3*Qvalues are indicated by two-sided arrows. (c) The PICTS
spectrum consists of a plot of the 3'Qralues as a function of temperature. Coloured dots indicate
the specific 3 Qralues calculated from the transients in (b). This spectrum is related to the rate
window'Q p 8 ( Udetermined by the 6 and ¢ values.
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Figure S3. Impedance spectroscopy (IS) extended data. (a) IS experimental setup: a LED driver
connected to eitherat X gtdoro @ & GLED (for MAPbBr; and (PEA).PbBr,4 respectively) shines
light onto the sample, inducing a photocurrent. The sample is polarized with a v w external bias
applied through a lock-in amplifier. The frequency response analyzer (FRA) module of the lock-in
amplifier was used to induce an AC voltage perturbation of amplitude ¢ 1 dr ) with frequency



varying from p m®ROdown to p'O& The impedance corresponding to each frequency was
retrieved through the FRA as the ratio between perturbation voltage and current signal Fourier
component with same frequency of the voltage perturbation, whose intensity and phase are
extracted by the lock-in amplifier. (b-c) IS phase plots corresponding to the intensity plots reported
in Figure 2a-b, main text, for MAPbBr; and (PEA).PbBr4 respectively. The data were acquired in
the dark first and then under illumination (intensity v & wZd® ), repeating the IS measurement
every 3 min to acquire the time evolution. (d-e) Corresponding Nyquist plots, for MAPbBr3 (d) and
(PEA).PbBr4 (e), respectively. Comparing the two plots, MAPbBr3 signal clearly displayed a more
relevant signal evolution over time. (f-g) Nyquist plots obtained setting the bias at mw to
demonstrate the influence of the sole illumination on the sample impedance over time. Again, in
the MAPDBTr; case (f), the signal clearly shows a more significant time evolution compared to the
(PEA).PbBr4 case (g).
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Figure S4. Intensity modulated photocurrent spectroscopy (IMPS) extended data. (a) IMPS setup
schematic. The sample is mounted in a vacuum chamber (Nextron) and electrically connected to



an external circuit. A frequency response analyzer (FRA) module records the sample photocurrent
and at the same time, the incident light intensity (via a photodiode). The FRA also controls the
LED driver connected to either a T x gtad or 0 @ ® & LED (for MAPbBr; and (PEA).PbBr,
respectively), driven at a sweeping with frequency varying from p 1 0down to T "Od The light
is divided by a beam splitter to have v 1 Blumination on the sample and v 1t Wlumination on the
photodiode. The FRA module is controlled by a potentiostat. (b-c) IMPS intensity plots
corresponding to the phase plots of Figure 2c, main text for the 2D (b) and 3D (c) perovskite,
respectively. (d-e) IMPS Nyquist plots of the (PEA)2PbBr4 (d) and MAPbBr3 (e), respectively.
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Figure S5. (PEA):PbBr4 (a,b) and MAPDbBr; (c,d) current versus voltage plots over temperature
in logarithmic scale (a,c) and linear scale (b,d) used to calculate the ion conductivity activation
energy, and showing Ohmic behavior.
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Figure S6. MAPDbBr; photocurrent transient measured at a X T i excitation time. The insets
highlight the reverse current spikes when the light is turned on (first spike from the left) and turned
off (second spike from the left). Bias voltage v @, illumination T X &1 6 v & WG

Figure S7. (a) Normalized photocurrent transient at room temperature for v wbias and
illumination pulse duration ¢®i. (b-d) Band diagram models for illustrating the effect of
intermittent illumination over time at the semitransparent electrode, where a positive bias is
applied.



