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Abstract—Recently, the Industrial Internet of Things (IIoT)
and Industry 4.0 paradigms have attracted considerable rele-
vance by leading all manufacturing companies to invest in IIoT
solutions in order to be competitive on the market. Despite the
huge number of IIoT solutions on the market, all platforms
refer to a common architectural model and share the same func-
tionalities. Among these functionalities, the most relevant is the
capability of deploy and run custom containerized applications.
This feature has a pivotal role of customizing the IIoT platform
and tailoring it to each business scenario. In this paper, we define
the general architectural model and common functionalities of
the IIoT platforms. Then, we analyze and compare two of the
most used IIoT solutions on the market, Siemens Industrial Edge,
and EdgeX Foundry. We also define three metrics for evaluating
the functionality of deploying custom services on the edge, and
we test these two platforms. Finally, we present their comparative
performance, advantages, and limitations.

Index Terms—IIoT platforms, IoT Solutions, Industry 4.0,
Edge Computing, Siemens Industrial Edge, EdgeX Foundry

I. INTRODUCTION

In recent years, the Industrial Internet of Things (IIoT) and
the Industry 4.0 paradigms have gotten considerable relevance
and they became cornerstone concepts for the industry digi-
talization [1], [2], by also paving the way for new industrial
research horizons [3], [4]. Cloud and edge computing are
crucial enablers of this new scenario by providing solutions
capable of exploiting the large amount of data generated by
production lines and industrial machines and transforming it
into value for manufacturing companies. These cloud-edge
solutions are based on the interposition of edge nodes between
the industrial shop floor, Operational Technology (OT) level,
and the IT/cloud applications (IT level). The edge nodes gather
data from the industrial plants and enable the collection, and
analysis of data on-premises [5]. In addition, edge solutions
enhance data security, and relegation, by keeping and process-
ing sensitive data within the company instead of uploading
them to the cloud. These features bring to the companies

a significant increment of economic benefits with lightening
production costs.

Recently, the advent edge solutions with their benefits lead
all manufacturing companies to invest in IIoT solutions in
order to be competitive on the market. This provisioning rush
has paved the way for the birth of many IIoT platforms [6].
In spite of the huge number of Industrial IoT platforms on the
market, all these platforms refer to a unique general model
that carries out the Industry 4.0 principles and answers to
companies’ needs.

The much sought-after feature of IoT platform users is the
ability to run custom services at the edge of the network.
The openness of an IoT platform to run third-party, and
self-developed applications in a plug-and-play manner is the
key enabler for tailoring the IIoT solution to the company’s
business goals. This feature is pivotal for the companies that
exploit it for building complex applications on the edge that
transform the data coming from the industrial plant into actual
value. In this work, we first introduce and detail the general
model to which each IIoT platform refers, then, we present all
the common functionalities and features these IoT solutions
share and implement. Among the several IIoT solutions, we
selected two of the most widely used in the industry, one
proprietary and one open-source, namely Siemens Industrial
Edge (IE) and EdgeX Foundry, respectively [7], and [8]. The
contribution of this work is twofold, on the one hand, it proves
that we can have the same functions and services deployed
on different IIoT edge ecosystems, and on the other hand, it
covers the gap in the literature about the direct comparison of
functional requirements and performance between the different
edge platforms. In addition, by focusing on the key functional-
ity of deploying and running custom services, we defined three
crucial metrics under which to test this functionality, service
deploy time, number of dropped requests, and faulted service
recovery. Finally, we tested the target IIoT platforms under the
defined metrics and we have shown the experimental results



along with a detailed comparison of the two solutions.

II. IOT PLATFORMS AND EDGE FUNCTIONALITIES

This section presents the general reference model of IIoT
platforms, its common functionalities, and how the two target
platforms implement such model and functionalities.

A. IoT Platforms: Model and Functionalities

In spite of the huge number of Industrial IoT solutions on
the market, all platforms refer to a general model that shares
common functionalities. This model, depicted in Figure1,
is composed by the typical key modules on which every
IoT platform builds its solution. This model represents the
functional architecture of the edge nodes which are typically
deployed on the OT level of the factories, on the shop floor.
The first two bottom layers depicted in Figure 1, are strictly
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Fig. 1. Architectural Model of IIoT Platforms

dependent by the node itself not by the IoT platform running
on it. It is worth to notice that the Specific OS layer is a
Linux-based OS most of the time. This choice is relevant for
two main reasons, the first one is the high lightweight of some
Linux distributions perfectly suitable for running on resource-
constrained devices, secondly, and more relevant, Linux is
the native OS for running and supporting Docker containers.
On top of the first two layers, there are four layers strictly
dependent by the IoT platform running on the edge nodes.
These four layers share the same functionalities but they have
different implementations depending on the manufacturer.
Southbound Communication & Field Connectors layer is
the closest to the shop floor and it is responsible to bridge the
machinery/production line with the edge node and the whole
IIoT solution. This contains all those components that enable
the communication with the industrial machines through many
field protocols, OPC-UA, MODBUS, MQTT, Fanuc, just to
name a few. IIoT platforms usually provide some connectors
ready to use, an SDK for developing custom connectors, and/or
a kind of marketplace on which the final user can buy field
connectors.

Platform Services are strictly related to the IIoT platform
and they include all the functionalities for managing the
platform itself. Inside this category, there are three modules re-
sponsible of three crucial aspects, Data Management, Device

Management, and Security & Accounting. The first module
includes all the platform services responsible for managing
data coming from the field connectors. Among these services,
there is always a message bus, typically implemented with
a pub/sub paradigm, that delivers commands and data to the
other services running on the platform (both custom or native).
The device Management module includes all those services
in charge to start/stop platform services, monitoring their
health and status, getting system metrics (CPU/MEM), and
configuring the platform. Finally, the Security & Accounting
module provides all the functionalities responsible for access
regulation, data privacy, and role management.

Custom Application and Services is a layer that contains
third-party and custom user applications. Every IIoT platform
provides a mechanism for running custom applications on
the platform. This layer is the most important and inter-
esting because it represents the major entry point for user
customization of the platform. By running its own application
services, end users can tailor the IIoT solution on their own
industrial use cases. The services running within this layer are
containerized application running on the edge node, and in
most of IIoT platforms, those services are Docker containers.
The application services running at this layer contain the pure
business logic of companies’ use cases, they receive data from
underneath layers and then they analyze, process, and work on
these data in order to produce value. Since it is not trivial
deploying, manage and run complex custom containerized
applications on the edge node, each platform adopts its own
policies, procedures, and methodologies. Similarly to the first
layer, Northbound Communication & IT/Cloud Connectors
contains all the elements and connectors that enable the
communication towards IT layer or cloud. This layer bridges
the OT layer with IT layer by enabling the forwarding of
processed data coming from the previous layer to IT or cloud
applications for long-term storage, machine learning, and/or
analytics. Typically, IIoT platforms provide cloud connectors
ready to use (off-the-shelf component) for the major cloud
providers, or alternatively, they provide tools for developing
custom connectors.

Once we have detailed the general architectural model of the
IIoT platforms and all their common shared functionaries, we
consider a proprietary and a open source platform (Siemens
IE and EdgeX Foundry, respectively) and we study how these
two solutions implement the reference model.

B. Siemens Industrial Edge

Siemens IE is one of the proprietary most adopted edge
solution on the market for Industry 4.0 scenarios. Siemens IE
is a multi-layer solution that involves both of IT and OT levels.
The Siemens platform, indeed, is composed by two entities, the
Industrial Edge Management (IEM) and the Industrial Edge
Device (IED). The IED is the actual edge node and it thought
to be deployed on OT level close to the industrial machines.
On the other hand, the IEM is a component deployed on
IT layer that is responsible of managing and controlling the
fleet of IEDs. The IEM is thought to be deployed anywhere



in the IT layer typically inside the industrial site. In a real
industrial deployment, there can be multiple IEDs and a IEM
that manages and controls all the devices. All the components
and functionalities described in subsection II-A are diffused
between IEM and IED. More in detail, the user defines all the
connectors, docker applications, and policies (i.e. security, role
definitions, and software updates) on the IEM and then they
are deployed on IEDs. The architecture of IED implements the
model described in the previous subsection and it is depicted
in Figure 2.

Fig. 2. Siemens Industrial Edge Device Architecture

Figure 2 depicts how the Siemens IED architecture im-
plements the general model of the IIoT platforms. More in
detail, the system, called Industrial Edge Runtime, runs on
an industrial Linux version that includes a Docker engine for
running containerized custom, third-party, and native applica-
tions. Siemens IE provides the Field and Cloud Connectivity
module as implementation of Southbound Communication &
Field Connectors layer presented in II-A. It contains field
connectors to communicate with the industrial machines using
the major protocols. These connectors have to be created and
configured on IEM and then they can be deployed on the
IEDs. Siemens provides a marketplace, named IE Catalog,
from which it is possible to buy and download both of field and
Cloud connectors. The IED provides the App Management
and Security and User/Identity Mgmt modules as part of
the implementation of Platform Services. These services along
with a pub/sub system based on MQTT, called IE Databus,
are responsible for data management and delivery. The first
module implements functionalities for app managing and node
configuration, such as application start/stop, status monitoring,
and device general settings. The module of Security and
User/Identity management regulates the access control based
on the user roles, and it decides who can do what. The security
on Siemens IED is regulated by certificates and user/password
access. IED is capable of running custom Applications and
Services called Edge App. They are docker-compose applica-
tions loaded on the IEM and then deployed on the IED. The
docker-compose file has to respect certain criteria in order to
be compliant with Industrial Edge Runtime. The custom Edge
App can communicate to each other or with other Siemens
applications through the IE Databus.

C. EdgeX Foundry Platform

EdgeX Foundry, briefly EdgeX, is an open-source, vendor-
neutral IIoT platform recently developed by Dell in its own
edge gateway project and now hosted by the Linux Foundation.
EdgeX acts as a data gateway at the edge and its main goal is to
bridge field devices (i.e. industrial machines) to IT applications
and systems. This solution is composed by a single entity,
typically deployed on the edge, OT level. EdgeX architecture
is composed by microservices which make it deployable both
on a single node at the edge level and on multiple nodes
between IT and/or OT levels. The EdgeX architectural model
is depicted in Figure3 and it is composed by four service
layers that implement the model described in sub-section
II-A. The first layer, Device Services (DS), implements the

Fig. 3. EdgeX Foundry Platform Architecture

Southbound Communication & Field Connectors of the model.
It is the layer responsible of communicating with the shop
floor machinery and running connectors. A DS is the EdgeX
entity capable of reading data from the field and actuating
commands on industrial machines. Each DS can implement
a field protocol and an EdgeX deployment can run multiple
DSs at the same time. The Core Services (CS) layer con-
tains the four essential services for running EdgeX platform,
they are responsible of managing and storing data, piloting
DSs, keeping metadata and configurations of each registered
microservice, and a service registry. The functionalities of
Security & Accounting, Device Mmarketplaced data delivery
are implemented by the system’s services called Security,
Management, and Support Services. More in detail, Security
implements all the policies to protect the data and to control
devices, Management implements all the functionalities for
handling and monitoring services and the Support Services
are responsible of delivering EdgeX messages and events to
the upper layers. Core, Security, Management, and Support
implement the Platform Services described in the model.
Application Services (AS) layer is placed on top of CSs and
it implements the Custom Application and Services module.
This layer hosts the services developed by the users. EdgeX
includes a pure Docker engine on which users can deploy and



run their own services. This layer contains another type of
service, Additional Services that implement the communica-
tion with the IT or cloud providers. EdgeX Foundry provides
two SDK to allow the user to develop both field and cloud
connectors (DSs and Additional Services).

III. PERFORMANCE METRICS

The two considered platforms provide very similar func-
tionalities but they have different implementations. The only
comparable feature is how the platforms allow to deploy and
run custom user services. For the sake of that, we focus our
study on this aspect by analyzing the performance of the two
subject platforms under three metrics, the service deploy time,
the number of dropped requests, and a failed service recovery
time.

We define the service deploy time as the time a platform
takes to successfully deploy a service on the edge. More
precisely, this time is considered from when the request arrives
on the edge platform and when the service is up and running.
In real industrial use cases, requests for service deployment
might occur in an asynchronous and uncontrolled manner, and
how fast the deployment of new services can be achieved is
paramount to allow a smooth roll-out of features, upgrades,
and to manage correctly the scalability of the services. For
this reason, we plan to measure the service deploy time under
different request loads to test how the platform’s performance
scales in response of the increasing requests frequency. This
metric takes into account the latency of a service deployment
request and if this request succeeds or fails (number of dropped
requests), i.e. due to the congestion of the platform’s job
queues and/or a network packet loss. It is worth to mention
that Siemens IE involves two entities, the IEM that receives
the requests, and IED where the service is actually deployed.

The other key metric of our work is service recovery time
after a service failure. Fault recovery plays a central role in
IIoT real deployment. The minimization of unplanned service
downtime is pivotal to avoid data and value loss.

To calculate the service downtime, we need to understand
when the target service fails. We define the failure detection
time as the time needed for our tool to detect the failure of
the target service on the edge platform. The tool introduces
its own latency since it requests the service status to the edge
platform by polling (polling time, Tpol). We formally define
the failure detection time (Tfd) as:

Tfd = Tpol + Texec

where Texec is the time the platform takes for executing the
service status checking request. Once we have defined the
failure detection time we can define the service downtime time
(Tdown) as the sum of the time needed for detecting a target
service failure (Tfd), plus the time to restore the target service
on the platform (Tres). Formally, the downtime time is defined
as:

Tdown = Tfd + Tres

Tres is the elapsed time since the platform receives the
service restore request until the target service is up and running

again. The time for executing a deployment or restoration of
a service can be broken down into pending and executing
time. Where pending is the time since the request enters in
the job queue of the platform up to it is carried out, while
the executing time is the duration of the process that fulfills
the request, i.e. the service is up and running. In the Siemens
solution, these times are more emphasized because the job
queue is on the IEM, while the execution is on the IED. The
IED checks for available jobs in queue with a certain polling
time, and it adds delay to the process.

IV. TESTS AND EXPERIMENTAL RESULTS

This section describes the test environments, the experimen-
tal results, and the platforms’ performance comparison.

A. Test Environment

The testbed deployment consists of four elements, a IEM
and a IED, for Siemens IE, an edge node running EdgeX, and
a Server from which we run scripts and calls. More precisely,
the IEM and Server are virtual machines (VMs) deployed in
IT layer at one hop distance from edge nodes. The IED and
EdgeX nodes are deployed on OT layer at a hop distance
from the shop floor. The IED is a Siemens SIMATIC IPC227E
device, while the EdgeX platform is deployed on a VM, with
the same resources of the IED. Table I shows the resources of
each entity in our deployment.

TABLE I
TESTBED DEPLOYMENT

IEM IED EdgeX Server

OS Version IEM OS
1.5.6

IED OS
1.5.0-21

Ubuntu
20.04.4

Ubuntu
20.04.4

RAM(GB) 12 8 8 16
CPU(cores) 4 4 4 8

HD(GB) 200 200 200 150

B. Tests and results

Here, we present the tests on the two platforms run under
the metrics described in section III and their performance
comparison.

1) Deploy time and Dropped Requests: The deploy time is
the time elapsed from when we sent the deployment request
up to the new service is up and running on the platform.
Siemens IE requires a preliminary login action before enabling
the user to deploy a service. This procedure has not taken
into account for the latency measurements. We vary the delay
among the calls to simulate different loads on platforms. We
increase the request loads on the platforms by linearly varying
the inter-request time among these values: 0.25, 0.5, 1, 2, 3,
and 5 seconds. From now on we call this time delay, which
meant the delay between two consecutive requests. We sent 20
requests for each delay time and we repeat each run 10 times
in order to have more stable and reliable results. Under these
service deployment request loads, we calculate the average
deploy time and the dropped requests that the platforms were



unable to manage. Figure 4 depicts the trends of the dropped
requests in Siemens IE and EdgeX solutions. From Figure
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4 emerges that Siemens solution has an increasing number
of dropped requests as the load increase, with a delay time
between requests under the second, latency 0.25, 0.5, while
all the requests are perfectly managed when the latency is
more than a second. More precisely, the Siemens platform
shows a number of requests dropped of 1, 8, and 15, with
a drop rate of 5%, 40%, and 75%, for delays of 1, 0.5, and
0.25 seconds, respectively. On the other hand, EdgeX solution
shows a single dropped request out of 20 calls on average
only under the heaviest request load, with a drop rate of
5%. Figure 5 depicts the average service deploy time of the
target platforms. From Figure 5 emerges that Siemens solution
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has a quite constant service deploy time on average for each
requests load, this time never falls below 30 seconds latency
of requests, while, EdgeX performs better the deployment
operation with a time that is around 15 seconds in average
for each load. The performance of EdgeX improves when
the latency among requests is more than a second. The high
time that Siemens IE takes to fulfill a service deployment
request has a strong influence on the dropped requests. Indeed,
when the requests come more frequently, i.e. latency 0.25,
and 0.5 seconds, the dropped requests rate is higher, 75%,
and 40% respectively. This is because with the time needed to
accomplish the single request and those high request loads, the
IEM job queue saturates soon and the IEM drops the requests.

2) Fault Tolerance: In this subsection, we show the exper-
imental results of downtime metric meant as we described in
section III. In Figure 6, we show the comparison of EdgeX
and Siemens solutions for service unplanned downtime metric.
Every run on the chart is the average of 10 restorations of
failed service. From Figure 6 emerges that EdgeX solution
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has the best performance in case of recovering the operation
of a failed service with a time in average around 15 seconds
against a time of around sixty seconds on average of Siemens
IE solution.

From a purely quantitative point of view, by considering
the three metrics under test, we can definitely say that the
EdgeX Foundry platform performs better than the Siemens
IE. It is worth to mention that Siemens IE is a mature
ecosystem that involves more entities in its solution, IEM,
and IED. In the Siemens solution, the IEM adds an addi-
tional layer that provides security, service orchestration, and
device management functionalities. This layer adds overhead
and accumulates delay in performing operations like service
deployment. EdgeX solution, being deployed on a single node,
has better performance under the defined metrics, but on the
other hand, it does not provide any additional functionalities
like multi-device management or service orchestration, that are
in charge of the final user.

V. RELATED WORKS

While there are several works focused on a single IoT
platform [9]–[12], we were not able to find much related
research works that discuss the IoT platforms comparison.

In [13], the authors proposed MIINT, a middleware for IIoT
platform integration, and they provide a comparison of the
field data reading functionality, using MODBUS, of Microsoft
Azure IoT and EdgeX Foundry.

A comparison between two proprietary solutions, Amazon
AWS Greengrass and Azure IoT, is presented in [19]. Here,
the authors compare compute time, time-in-flight, end-to-end
latency, payload size, and CPU and memory utilization of the
two platforms by concluding that Azure may not be suitable
for latency-sensitive applications, while, on the other hand, the
AWS Greengrass platform has fewer customization options.



In [14], the authors present a comparison among several IoT
platforms, KAA, Thingspeak, Microsoft Azure IoT, Things-
board, and AWS IoT, but they focused their work in com-
paring platform-related services such as device management,
networking, and data storage, leaving out the performance
analysis. In [16] and [15], the authors provide an analysis
of the functionalities of IoT platforms. The first focuses on
OpenMTC, FIWARE, SiteWhere, and AWS IoT, while the
latter focuses on AWS IoT, Azure IoT, Watson IoT, PTC
ThingWorx and Google IoT. Both works present architectural
similarities and functional features comparison.

Finally, [17] and [18] provide two works in which the
authors compare IT big players IoT platforms, such as Azure,
AWS, and Google Cloud. The first work presents a com-
parative analysis of services dedicated to IoT management,
by excluding industrial IoT deployment. The latter, instead,
focuses the comparison on the performance of a MQTT broker
service used as IoT resource connector. Both works leave
out open-source and on-premise solutions in terms of IoT
platforms for industrial deployments.

Our contribution overcomes the limitations of related work
that relies only on proprietary platforms ( [19]). In addition, by
analyzing platforms suitable specifically for integration with
IIoT-kind assets, our work focuses on the area of industrial
applications, while some related papers mainly focus on the
more general topic of IoT ( [17] and [18]). Finally, we
conducted a meticulous performance analysis, identifying the
bottlenecks between the two platforms under test, and not just
the functional requirements they exhibit, as shown in works
[14] [15] [16].

VI. CONCLUSION AND FUTURE DIRECTIONS

This work defined the general architectural model to which
every IIoT platform refers along with the common functional-
ities it provides. We studied Siemens IE and EdgeX Foundry
IIoT platforms, and how these two solutions have implemented
the presented architectural model and functionalities. In addi-
tion, we have defined two metrics for measuring the efficiency
with which they provide the functionality of deploying and
running custom or third-party services on the edge. We tested
the target platforms by measuring the service deploy time,
the service deploy dropped requests, and the time for service
recovery due to a failure. We presented performance results
in comparison by highlighting the advantages and limitations
of these two platforms. Finally, in our ongoing efforts, we are
extending the comparison of IIoT platforms both in terms of
functionalities and different solutions.
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